next up previous


Polar Decomposition of a Matrix and Method of Square Roots


Proposition 6.4.1 (on the reduced singular value decomposition of a matrix). If the matrix tex2html_wrap_inline7037 tex2html_wrap_inline9223 has the singular value decomposition tex2html_wrap_inline9225 where tex2html_wrap_inline7821 and tex2html_wrap_inline7825 are orthogonal matrices and tex2html_wrap_inline9231 then the reduced singular value decomposition of this matrix A is
displaymath9151
where U1=U(: ,1:n) and tex2html_wrap_inline9239 :).

Proof. If one uses the representation of the matrices U and V by the column-vectors
displaymath9152
and
displaymath9153
then
displaymath9154

displaymath9155
and

displaymath9156

displaymath9157

Example 6.4.1. Find the reduced singular value decomposition of the matrix
displaymath7855

The singular value decomposition tex2html_wrap_inline7813 of the matrix A was found in example 3.3.1. It is
displaymath7863
According to proposition 6.4.1, the reduced singular value decomposition has the form
displaymath9151
where U1=U(: ,1:n) and tex2html_wrap_inline9239 :), i.e.,

displaymath9161

Proposition 6.4.2. If the matrix tex2html_wrap_inline7037 has the reduced singular value decomposition
displaymath9151
then the matrix A can be given in the form
 equation4228
where tex2html_wrap_inline9263 is a matrix with orthogonal columns and tex2html_wrap_inline9265 is a symmetric positive semidefinite matrix.

Proof. Since tex2html_wrap_inline9267 then
displaymath9163
Let us check the correctness of the assertion of the proposition. Firstly, Z is a matrix with orthonormal columns since
displaymath9164
Secondly, tex2html_wrap_inline9265 is a positive semidefinite matrix since
displaymath9165
where tex2html_wrap_inline9273

Definition 6.4.1. The factorization of the matrix tex2html_wrap_inline7037 in the form (12) is called the polar decomposition.

Example 6.4.2. Find the polar decomposition of the matrix
displaymath7855

In example 6.4.1 the reduced singular value decomposition tex2html_wrap_inline9277 of the matrix A was found. Let us find the factors Z and P occuring in the polar decomposition of the matrix A:
displaymath9167

displaymath9168

displaymath9169

displaymath9170
Hence the polar decomposition of the matrix A is

displaymath9171

Problem 6.4.1.* Find the polar decomposition of the matrix
displaymath9172

Definition 6.4.2. Let tex2html_wrap_inline7675 If the matrix tex2html_wrap_inline9293 satisfies the equation X2=A, then the matrix X is the square root of the matrix A.

Proposition 6.4.3. If
displaymath9173
is the Cholesky factorization of the symmetric positive semidefinite matrix tex2html_wrap_inline7067 and
displaymath9174
is the singular value decomposition of the matrix G and
displaymath9175
then
displaymath9176
i.e., the matrix X is the square root of the matrix A, where X is a symmetric positive semidefinite matrix. Only one such X exists.

Proof. We find
displaymath9177

displaymath9178
Show that the matrix X is a uniquely defined symmetric positive semidefinite matrix! tex2html_wrap_inline7853

Example 6.4.3. Let us find the square root of the matrix
displaymath9179

The matrix A is symmetric and positive semidefinite (see example 6.3.1), and
displaymath9180
Since
displaymath9181
then

displaymath9182

displaymath9183

displaymath9184

Problem 6.4.2.* Find the square root of the matrix
displaymath9185


next up previous