next up previous


Orthogonal Vectors


Definition 1.6.1. The vectors tex2html_wrap_inline5779 and tex2html_wrap_inline6329 of the vector space with scalar product tex2html_wrap_inline5709 are called orthogonal if tex2html_wrap_inline6675 We write tex2html_wrap_inline6677 to indicate the orthogonality of vectors tex2html_wrap_inline5779 and tex2html_wrap_inline6681 A vector tex2html_wrap_inline5779 of the vector space tex2html_wrap_inline5709 is called orthogonal to the set tex2html_wrap_inline6687 if tex2html_wrap_inline6689

Problem 1.6.1.* Find all vectors that are orthogonal both to the vector tex2html_wrap_inline6693 and tex2html_wrap_inline6695

Definition 1.6.2. The sets Y and Z of the vector space tex2html_wrap_inline5709 are called orthogonal if tex2html_wrap_inline6703 tex2html_wrap_inline6705 and tex2html_wrap_inline6707

Definition 1.6.3. A sequence tex2html_wrap_inline6529 of vectors of the vector space with scalar product tex2html_wrap_inline5709 is called a Cauchy sequence if for any tex2html_wrap_inline6713 there is a natural number n0 such that for all tex2html_wrap_inline6717 and n>n0
displaymath6611

Definition 1.6.4. A vector space with scalar product tex2html_wrap_inline5709 is called complete if every Cauchy sequence is convergent to a point of the space tex2html_wrap_inline5709.

Definition 1.6.5. A vector space with complex scalar product is called a Hilbert space tex2html_wrap_inline5957 if it turns out to be complete with respect to the convergence by the norm tex2html_wrap_inline6727.

Proposition 1.6.1. The space tex2html_wrap_inline6293 with the scalar product tex2html_wrap_inline6731 is a Hilbert space.

Proposition 1.6.2. The space tex2html_wrap_inline6305 of all square-integrable functions on the interval tex2html_wrap_inline5923 with the scalar product tex2html_wrap_inline6737 is a Hilbert space.

Proposition 1.6.3. Orthogonality of vectors in the vector space with scalar product tex2html_wrap_inline5709 has the following properties (1-4):

1. tex2html_wrap_inline6741

2. tex2html_wrap_inline6743

3. tex2html_wrap_inline6745

4. tex2html_wrap_inline6747
orthogonality of vectors in a Hilbert space has an additional property:

5. tex2html_wrap_inline6749

Let us prove these assertions:

tex2html_wrap_inline6751

tex2html_wrap_inline6753

tex2html_wrap_inline6755 tex2html_wrap_inline5741

tex2html_wrap_inline6759

tex2html_wrap_inline6761 tex2html_wrap_inline6763

tex2html_wrap_inline6765

tex2html_wrap_inline6767

tex2html_wrap_inline6769

tex2html_wrap_inline6771 tex2html_wrap_inline6773

Definition 1.6.6. The orthogonal complement of the set tex2html_wrap_inline6687 is the set tex2html_wrap_inline6777 of all vectors of the space tex2html_wrap_inline5709 that are orthogonal to the set Y, i.e.,
displaymath6612

Problem 1.6.2.* Let tex2html_wrap_inline6785 Find the orthogonal complement of the set U.

Proposition 1.6.4. If tex2html_wrap_inline5709 is a vector space with scalar product, tex2html_wrap_inline6791 tex2html_wrap_inline6687 and tex2html_wrap_inline6795 then tex2html_wrap_inline6797 If, in addition, tex2html_wrap_inline5709 is complete, i.e., is a Hilbert space, then tex2html_wrap_inline6801

Proof. By assertions 3 and 4 of proposition 1.6.3, tex2html_wrap_inline6803. If tex2html_wrap_inline6805 i.e., tex2html_wrap_inline6807 such that tex2html_wrap_inline6809 then, due to the orthogonality tex2html_wrap_inline6811 and assertion 5 of proposition 1.6.3, we get tex2html_wrap_inline6677, i.e., tex2html_wrap_inline6815

Proposition 1.6.5. The orthogonal complement tex2html_wrap_inline6777 of the set tex2html_wrap_inline6687 is a subspace of the space tex2html_wrap_inline5973 The orthogonal complement tex2html_wrap_inline6777 of the set tex2html_wrap_inline6825 is a closed subspace of the Hilbert space tex2html_wrap_inline6827 i.e., tex2html_wrap_inline6777 is a subspace of the space tex2html_wrap_inline5957 that contains all its boundary points.

Proof. Due to the proposition 1.2.1, it is sufficient for the proof of the first assertion of proposition 1.6.5 to show that tex2html_wrap_inline6777 is closed with respect to vector addition and scalar multiplication. It will follow from assertion 5 of the same proposition, it holds the second assertion of proposition 1.6.5 too.

