next up previous


Taylor Development


We can obtain the exact evaluation of the sensibility of system (1) using the system depending on a parameter
 equation6056
where tex2html_wrap_inline9653, tex2html_wrap_inline10291 and tex2html_wrap_inline10293 If A is a regular matrix, then tex2html_wrap_inline10297 is a differentiable function of the parameter tex2html_wrap_inline10299 in some neighbourhood of the value 0. Differentiating the both sides of equality (3) with respect to the parameter tex2html_wrap_inline10299, we get
displaymath10257
and
 equation6075
It follows from relation (4) that
displaymath10258
Let us write the first order Taylor formula for the function tex2html_wrap_inline10297
displaymath10259
As the result, we obtain for arbitrary vector norm and for the matrix norm corresponding to it
displaymath10260

displaymath10261
Taking into account that from relation (1) it follows tex2html_wrap_inline10307 we obtain the evaluation
displaymath10262
or
displaymath10263
where tex2html_wrap_inline10309 and tex2html_wrap_inline10311 are the relative errors of the matrix A and the vector tex2html_wrap_inline8115, respectively.

Proposition 8.2.1. If tex2html_wrap_inline7067 is a regular matrix, then the relative error tex2html_wrap_inline10319 of the solution of the linear system (1) corresponding to the relative error tex2html_wrap_inline10321 of the matrix A and the relative error tex2html_wrap_inline10325 of the vector tex2html_wrap_inline8115 is given by
displaymath10264

Corollary 8.2.1. In case of the Euklidean norm it holds the estimation
displaymath10265

Proof. The relation tex2html_wrap_inline10329 holds. As the matrix A is regular, it follows from its singular value decomposition tex2html_wrap_inline7813 that tex2html_wrap_inline10335 where tex2html_wrap_inline10337 Since tex2html_wrap_inline10339 then tex2html_wrap_inline10341 and
tex2html_wrap_inline10343

Example 8.2.1.* Let us estimate the relative error tex2html_wrap_inline10319 of the solution tex2html_wrap_inline7177 of the system tex2html_wrap_inline6827 in case of the Euclidean norm if
displaymath10266
tex2html_wrap_inline10353 and tex2html_wrap_inline10355
Let us find the singular decomposition of the matrix A
displaymath10267

displaymath10268
In virtue of corollary 8.2.1, we can state

displaymath10269

Problem 8.2.1.* Estimate the relative error tex2html_wrap_inline10319 of the solution tex2html_wrap_inline7177 of the system tex2html_wrap_inline6827 in case of the Euclidean norm if
displaymath10270
tex2html_wrap_inline10367 and tex2html_wrap_inline10369

Remark 8.2.1. Kahan (1966) proved that
displaymath10271
and Rice (1966) proved that

displaymath10272


next up previous