up previous

Strict Estimations


The assertion of proposition 8.2.1 is of a local kind. Namely, this proposition is proved for relatively small deviations. Next we will give the evaluation of the deviation of the solution in general case. First we will prove one necessary auxiliary result.

Proposition 8.3.1. If the matrix tex2html_wrap_inline7067 is a regular matrix and
displaymath10371
then A+E is regular and

displaymath10372

Proof. A regular matrix can be represented in the form
displaymath10373
where F=-A-1E. Since tex2html_wrap_inline10435 then, in virtue of proposition 7.1.1, the matrix I-F is regular and
displaymath10374
Hence
displaymath10375
and
displaymath10376
From the equality
displaymath9639
it follows that
displaymath10378
and

displaymath10379

Proposition 8.3.2. Let
displaymath10380
while tex2html_wrap_inline10439 and tex2html_wrap_inline10441 If tex2html_wrap_inline10443 then tex2html_wrap_inline10445 is a regular matrix, and
displaymath10381
and

displaymath10382

Proof.Since tex2html_wrap_inline10447 then, in virtue of proposition 8.3.1, tex2html_wrap_inline10445 is a regular matrix. Applying proposition 7.1.1 and the equality
displaymath10383
we find
displaymath10384

displaymath10385
In addition, we find that tex2html_wrap_inline10451 Hence
displaymath10386
and that means that the first part of the assertion is true. Since the relation
displaymath10387
holds, then
displaymath10388
and therefore,

displaymath10389

displaymath10390

Example 8.3.1.* Let
displaymath10391
We will estimate the relative error of the solution of the system tex2html_wrap_inline6827 using the Euclidean norm. Since
displaymath10392
and the eigenvalues ATA are tex2html_wrap_inline10459 and tex2html_wrap_inline10461 then
displaymath10393
Let us find the Euclidean norm of the vector tex2html_wrap_inline8115:
displaymath10394
If one takes tex2html_wrap_inline10465 then the conditions tex2html_wrap_inline10439 and tex2html_wrap_inline10469 are satisfied. From the singular value decomposition of the matrix A
displaymath10395
we find that
displaymath10396
Hence
displaymath10397
and, in virtue of proposition 8.3.2, we get

displaymath10398

Problem 8.3.1.* Let
displaymath10399
Find the relative error of the solution of the system tex2html_wrap_inline6827. Use the Euklidean norm.


up previous