Proposition 1.6.6. If Y is a closed subspace of the Hilbert space tex2html_wrap_inline6827 then each tex2html_wrap_inline6839 can be expressed uniquely as the sum tex2html_wrap_inline6841, tex2html_wrap_inline6843

Corollary 1.6.1. If tex2html_wrap_inline6039 is a closed subspace of the Hilbert space, then the space tex2html_wrap_inline5957 can be presented as the direct sum tex2html_wrap_inline6849 of the closed subspaces tex2html_wrap_inline6851 and tex2html_wrap_inline6853, and

tex2html_wrap_inline6855

Definition 1.6.7. The distance of the vector tex2html_wrap_inline5779 of the Hilbert space tex2html_wrap_inline5957 from the subspace tex2html_wrap_inline6861 is defined by the formula
displaymath6613

Proposition 1.6.7. If tex2html_wrap_inline6039 is a closed subspace of the Hilbert space tex2html_wrap_inline5957 and tex2html_wrap_inline6839, then there exist a uniquely defined tex2html_wrap_inline6869 such that tex2html_wrap_inline6871

Definition 1.6.8. The vector tex2html_wrap_inline6329 in proposition 1.6.7 is called the orthogonal projection of tex2html_wrap_inline5779 onto the subspace Y.

Definition 1.6.9. A vector system tex2html_wrap_inline6877 is called orthogonal if tex2html_wrap_inline6879 where tex2html_wrap_inline6881 is the Kronecker delta. The vector system tex2html_wrap_inline6877 is called orthonormal if tex2html_wrap_inline6885.

Example 1.6.1. The vector system tex2html_wrap_inline6887( k = 1 : n), where tex2html_wrap_inline6889 is orthonormal in tex2html_wrap_inline6293.

Example 1.6.2. The vector system
displaymath6614
is orthonormal in tex2html_wrap_inline6893

Example 1.6.3. The vector system tex2html_wrap_inline6895 is orhtonormal in tex2html_wrap_inline6897Truely,
displaymath6615

displaymath6616

Proposition 1.6.8. (Gram-Schmidt orthogonalization theorem). If tex2html_wrap_inline6899 is a linearly independent vector system in the vector space with scalar product tex2html_wrap_inline5957, then there exist an orthonormal system tex2html_wrap_inline6903 such that tex2html_wrap_inline6905

Let us prove this assertion by complite induction. In the case k=1, we define tex2html_wrap_inline6909 and, obviously, tex2html_wrap_inline6911 So we have shown the existence of the induction base. We have to show the admissabily of the induction step. Let us assume that the proposition holds for k=i-1, i.e., there exists an orthonormal system tex2html_wrap_inline6915 such that tex2html_wrap_inline6917 Now we consider the vector
displaymath6617
Let us choose the coefficients tex2html_wrap_inline69191: i-1) so that tex2html_wrap_inline6925 tex2html_wrap_inline6927=1: i-1), i.e, tex2html_wrap_inline6931 We get i-1 conditions:
tex2html_wrap_inline6935 ehk tex2html_wrap_inline6937 tex2html_wrap_inline6939 =1: i-1).
Thus,
displaymath6618
Now we chose tex2html_wrap_inline6943 Since
displaymath6619
we get, by the construction of vectors tex2html_wrap_inline6945 and tex2html_wrap_inline6947, tex2html_wrap_inline6949 Hence
displaymath6620
From the representation of the vector tex2html_wrap_inline6951 we see that tex2html_wrap_inline6953 is a linear combination of vectors tex2html_wrap_inline6955
Thus,
displaymath6621
Finally,

displaymath6622

Example 1.6.4. Given a vector system tex2html_wrap_inline6957 in tex2html_wrap_inline6959, where
displaymath6623
Find such an orthogonal system tex2html_wrap_inline6961, for which
displaymath6624
To apply the orthogonalization process of proposition 1.6.8, we check first the system tex2html_wrap_inline6957 for the linearly independence (one can omit this process, too, because the situation will be clear in the course of the orthogonalization:
displaymath6625
the system tex2html_wrap_inline6957 is linearly independent. Now we find
displaymath6626
For tex2html_wrap_inline6967 we get:
displaymath6627
As tex2html_wrap_inline6969 tex2html_wrap_inline6971 The vector tex2html_wrap_inline6973 can be expressed in the form:
displaymath6628

displaymath6629
Thus,

displaymath6630

Example 1.6.5. Given a linearly independent vector system tex2html_wrap_inline6957 in tex2html_wrap_inline6977, where tex2html_wrap_inline6979 tex2html_wrap_inline6981 and tex2html_wrap_inline6983 Find an orthogonal system tex2html_wrap_inline6961, such that
displaymath6631
Check that the system tex2html_wrap_inline6957 is linearly independent. The first vector is
displaymath6632
The vector tex2html_wrap_inline6967 can be expressed in the form:
displaymath6633
Thus,
displaymath6634
The vector tex2html_wrap_inline6973 can be expressed in the form:
displaymath6628

displaymath6636

displaymath6637
Therefore,
displaymath6638

displaymath6639
The functions tex2html_wrap_inline6993 and tex2html_wrap_inline6995 are the normed Legendre polynomials on [-1;1].

Problem 1.6.3. Show that a vector system tex2html_wrap_inline6999 with pairwise orthogonal elements is linearly independent.


next up previous