next up previous


Norms and Condition Numbers of a Matrix


Definition 2.7.1. A mapping tex2html_wrap_inline9045 is called the norming of a matrix and obtained value the matrix norm if the following three conditions are satisfied:
displaymath8919
The matrix norm will be denoted
tex2html_wrap_inline9047

The most frequently used norms in linear algebra are the Frobenius norm
 equation4179
and the p-norms tex2html_wrap_inline9051
 equation4187
From (23) it follows that
displaymath8920
or
 equation4201
Let us verify that p-norm satisfies the conditions of the matrix norm. We find that
displaymath8921

displaymath8922
further
displaymath8923

displaymath8924

displaymath8925
and

displaymath8926

displaymath8927

Exercise 2.7.1. Verify that the Frobenius norm satisfies the conditions of the matrix norm.

Exercise 2.7.2.* Compute the Frobenius norm tex2html_wrap_inline9055 if
displaymath8928

Definition 2.7.2. For the fixed matrix norm the value


eqnarray4273

is called the condition number corresponding to the regular square matrix tex2html_wrap_inline7975

The condition number corresponding to the Frobenius norm will be denoted kF(A) and the condition number corresponding to the p-norm will be denoted kp(A). For a singular square matrix tex2html_wrap_inline7113 we will define tex2html_wrap_inline9067

Exercise 2.7.2. Show that if tex2html_wrap_inline9069 then
displaymath8929

displaymath8930

displaymath8931

Proposition 2.7.1. Rule (23) for the calculation of the norm tex2html_wrap_inline9071 can be transformed to the form
 
equation4288

Proof. Using the third property of the norm and the homogeneity of multiplication of a vector by a matrix, we have
displaymath8932
where tex2html_wrap_inline9073

Proposition 2.7.2. If tex2html_wrap_inline7193, tex2html_wrap_inline9077 and tex2html_wrap_inline9079 then tex2html_wrap_inline9081

Proof. Using (24) and (25), we find that
displaymath8933

displaymath8934

Remark 2.7.1. Since tex2html_wrap_inline9083 then always tex2html_wrap_inline9085.

Remark 2.7.2. For each tex2html_wrap_inline7193 and tex2html_wrap_inline6567 and for arbitrary vector norm tex2html_wrap_inline6509 on tex2html_wrap_inline5777 and tex2html_wrap_inline6511 on tex2html_wrap_inline9097 it holds the relation
displaymath8935
where tex2html_wrap_inline9101 is a matrix norm defined by
displaymath8936
Since the set tex2html_wrap_inline9103 is compact and tex2html_wrap_inline6511 is continuous, it follows that
displaymath8937
for some tex2html_wrap_inline9107 with tex2html_wrap_inline9109

Definiton 2.7.3.If k(A) is relativly small, then the matrix A is called a well-conditioned matrix, but if k(A) is great, then an ill-conditioned matrix.

Definition 2.7.4. A norm tex2html_wrap_inline9117of the square matrix A is said to be consistent to the vector norm tex2html_wrap_inline9121 if
displaymath8938
and it is submultiplicative, i.e.,

displaymath8939

Definition 2.7.5. The norm tex2html_wrap_inline9123 of the square matrix, consistentto the vector norm tex2html_wrap_inline9121 is said to be subordinate to the vector norm tex2html_wrap_inline9121 if for any matrix A there exists a vector tex2html_wrap_inline9133 such that tex2html_wrap_inline9135

Proposition 2.7.3. For arbitrary vector norm tex2html_wrap_inline9121 there exists at least one matrix norm tex2html_wrap_inline9123 subordinate (and thus at least one consistent ) to this vector norm, and this is
displaymath8940

Remark 2.7.3. Not all matrix norms satisfy the submultiplicative property tex2html_wrap_inline9141. For example, if we define tex2html_wrap_inline9143 , then for the matrices tex2html_wrap_inline9145 we have tex2html_wrap_inline9147 and
displaymath8941

