next up previous


Schur's Decomposition


The eigenvector tex2html_wrap_inline5779 of the matrix tex2html_wrap_inline7145 determines in the space tex2html_wrap_inline6293 a one-dimensional subspace that is invariant with respect to the multiplication by the matrix A on the left.

Definition 2.6.1. The subspace tex2html_wrap_inline8619 is called invariant with respect to the multiplication by the matrix A on the left if tex2html_wrap_inline8623

Proposition 2.6.1. If tex2html_wrap_inline8625 and AX=XB, then the space tex2html_wrap_inline8629 of the matrix X is invariant with respect to the multiplication by the matrix A on the left and the space tex2html_wrap_inline8635 is invariant with respect to the multiplication by the matrix B on the right. In addition, the following connections
displaymath8513
and
displaymath8514
holds.

Proof. If tex2html_wrap_inline8639 then
displaymath8515
and
displaymath8516

displaymath8517
and
displaymath8518
Therefore, the space tex2html_wrap_inline8629 of the column-vectors of the matrix X is invariant with respect to the multiplication by the matrix A on the left. Analogously, one can prove that the space tex2html_wrap_inline8635 of the row-vectors is invariant with respect to the multiplication by the matrix B on the right. If tex2html_wrap_inline8651 then
displaymath8519
i.e., tex2html_wrap_inline5765 is an eigenvalue of the matrix A if tex2html_wrap_inline5765 is the eigenvalue of the matrix B. Naturally,
displaymath8520
therefore, if the column-vectors of the matrix X are linearly independent, then tex2html_wrap_inline8663 If tex2html_wrap_inline8665 and X is a regular square matrix tex2html_wrap_inline8669, then it follows from the equality AX=XB that A=XBX-1 and
displaymath8521
i.e., every eigenvalue of the matrix A is an eigenvalue of the matrix B, tex2html_wrap_inline8679, and thus tex2html_wrap_inline8681

Definition 2.6.2. Matrices tex2html_wrap_inline8683 are said to be similar if there exists a regular matrix tex2html_wrap_inline8685 such that A=XBX-1.

Due to proposition 2.6.1 (the last assertion), the spectres of two similar matrices are equal. We can get this result also directly:
displaymath8522

displaymath8523

Problem 2.6.1.* Are the matrices A and B similar if
displaymath8524

displaymath8525

Proposition 2.6.2. If tex2html_wrap_inline8695 and
eqnarray3649
then tex2html_wrap_inline8697

Proof. If tex2html_wrap_inline8699 i.e., tex2html_wrap_inline8701 tex2html_wrap_inline8703 and tex2html_wrap_inline8705 then
displaymath8526
If tex2html_wrap_inline8707 then
displaymath8527
If tex2html_wrap_inline8709 then
displaymath8528
Thus,
displaymath8529
Since the potencies of the sets tex2html_wrap_inline8711 and tex2html_wrap_inline8713 are equal, then the proposition holds. tex2html_wrap_inline5817

Example 2.6.1. Using proposition 2.6.2, let us find the spectre of the matrix
displaymath8530
First, we find the eigenvalues of the matrices tex2html_wrap_inline8717 and tex2html_wrap_inline8719 :
displaymath8531

displaymath8532
Thus, the spectre of the matrix is tex2html_wrap_inline8721

Problem 2.6.2.* Find by the use of proposition 2.6.2 the spectre of the matrix A if
displaymath8533

Definition 2.6.3. A matrix tex2html_wrap_inline8727 is called a unitary matrix if QHQ=QQH=I.

Problem 2.6.3.* Is the matrix Q a unitary matrix if
displaymath8534

displaymath8535

Proposition 2.6.3 (the QR factorisation theorem) . If tex2html_wrap_inline7159, then the matrix A can be expressed in form A=QR, where matrix tex2html_wrap_inline8743 is unitary matrix and matrix tex2html_wrap_inline8745 is an upper triangular matrix.

Proposition 2.6.4. If tex2html_wrap_inline8747
 equation3793
and rank(X)=p, then there exists a unitary matrix tex2html_wrap_inline8727 such that
eqnarray3799
where tex2html_wrap_inline8755

Proof. Let us consider for the matrix tex2html_wrap_inline8757 its QR factorization tex2html_wrap_inline8761 where tex2html_wrap_inline8727 and tex2html_wrap_inline8765 Substracting the factorization of the matrix X into equality (20), we get
displaymath8536
The spectres of the matrices QHAQ and A coincide, i.e. tex2html_wrap_inline8773 Representing the matrix Ain form
eqnarray3834
we find
displaymath8537
Therefore, the proposition holds. tex2html_wrap_inline5817

Remark 2.6.1. Proposition 2.6.4 makes it possible, if we know an invariant subspace of the given matrix, to transform it by unitary similarity transformations into a triangular block form.

