next up previous


Existence of Singular Value Decomposition


Proposition 3.1.1. If tex2html_wrap_inline7643 tex2html_wrap_inline7645 has orthonormal columns, then there exists tex2html_wrap_inline7647 such that tex2html_wrap_inline7649 is orthogonal, where the orthogonal complement tex2html_wrap_inline7651 of the span of column vectors of the matrix V1 is equal to the span tex2html_wrap_inline7655 of the column vectors of the matrix V2 , i.e., tex2html_wrap_inline7661

Proof is basing on the Gram-Schmidt orthogonalization.

Proposition 3.1.2. If tex2html_wrap_inline7197 and tex2html_wrap_inline7667 has orthonormal columns, then tex2html_wrap_inline7669

Proof. If tex2html_wrap_inline7667 has orthonormal columns, then tex2html_wrap_inline7673 and
displaymath7607

Proposition 3.1.3. Let tex2html_wrap_inline7675 If tex2html_wrap_inline7425 and tex2html_wrap_inline7679 are orthogonal, then
displaymath7608
and
 
equation1840

Prove relation (1):
displaymath7609

displaymath7610

Proposition 3.1.4 (existence theorem of the singular value decomposition). If tex2html_wrap_inline6877 then there exist orthogonal matrices
displaymath7611
and
displaymath7612
such that
 equation1872
with

displaymath7613

Proof. By the definition of the matrix 2-norm there exist the vectors tex2html_wrap_inline7197 and tex2html_wrap_inline7685 such that tex2html_wrap_inline7687 where tex2html_wrap_inline7689 and tex2html_wrap_inline7691 By Proposition 3.1.1, there exist the matrices tex2html_wrap_inline7693 and tex2html_wrap_inline7695 such that tex2html_wrap_inline7697 tex2html_wrap_inline7699 and tex2html_wrap_inline7701 are orthogonal. Using this notation, we obtain that
displaymath7614

displaymath7615

displaymath7616
with tex2html_wrap_inline7703 and B=U2TAV2. Since
displaymath7617
then
displaymath7618
On the other hand,
displaymath7619
and therefore,
displaymath7620
By Proposition 3.1.3, we find thattex2html_wrap_inline7707 Consequently, tex2html_wrap_inline77090 and tex2html_wrap_inline7711 We obtain that
displaymath7621
or
displaymath7622
and
displaymath7623
Thus, the matrices ATA and tex2html_wrap_inline7715 are similar, and they have the same eigenvalues. Consequently,
displaymath7624
where tex2html_wrap_inline7717 as tex2html_wrap_inline7719 is the greatest eigenvalue of ATA. Note that since ATA is symmetric then all eigenvalues of ATA are non-negative. Reasoning used for the matrix A we shall use in the next step for the matrix B etc. So, on the main diagonal of tex2html_wrap_inline7731 there are the square roots of the eigenvalues of ATA , more exactly, the first tex2html_wrap_inline7735 of them in descending order.

Definition 3.1.1. The relation in form (2) is called the singular value decomposition of the matrix tex2html_wrap_inline7675 The elements tex2html_wrap_inline7741 tex2html_wrap_inline7173=tex2html_wrap_inline7745 on the main diagonal of tex2html_wrap_inline7731 are called the singular values of the matrix A.


next up previous