Proposition 2.7.4. If tex2html_wrap_inline7193, then the following relations between the matrix norms hold:
 equation4383

 equation4391

displaymath8942

displaymath8943

displaymath8944

displaymath8945
If tex2html_wrap_inline9153 and tex2html_wrap_inline9155 then

displaymath8946

Prove the relation (27) . We have
eqnarray4413
where we suppose that maximum has been gained if the index i obtains the value k . We have the estimation
displaymath8947
Let
displaymath8948
and
displaymath8949
Since tex2html_wrap_inline9163 then
displaymath8950
and thus

displaymath8951

Example 2.7.1. Let us calculate the norms tex2html_wrap_inline9165 and tex2html_wrap_inline9167 for the matrix A if
displaymath8952
From (26) ja (27) we find that
displaymath8953

displaymath8954
and

displaymath8955

displaymath8956

Example 2.7.2. Let us calculate the inverse matrix A-1 of the matrix tex2html_wrap_inline9173, the norms tex2html_wrap_inline9175tex2html_wrap_inline9177 tex2html_wrap_inline9179 and the condition numbers of matrix A k1(A), tex2html_wrap_inline9185 if
displaymath8957
It follows that
displaymath8958

displaymath8959
and

displaymath8960

If formulae (26) and (27) enable to calculate easily 1-norm and tex2html_wrap_inline6579norm, respectively, then the calculation of the 2-norm is more complicated. The matrix 2-norm is called also the matrix spectral norm.

Proposition 2.7.5. If tex2html_wrap_inline7175 then
displaymath8961
i.e., tex2html_wrap_inline9199 is the square root of the largest eigenvalue of ATA .

Proof. To calculate tex2html_wrap_inline9203 we find first tex2html_wrap_inline9205 Thus,
displaymath8962
Let tex2html_wrap_inline9207 The matrix B is a symmetric matrix because
displaymath8963
and
displaymath8964

displaymath8965

displaymath8966

displaymath8967
then tex2html_wrap_inline9211 is a function of n variables tex2html_wrap_inline9215 and
displaymath8968

displaymath8969
The problem of finding tex2html_wrap_inline9217is a problem of finding the relative extremum. To solve our problem we form an auxiliary function
displaymath8970
To find the stationary points of tex2html_wrap_inline9221 we form the system of equations:
displaymath8971
i.e.,
displaymath8972
or
displaymath8973
Thus, any stationary point for relative extremum is the normed vector tex2html_wrap_inline5779 corresponding to an eigenvalue oftex2html_wrap_inline9227. Let us express from the relation tex2html_wrap_inline9229tex2html_wrap_inline9231

the eigenvalue tex2html_wrap_inline8475 We obtain that tex2html_wrap_inline9235, where tex2html_wrap_inline9237 Comparing this result with the original formula for finding tex2html_wrap_inline9239 we notice that tex2html_wrap_inline9241 tex2html_wrap_inline9243. Thus,
displaymath8974
i.e., tex2html_wrap_inline9199 is the square root of the largest eigenvalue of ATA .

Corollary 2.7.1. If matrix tex2html_wrap_inline7193 is symmetric, then
displaymath8975

Example 2.7.3. Let us calculate the inverse matrix A-1 of the matrix A, the norms tex2html_wrap_inline9255 tex2html_wrap_inline9179 and the condition numbers of the matrix A k1(A), tex2html_wrap_inline9263 if
displaymath8976
We obtain that

displaymath8977

displaymath8978

Example 2.7.4. Let us see how the almost singularity (the value of the determinant is close to zero) and ill condition of the matrix are related. For the matrix
displaymath8979
tex2html_wrap_inline9267 but tex2html_wrap_inline9269 In contrast, for the diagonal matrix
displaymath8980
kp(Dn)=1 but tex2html_wrap_inline9273 for an arbitrarily small tex2html_wrap_inline9275. Exercise 2.7.4.* Find the inverse A-1 of the matrix A, the norms tex2html_wrap_inline9281 tex2html_wrap_inline9179 and the condition numbers k1(A), tex2html_wrap_inline9263 if
displaymath8981


next up previous