next up previous


Norm of a Vector


Definition 1.5.1. A vector space tex2html_wrap_inline5709 (over the number field tex2html_wrap_inline5865) is called a normed space, if to each vector tex2html_wrap_inline5739 there corresponds a certain non-negative real number tex2html_wrap_inline6457 called the norm of the vector, such that the following conditions are satisfied:

1. tex2html_wrap_inline6459 identity axiom);

2. tex2html_wrap_inline6461(tex2html_wrap_inline6463ogencity axiom);

3. tex2html_wrap_inline6465 (triangle inequality).

Definition 1.5.2. The distance tex2html_wrap_inline6467 between two vectors in the normed space tex2html_wrap_inline5709 is defined by the formula tex2html_wrap_inline6471

Proposition 1.5.1 (Hölder inequality). If tex2html_wrap_inline6473
displaymath6371
then

displaymath6372

Proof. See E.Oja, P.Oja (1991, pp. 11-12).

Proposition 1.5.2 (Minkowski inequality). If tex2html_wrap_inline6475
displaymath6373
then

displaymath6374

Proof. See E.Oja, P.Oja (1991, pp. 10-11).

Example 1.5.1. One defines in tex2html_wrap_inline6293 the p-norm tex2html_wrap_inline6481 of the vector tex2html_wrap_inline5779 by the formulas
displaymath6375

displaymath6376
Let us verify that the p-norm tex2html_wrap_inline6487 satisfies the conditions 1-3 in definition 1.5.1:

tex2html_wrap_inline6489;

tex2html_wrap_inline6491

tex2html_wrap_inline6493
using the Minkowski inequality, we get
displaymath6377
Verify conditions 1-3 in case of the norm tex2html_wrap_inline6495!
The most often used p-norms are:

displaymath6378

displaymath6379

displaymath6376

Problem 1.5.1.* Let be given the vectors tex2html_wrap_inline6501 ja tex2html_wrap_inline6503 Find
displaymath6381

displaymath6382

Proposition 1.5.3. All the p-norms of the space tex2html_wrap_inline6293 are equivalent, i.e., if tex2html_wrap_inline6509 and tex2html_wrap_inline6511 are the p-norms of the space tex2html_wrap_inline6293, then there exist positive constants c1 and tex2html_wrap_inline6519 such that
displaymath6383
At the same time

displaymath6384

displaymath6385

displaymath6386

Let us prove the last three assertions:
displaymath6387

displaymath6388
Using the Hölderi inequality, we get in case p=q=2 that

displaymath6389

displaymath6390

displaymath6391

displaymath6392

displaymath6393

displaymath6394

Proposition 1.5.4. A space with scalar product tex2html_wrap_inline5709 is a normed space with the norm
displaymath6395

Proof. Let us verify the validity of conditions 1-3:
displaymath6396

displaymath6397

displaymath6398

displaymath6399

displaymath6400

displaymath6401
tex2html_wrap_inline6525 is the notation for the real part of the complex number tex2html_wrap_inline6527

Proposition 1.5.5. In the normed space with scalar product it holds the parallelogram rule:
displaymath6402

Proof. By the immediate check, we get
displaymath6403

displaymath6404

displaymath6405

Definition 1.5.3. It is said that the sequence tex2html_wrap_inline6529 of the elements of the space tex2html_wrap_inline6293 converges with respect to the p-norm to the element tex2html_wrap_inline6535 if
displaymath6406
In this case we shall write tex2html_wrap_inline6537

Remark 1.5.1. Since all the p-norms of the space tex2html_wrap_inline6293 are equivalent, this implies that the convergence of the sequence tex2html_wrap_inline6529 with respect to the tex2html_wrap_inline6545-norm will yield its convergence with respect to the tex2html_wrap_inline6547-norm.

Problem 1.5.2. Show that if tex2html_wrap_inline6535, then tex2html_wrap_inline6551

Problem 1.5.3. Show that if tex2html_wrap_inline6535, then
displaymath6407
where tex2html_wrap_inline6555 tex2html_wrap_inline6557 and tex2html_wrap_inline6559, tex2html_wrap_inline6561. Find such a constant cn, that

displaymath6408

Definition 1.5.4. A vector tex2html_wrap_inline6565 is called an approximation to the vector tex2html_wrap_inline6567 if it differs little from tex2html_wrap_inline5779 in some sense.

Definition 1.5.5. In case of the fixed norm tex2html_wrap_inline6571, the quantity
displaymath6409
is called the absolute error of the approximation tex2html_wrap_inline6573 to the vector tex2html_wrap_inline6575 and the quantity
displaymath6410
is called the relative error of the approximation (tex2html_wrap_inline6577).

In case of the tex2html_wrap_inline6579norm the relative error can be considered as an index of the correct significant digits. Namely, if tex2html_wrap_inline6581 then the greatest component of the vector tex2html_wrap_inline6573 has k correct significant digits.

Example 1.5.2. Let tex2html_wrap_inline6587 and tex2html_wrap_inline6589 Find tex2html_wrap_inline6591 and tex2html_wrap_inline6593, and then the number of the correct significant digits of the greatest component of the approximation tex2html_wrap_inline6573 by tex2html_wrap_inline6593. We get tex2html_wrap_inline6599 ja tex2html_wrap_inline6601 and tex2html_wrap_inline6603 Thus the greatest component tex2html_wrap_inline6605 of tex2html_wrap_inline6573 has three correct significant digits. At the same time, the component tex2html_wrap_inline6609 has only one correct significant digit.


next up previous