next up previous


Functions of Matrixes


Let us consider a matrix tex2html_wrap_inline7145 and a function of complex variable
displaymath9465
There is a lot of possisilities to define a function of matrix f(A) starting from the function of complex variable f(z). The simplest of these possibilities seems to be the substituting the variable "z" by the variable "A". For example,
displaymath9466
and
displaymath9467
as well
displaymath9468

displaymath9469

displaymath9470

displaymath9471
It turns out that this approach is not very practical for solving problems.

Definition 2.9.1. If tex2html_wrap_inline7145 , f(z) is analytic in the open domain tex2html_wrap_inline9649 , tex2html_wrap_inline9651 is a closed simple line (does not cut itself) in tex2html_wrap_inline9649 and the spectrum tex2html_wrap_inline9655 of the matrix A is included in domain tex2html_wrap_inline9659 enfolded by tex2html_wrap_inline9651, then
 equation4924
where the integral is applied to the matrix by its elements.

Remark 2.9.1. Formula (28) is an analogue to the Cauchy integral formula proved for the functions of complex variable.

Example 2.9.1. Let f(z)=z and tex2html_wrap_inline9665 Check how to calculate by rule (28). Since tex2html_wrap_inline9667 and tex2html_wrap_inline9669 are the eigenvalues of A , then let us choose the line tex2html_wrap_inline9673 where tex2html_wrap_inline9675 The function f(z)=z is analytic in domain tex2html_wrap_inline9679 First we find
displaymath9472

displaymath9473
and then

displaymath9474

displaymath9475

displaymath9476

Proposition 2.9.1. If tex2html_wrap_inline9681 then
displaymath9477
where tex2html_wrap_inline9683 is a vector in space tex2html_wrap_inline6293 whose k-th component is one and the remaining ones are zeros.

Proof. Let tex2html_wrap_inline9689 Then,
displaymath9478
Since the matrix is integrated by elements, we obtain that

displaymath9479

Proposition 2.9.2. If tex2html_wrap_inline7145 , there tex2html_wrap_inline9693 i.e., the conditions of definition 2.9.1 are satisfied, and
 equation5000
then
 
equation5008

Proof. From (28) , (29) and XX-1=I we find that
displaymath9480

displaymath9481
Since
displaymath9482
and
displaymath9483

displaymath9484

displaymath9485
then
displaymath9486
that was to be proved.

Proposition 2.9.3. If tex2html_wrap_inline7145 and tex2html_wrap_inline9701 is the Jordan normal form of the matrix A , where
displaymath8559
is an tex2html_wrap_inline8905 Jordan block, tex2html_wrap_inline9707 and f(z) is analytic on an open set that includes the spectre tex2html_wrap_inline9655 of the matrix A, then
 equation5047
where
 
equation5052

Prooof. Using Proposition 2.9.2 it is sufficient to consider only the value F(G), where tex2html_wrap_inline9717 is a tex2html_wrap_inline9719 Jordan block and tex2html_wrap_inline9721 Let the matrix zI-G be regular. Since
displaymath9488
then
displaymath9489
and
displaymath9490

displaymath9491
Now, taking into account the condition tex2html_wrap_inline9725 the assertion holds.

Example 2.9.2. Find tex2html_wrap_inline9729 if
displaymath9492

Since tex2html_wrap_inline9731 and the function tex2html_wrap_inline9733 is analytic in the neighbourhood of 0 , then for the calculation of tex2html_wrap_inline9729 we can apply the algorithm given in Proposition 2.9.3. We use for the calculation of Jordan decomposition of the matrix A the ''Maple'':
displaymath9493
Therefore, J=diag(J1,J2),where
displaymath9494
Using (3), we find the matrices tex2html_wrap_inline9743 and tex2html_wrap_inline9745 :
displaymath9495
and
displaymath9496
After that, using (2), we find the matrix wanted:

displaymath9497

displaymath9498

Corollary 2.9.1. If tex2html_wrap_inline7145 , tex2html_wrap_inline9749 and there tex2html_wrap_inline9693 then
displaymath9499

Proof. This is a special case of Proposition 2.9.3. All the Jordan blocks are tex2html_wrap_inline9753

Example 2.9.3. If tex2html_wrap_inline9755 tex2html_wrap_inline9757 are the eigenvalues of the matrix tex2html_wrap_inline7145 and tex2html_wrap_inline9761 are the corresponding linearly indipendent eigenvectors , i.e., tex2html_wrap_inline9761 generate a basis in tex2html_wrap_inline9765 then tex2html_wrap_inline9767 and from analyticity of tex2html_wrap_inline9769 tex2html_wrap_inline9771 tex2html_wrap_inline9773 in the whole finite part of complex plane it follows that
displaymath9500
where tex2html_wrap_inline9775 and

displaymath9501

displaymath9502

Next we consider the problem arising in the approximation of the function f(A) by the function g(A). This kind of problem arises, for example, if we replace f(A) with its Taylor polynomial of degree q.

