next up previous


Notation of a Matrix and Operations with Matrices


The vector space of all tex2html_wrap_inline7067matrices with real elements will be denoted by tex2html_wrap_inline5827 and
displaymath7001
The element of the matrix A that stands in the i-th row and k-th column will be denoted by aik or A(i,k) or [A]ik. The main operations with matrices are following:

Problem 2.1.1.* Let
displaymath7006

Find the matrix AB.

Problem 2.1.2.* Let
displaymath7007
Find the matrix An-1.

Problem 2.1.3.* Let
displaymath7008
Prove that

displaymath7009

Example 2.1.1.* Let us show that multiplication of matrices is not commutative. Let
displaymath7010
We find the products:
displaymath7011

displaymath7012
As tex2html_wrap_inline7103 does not hold for the example, multiplication of matrices is not commutative in general.

Proposition 2.1.1. If tex2html_wrap_inline7105 and tex2html_wrap_inline7107 then
displaymath7013

Proof. If C=(AB)T, then
displaymath7014
If D=BTAT, we also have

displaymath7015

displaymath7016

Definition 2.1.1. A matrix tex2html_wrap_inline7113 is called symmetric if AT=A and skew-symmetric if AT=-A.

Problem 2.1.4.* Is matrix A symmetric matrix or skew-symmetric matrix if
displaymath7017

Proposition 2.1.2. Each matrix tex2html_wrap_inline7113 can be expressed as a sum of a symmetric matrix and a skew-symmetric matrix.

Proof. Each matrix tex2html_wrap_inline7113 can be expressed as A=B+C, where B=(A+AT)/2 and C=(A-AT)/2. As
displaymath7018
and
displaymath7019
the proposition holds. tex2html_wrap_inline5817

Problem 2.1.5.* Represent the matrix
displaymath7020
as a sum of a symmetric and a skew-symmetric matrix.

Definition 2.1.2. If A is a tex2html_wrap_inline7067matrix with complex elemtnts, i.e., tex2html_wrap_inline7141 then the transposed scew-symmetric matrix AH will be defined by the equality
displaymath7021

Definition 2.1.3. A matrix tex2html_wrap_inline7145 is called an Hermitian matrix if
displaymath7022

Problem 2.1.6.* Is matrix A an Hermitian matrix if
displaymath7023

Problem 2.1.7.* Let tex2html_wrap_inline7153 Show that matrices AAH and AHA are Hermitian matrices.

The matrix tex2html_wrap_inline7159 can be expressed both by the column-vectors tex2html_wrap_inline7161k = 1 : n) of the matrix A and by the row-vectors tex2html_wrap_inline7165 ( i = 1 : m ) of the transpose of matrix A ("pasting'' the matrices of the column-vectors or of the transposed row-vectors)
displaymath7024
where tex2html_wrap_inline7169 and tex2html_wrap_inline7171 and

displaymath7025

Example 2.1.2. Let us demonstrate these notions on a matrix tex2html_wrap_inline7173:
eqnarray1737

If tex2html_wrap_inline7175 then A(i,:) denotes the i-th row of the matrix A, i.e.,
displaymath7026
and tex2html_wrap_inline7183 denotes the k-th column of the matrix A, i.e.,
displaymath7027
If tex2html_wrap_inline7189 then
displaymath7028
and if tex2html_wrap_inline7191 then
displaymath7029
If tex2html_wrap_inline7193 and tex2html_wrap_inline7195 and tex2html_wrap_inline7197 where
displaymath7030
then the corresponding submatrix is

displaymath7031

Example 2.1.3. If
displaymath7032
and tex2html_wrap_inline7199 and tex2html_wrap_inline7201 then
displaymath7033


next up previous