next up previous


Cayley-Hamilton Theorem


Proposition 2.8.1 (Cayley-Hamilton theorem). If tex2html_wrap_inline9365 and
displaymath9289
then p(A)=0, i.e., the matrix A satisfies its characteristic equation.

Proof. According to proposition 2.6.7, there exists a regular matrix tex2html_wrap_inline8685 such that
displaymath9290
where
displaymath9291
is an upper bidiagonal tex2html_wrap_inline9373matrix (Jordan block) that has on its main diagonal the eigenvalue tex2html_wrap_inline9375 of the matrix A( at least mi-mutiple eigenvalue of the matrix A since to this eigenvalue may correspond some more Jordan's blocks) and tex2html_wrap_inline9383 Since tex2html_wrap_inline9385 tex2html_wrap_inline9387 then tex2html_wrap_inline9389 and tex2html_wrap_inline9391 )mi=0. If tex2html_wrap_inline9395 is the characteristic polynomial of the matrix A and the zeros of this polynomial are tex2html_wrap_inline9399 , then
displaymath9292
and
displaymath9293
We show that p(J)=0. Let the matrix J have the block form:
displaymath9294
We obtain that
displaymath9295

displaymath9296

displaymath9297

displaymath9298

displaymath9299

displaymath9300

displaymath9301

displaymath9302
From the relation X-1AX=J it follows that A=XJX-1. We complete the proof with

displaymath9303

displaymath9304

displaymath9305

Example 2.8.1. Verify the assertion of the Cayley-Hamilton theorem for the matrix

tex2html_wrap_inline9409.

We construct the characteristic polynomial
displaymath9306
and find

displaymath9307

displaymath9308

Exercise 2.8.1.* Let


displaymath9309
Compute A2, and using the Cayley-Hamilton theorem, find the matrix
displaymath9310

Definition 2.8.1. A polynomial tex2html_wrap_inline9413 is called a nullifying polynomial of the matrix tex2html_wrap_inline9365 if q(A)=0.

The characteristic polynomial of the matrix tex2html_wrap_inline9365 is a nullifying polynomial of this matrix (by the Cayley-Hamilton theorem).

Definition 2.8.2. The nullifying polynomial of the matrix tex2html_wrap_inline9365 of the lowest degree is called the minimal polynomial of the matrix A.

Exercise 2.8.1. Verify that the characteristic polynomial of matrix tex2html_wrap_inline9365 is divisible by the minimal polynomial of the matrix A without remainder.

Proposition 2.8.2. Let tex2html_wrap_inline9395 and tex2html_wrap_inline9431 be the characteristic polynomial and the minimal polynomial of the matrix A, respectively. Let the greatest common divisor of the matrix tex2html_wrap_inline9435 tex2html_wrap_inline9437 that is, the matrix of algebraic complements of the elements of the matrix tex2html_wrap_inline9435 -A) , be tex2html_wrap_inline9443. Then,
displaymath9311

Proof. See Lankaster (1982, p. 123-124).

Example 2.8.2. Find the characteristic polynomial and the minimal polynomial of the matrix D=diag(a,a,b,b). First we find that
displaymath9312

displaymath9313

displaymath9314
and the greatest common divisor of the elements of the matrix tex2html_wrap_inline9435 tex2html_wrap_inline9449 is tex2html_wrap_inline9451 By the assertion of proposition 2.8.2 tex2html_wrap_inline9453 Let us check
displaymath9315

displaymath9316
Indeed, tex2html_wrap_inline9431 is the nullifying polynomial. It is easy to verify that no polynomial of first degree can nullify the matrix A. Thus, tex2html_wrap_inline9431 is the minimal polynomial of the matrix A.

Example 2.8.3. Find the characteristic and the minimal polynomials of the matrices
displaymath9317
First we find the characteristic polynomials tex2html_wrap_inline9463
displaymath9318
and
displaymath9319
Next we find the minimal polynomials:

displaymath9320


displaymath9321


displaymath9322

displaymath9323
and
displaymath9324

displaymath9325

displaymath9326


next up previous