Proposition 2.9.4. Let tex2html_wrap_inline7145, tex2html_wrap_inline9787 where
displaymath8559
is an tex2html_wrap_inline8905 Jordan block and tex2html_wrap_inline9791 If the functions f(z) and g(z) are analytic on an open set containing the spectre tex2html_wrap_inline9655 of the matrix A, then
 
equation5180

Proof. Choosing tex2html_wrap_inline9801we have
displaymath9504

displaymath9505
Using Proposition 2.9.3 and inequality tex2html_wrap_inline9803 we find that
displaymath9506
and thus, the assertion holds.

Example 2.9.4. Let
displaymath9507
We estimate the difference tex2html_wrap_inline9807

Since tex2html_wrap_inline9809 and the functions tex2html_wrap_inline9811 and g(z)=z are analytic in the neighbourhood of .1,then we can apply the estimation (33) obtained in Proposition 2.9.4. First, we use ''Maple'' for finding the Jordan decomposition of the matrix A:
displaymath9508
Hence, there is only one Jordan block in the Jordan decomposition of the matrix A, i.e.
displaymath9509
Second, we use ''Maple'' for finding the condition number of X:
displaymath9510
Since


displaymath9511


displaymath9512
and


displaymath9513
then, by estimation (30), we have that
displaymath9514
It is known that matrix X in the Jordan decomposition of A is not uniquely determined. We try to choose the matrix X so that the condition number k2(X) should be minimal. Applying the Filipov algorithm to find the Jordan decomposition of A (see Proposition 2.5.2.1), we obtain that
displaymath9515
where
displaymath9516
It turns out that
displaymath9517
is also a Jordan decomposition of A, where
displaymath9518
Therefore, the best estimation we can have by Proposition 2.9.4 is
displaymath9519
Otherwise, in this example for calculating tex2html_wrap_inline9835 there is applicable the algorithm given in Proposition 2.9.3. Using the formula (32), we have that
displaymath9520

displaymath9521
By formula (31) we calculate the value of the function in question:
displaymath9522

displaymath9523
Hence,
displaymath9524

displaymath9525
and
displaymath9526
As a result of this example, we can assert that estimation (33) proved in Proposition 2.9.5 is quite rough.

Proposition 2.9.5. If the Maclaurin expansion of the function f(z)
displaymath9527
is convergent in the circle containing the spectrum tex2html_wrap_inline9655 of the matrix tex2html_wrap_inline8779 then

displaymath9528

Prove this assertion with an additioal assumption that the matrix A has a basis consisting of its eigenvectors. In this case, by Corollary 2.9.1,
displaymath9529

displaymath9530

displaymath9531

Proposition 2.9.6. If the Maclaurin series of the function f(z)
displaymath9527
is convergent in the circle containing the spectrum tex2html_wrap_inline9655 of the matrix tex2html_wrap_inline8779 then

displaymath9533

Proof. Let us define the matrix E(s) by
 equation5330
If tex2html_wrap_inline9853 tex2html_wrap_inline9855, then tex2html_wrap_inline9853 is analytic, and therefore,
 equation5338
where tex2html_wrap_inline9859By comparing the powers of the variable s in (34) and (35), we conclude that tex2html_wrap_inline9863 has the form
displaymath9534
If tex2html_wrap_inline9865 then

displaymath9535

Exercise 2.9.1. Prove that for an arbitrary matrix tex2html_wrap_inline7145 there hold
displaymath9536
and

displaymath9537

Exercise 2.9.2. Apply Proposition 2.9.6 to the estimation of the errors in the approximate equalities
displaymath9538
and

displaymath9539

Proposition 2.9.7 (Sylvester theorem). If all eigenvalues tex2html_wrap_inline9869 of the matrix tex2html_wrap_inline7145 are different, then
 equation5390
or


 equation5397
where tex2html_wrap_inline9873 tex2html_wrap_inline9875 is the determinant obtained from the Vandermonde determinant
displaymath9540
by replacing the k-th row vector
displaymath9541
by the vector

displaymath9542

Example 2.9.4. Calculate tex2html_wrap_inline9879 if tex2html_wrap_inline9881
First we find the eigenvalues of A:
displaymath9543
Then we use formula (36):
eqnarray5422

displaymath9544
Now applying (37), we have

eqnarray5445


displaymath9545


displaymath9546
We solve this problem once more using the formula tex2html_wrap_inline9885 where S is the matrix formed of the eigenvalues of A. Find the eigenvalues of A:
displaymath9547
and
displaymath9548
and the matrix
displaymath9549
Hence
eqnarray5492


next up previous