next up previous


Pseudoinverse Matrix and Optimum Solution


Next we will consider the algorithm of finding the optimum solution.

Example 4.2.1. Let tex2html_wrap_inline8255 and
displaymath8191
where tex2html_wrap_inline8257 and tex2html_wrap_inline8259 We will find the optimum solution of the system
displaymath8192
The orthogonal projection of the vector tex2html_wrap_inline8115 on the space tex2html_wrap_inline8263 is tex2html_wrap_inline8265, and tex2html_wrap_inline8267 To find the solution tex2html_wrap_inline8139, one must solve the system
displaymath8193
i.e.,
displaymath8194
or
displaymath8195
where tex2html_wrap_inline8271 are arbitrary. Taking tex2html_wrap_inline8273 we obtain the solution with the least 2-norm
displaymath8196
We state that tex2html_wrap_inline8183 can be expressed also by
displaymath8197
The optimum solution tex2html_wrap_inline8183 of the given example can be obtained from the vector tex2html_wrap_inline8115 by multiplying it on the left by the matrix
displaymath8198
The matrix tex2html_wrap_inline8281 is got from the matrix tex2html_wrap_inline7731 by its transposing and afterwards replacing the nonzero entries by their reciprocals. Hence tex2html_wrap_inline8285

Let us generalize the result obtained in example 4.2.1.

Proposition 4.2.1. If
 equation2812
and
 equation2818
then the optimum solution tex2html_wrap_inline8183 of the system
displaymath8199
is given by
displaymath8200
where
 
equation2830

Definition 4.2.1. Let
displaymath8201
be the singular value decomposition of the matrix tex2html_wrap_inline7037. The pseudoinverse matrix of the matrix A is a matrix
displaymath8202
where tex2html_wrap_inline7731 and tex2html_wrap_inline8281 are given by relations (1-3).

Problem 4.2.1. Let tex2html_wrap_inline7067 and tex2html_wrap_inline8299 Show that A+=A-1.

Problem 4.2.2. Let us find the pseudoinverse matrix of the matrix tex2html_wrap_inline7991 given in example 3.3.2. We found the singular value decomposition of the matrix A in this example
displaymath7870
On the ground of definition 4.2.1,
displaymath8202
i.e.,

displaymath8205

Proposition 4.2.2. If tex2html_wrap_inline6877 then the optimum solution tex2html_wrap_inline8183 of the system tex2html_wrap_inline8311 (in the sense of least-squares) is given by
displaymath8206

Proof. When a vector is multiplied by the orthogonal matrix UT, its 2-norm conserves. Therefore,
displaymath8207
Let substitute tex2html_wrap_inline8315 Hence
displaymath8208
Proposition 4.2.1 implies that the minimizing vector for the expression tex2html_wrap_inline8317 is the vector
displaymath8209
and the vector
displaymath8210
minimizes the expression tex2html_wrap_inline8319

Example 4.2.3. Let us find the optimum solution of the system
displaymath8211
In example 4.2.2, we found the pseudoinverse matrix
displaymath8212
of the matrix of the system tex2html_wrap_inline8321

In virtue of proposition 4.2.2, we get the optimum solution
displaymath8213

Example 4.2.4. Let us find the optimum solution of the system
displaymath8214
In example 3.3.1, we found the singular value decomposition of the system matrix A
displaymath8215
Using definition 4.2.1, we will find the pseudoinverse matrix
displaymath8216

displaymath8217
The optimum solution of the system will be

displaymath8218

Problem 4.2.2.* Find the pseudoinverse of the matrix A=[0] and explain the result. Answer: A+=[0].

Problem 4.2.3.* Find the pseudoinverse of the matrix A
displaymath8219

Problem 4.2.4.* What is the pseudoinverse matrix of the matrix A with orthogonal columns? Answer: A+=AT.

Problem 4.2.5.* Find the optimum solution of the system
displaymath8095

Proposition 4.2.3 (Conditions of Moore-Penrose.) If tex2html_wrap_inline6877 then the conditions
displaymath8221
are satisfied only by one matrix tex2html_wrap_inline8345, and this is A+.

Problem 4.2.6.* A matrix A is called projectionmatrix if
displaymath8222
Check the Moore-Penrose conditions for the projectionmatrix. Does A+=A?


next up previous