next up previous


Givens QR Factorization


Next we consider how to use the Givens rotations to compute the QR factorization of a given matrix.

Example 2.4.1. Consider for tex2html_wrap_inline7519 the idea of the Givens QR factorization:
displaymath7469

displaymath7470

displaymath7471
The orthogonal matrix has the form:

displaymath7472

Example 2.4.2.* Find the Givens QR factorization of
displaymath7473

Let us annihilate the element A(3,1) of A. For this we construct the Givens matrix G1(2,3). Find the values c and s:
displaymath7474
Thus, we have
displaymath7475
and
displaymath7476

displaymath7477
For the annihilation of the element A(1)(2,1) of A(1) we construct the Givens matrix G2(1,2). Find the values c and s:
displaymath7478
Thus,
displaymath7479
and
displaymath7480

displaymath7481
To annihilate the element A(2)(3,2) of A(2) we construct the Givens matrix G3(2,3). Find the values of c and s:
displaymath7482
and
displaymath7483
Thus,
displaymath7484
and
displaymath7485
:
displaymath7486
and
displaymath7487

displaymath7488

displaymath7489
Let us check:
displaymath7490

displaymath7491
:

Exercise 2.4.1. Find the Givens QR factorization of the matrix A in example 2.3.2.

Exercise 2.4.2.* Find the Givens QR factorization of A if
displaymath7492


next up previous