Proposition 2.6.5 (Schur's decomposition). If tex2html_wrap_inline8779 then there exists a unitary matrix tex2html_wrap_inline8727 such that
 equation3881
where tex2html_wrap_inline8783 and tex2html_wrap_inline8785 is a strictly upper triangular matrix, i.e., an upper triangular matrix with zeros on the main diagonal. The matrix Q can be formed so that the eigenvalues of the matrix A are in the given order on the main diagonal of the matrix D.

To prove this assertion we will use the method of complete induction. As the assertion holds for n=1, the base for the induction exists. We are going now to show the admissibility of the induction steps. We suppose that the assertion holds for the matrices which order is less or equal to k-1. Let us show that the assertion will be valid for k, too. If tex2html_wrap_inline8799 and tex2html_wrap_inline8801 then, by lemma 2.6.4, choosing tex2html_wrap_inline8803, there exists a unitary matrix U such that
eqnarray3893
Since tex2html_wrap_inline8807 the assertion is valid for this matrix, i.e., there exists a unitary matrix tex2html_wrap_inline8809 such that tex2html_wrap_inline8811 is an upper triangular matrix. If tex2html_wrap_inline8813 then
displaymath8538

displaymath8539

displaymath8540
and so the matrix QHAQ is an upper triangular matrix. tex2html_wrap_inline5817

Example 2.6.2. Let
displaymath8541
Let us show that Q is unitary matrix. For this we, first, find the product QHAQ. The checking of the matrix Q for unitarity gives:

displaymath8542

displaymath8543


displaymath8543
Let us find the product
displaymath8545

displaymath8546
Consequently, we have obtained the Schur decomposition of the matrix A.

Now (21) can be represnted in the form AQ=QT. Replacing tex2html_wrap_inline8829 where the vectors tex2html_wrap_inline8831 are called Schur vectors, into the last equality , we get
displaymath8547
or
displaymath8548

displaymath8549
or
displaymath8550
From this equality it turns out that all subspaces tex2html_wrap_inline8833( k = 1: n) are invariant with respect to multiplication by the matrix A on the left, and Schur vector tex2html_wrap_inline8831 is an eigenvector of the matrix A if and only if in the tex2html_wrap_inline8841-th column of the matrix tex2html_wrap_inline8843 there are only zeros.

Definition 2.6.4. If tex2html_wrap_inline7145 and AHA=AAH, then A is called a normal matrix.

Exercise 2.6.4.* Check the normality of A if


displaymath8551

Proposition 2.6.6. A matrix tex2html_wrap_inline7145 is normal matrix if there exists a unitary matrix tex2html_wrap_inline8855 satisfying the condition tex2html_wrap_inline8857

Proof. If the matrix A is unitarily similar to the diagonal matrix D, then
displaymath8552

displaymath8553
and since diagonal matrices are commutative, then AHA=AAH and the matrix A is normal . Vice versa, if the matrix A is normal and the Schur decomposition of this matrix is QHAQ=T, then T is also normal because
displaymath8554
and
displaymath8555
Since a triangular matrix is normal only if it is a diagonal matrix, then it has been proved that a unitary matrix is similar to a diagonal matrix.

Proposition 2.6.7 (block-diagonal-decomposition). Let
displaymath8556
be the Schur decomposition of the matrix tex2html_wrap_inline7145 , where the blocks tex2html_wrap_inline8879 are square matrices. If tex2html_wrap_inline8881 then there exists a regular matrix tex2html_wrap_inline8883 tex2html_wrap_inline8885 such that

displaymath8557

Corollary 2.6.1. If tex2html_wrap_inline8779 then there exists a regular matrix X such that
displaymath8558
where tex2html_wrap_inline8891 , tex2html_wrap_inline8893 and each tex2html_wrap_inline8895 is a strictly upper triangular matrix.

Proposition 2.6.8 (Jordan decomposition). If tex2html_wrap_inline8779 then there exists a regular matrix tex2html_wrap_inline8685 such that tex2html_wrap_inline8901where tex2html_wrap_inline8903 ,
displaymath8559
is an tex2html_wrap_inline8905 Jordan block,and the matrix J is called the Jordan normal form of the matrix A .

Proof. See Lankaster (1982, p. 143).

Example 2.6.3. Using ''Maple'' , we find the Jordan decompositions A=XJX-1 of two matrices:
displaymath8560
and
displaymath8561


next up previous