next up previous


Singular Value Decomposition and Numeric Stability


Definition 8.1.1. The tex2html_wrap_inline10161rank of the matrix A is defined by the formula
displaymath10079

Example 8.1.1.* Let us find the tex2html_wrap_inline10167-rank of the matrix
displaymath10080
if tex2html_wrap_inline10169

Evidently,
displaymath10081
If the equality
displaymath10082
holds, then
displaymath10083
Since
displaymath10084
then
displaymath10085

displaymath10086
where tex2html_wrap_inline7963 and tex2html_wrap_inline7965 are the eigenvalues of the matrix
displaymath10087
Therefore, tex2html_wrap_inline10175 and tex2html_wrap_inline10177 and
displaymath10088
This is a contradiction, and it means that tex2html_wrap_inline10179 Let us show that tex2html_wrap_inline10181 Really, for the matrix
displaymath10089
rank(B)=1 and
displaymath10090

displaymath10091
where tex2html_wrap_inline7963 and tex2html_wrap_inline7965 are the eigenvalues of the matrix
displaymath10092
Thus, tex2html_wrap_inline10189 and tex2html_wrap_inline10191, and
displaymath10093
But this means that tex2html_wrap_inline10181

Proposition 8.1.1. Let tex2html_wrap_inline7813 be the singular value decomposition of a matrix tex2html_wrap_inline7037. If k<r=rank(A) and
displaymath10094
then

displaymath10095

Proof. Since
displaymath10096

displaymath10097

displaymath10098

displaymath10099

displaymath10100

displaymath10101
and
displaymath10102
while tex2html_wrap_inline10201 Since the Euclid norm of the matrix A-Ak equals the greatest entry of the matrix UT(A-Ak)V, then
displaymath10103
Let tex2html_wrap_inline10207 be a matrix for which rank(B)=k. We can find the orthonormal vectors tex2html_wrap_inline10211 such that the null space of the matrix B is a linear span of the vectors tex2html_wrap_inline10215, i.e.,
displaymath10104
Since in the space tex2html_wrap_inline10217 n+1 vectors are linearly dependent, then
displaymath10105
If tex2html_wrap_inline10221 is a unit vector (by the Euclidean norm) from this intersection, then tex2html_wrap_inline10223 and
displaymath10106

displaymath10107
Hence

displaymath10108

displaymath10109

Corollary 8.1.1. If the matrix tex2html_wrap_inline7067 is regular, then the least singular value tex2html_wrap_inline10227 of the matrix A shows the distance of the matrix A from the nearest singular matrix.

Corollary 8.1.2. If tex2html_wrap_inline10233 then
displaymath10110

Problem 8.1.1.* Use corollary 8.1.2 to solve the problem given in example 8.1.1.

Proposition 8.1.2. If
displaymath10111
is the singular value decomposition of the regular matrix tex2html_wrap_inline7067, then the solution tex2html_wrap_inline7177 of system (1) can be expressed in the form
 
equation5952

Proof. Let us check the correctness of the assertion of the proposition:
displaymath10112

displaymath10113

Corollary 8.1.3. From the representation of the solution in form (2) it appears that small deviations of the entries of the matrix A could cause great deviations of the solution tex2html_wrap_inline7177 if tex2html_wrap_inline10227 is small.

Example 8.1.2.* For which system
displaymath10114
or
displaymath10115
small deviations of the entries of the system matrix can cause greater deviations of the solution tex2html_wrap_inline7177? Applying the package ``Maple'', we find the singular value decomposition of both system matrices:
displaymath10116
and
displaymath10117
We see that the least singular value tex2html_wrap_inline10251 of the first system matrix is hundred times smaller than the least singular value of the second system matrix. Therefore, in virtue of corollary 8.1.3, we can state that the first system is more stable than the second one, i.e., small deviations of the entries of the second system matrix can cause greater deviations of the solution tex2html_wrap_inline7177 than the deviation of the same order of the entries of the first system matrix.

Problem 8.1.2.* What of two systems
displaymath10118
or
displaymath10119
is more stable?


next up previous