next up previous


Properties of Singular Value Decomposition


Relation (2) yields the relations
 equation2010
and
 
equation2014

Proposition 3.2.1. If tex2html_wrap_inline6877 tex2html_wrap_inline7777 and
tex2html_wrap_inline7779 tex2html_wrap_inline7781 then for each tex2html_wrap_inline7259=tex2html_wrap_inline7785 there hold the relations
 equation2029

 equation2035

displaymath7751

displaymath7752
and

displaymath7753

Proof. Suppose n>m. Consider relation (3) that can be written in the form
displaymath7754
or
displaymath7755
The latter is (5) for the elements in the m first columns of the matrix. Consider relation (4) that can be written in the form
displaymath7756
or
displaymath7757
that represents relation (6) by elements. We note that ''0'' denotes also certain blocks consisting of zeros.

Proposition 3.2.2. If the singular values in the singular value decomposition (2) of tex2html_wrap_inline7037 satisfy the inequalities
displaymath7758
then

  1. tex2html_wrap_inline7797
  2. tex2html_wrap_inline7799
  3. tex2html_wrap_inline7801
  4. tex2html_wrap_inline7803
  5. rank(A)=r;
  6. the singular values of A are equal to the semi-axes of the hyperellipsoid
    tex2html_wrap_inline7809 ;
  7. tex2html_wrap_inline7811

Prove the first of these properties. Consider the relation tex2html_wrap_inline7813. Since
displaymath7759
then
displaymath7760
or
displaymath7761
Thus,

displaymath7762

Proposition 3.2.3. If tex2html_wrap_inline7037 and tex2html_wrap_inline7813 is a singular value decomposition of the matrix A, then the column-vectors of tex2html_wrap_inline7821 are the normed eigenvectors of AAT and the column-vectors of tex2html_wrap_inline7825 are the normed eigenvectors of ATA. Singular values of the matrix A can be found as square roots of the eigenvalues ATA or AAT.

Proof. Proceeding from the singular value decomposition of the matrix A we will find expressions of AAT and ATA:


 equation2140
and
 equation2144
Since the matrices tex2html_wrap_inline7841 and tex2html_wrap_inline7843 are diagonal matrices, the orthogonal matrices U and V in the expressions (7) and (8) must be formed by the eigenvectors of the matrices AAT and ATA respectively. tex2html_wrap_inline7853


next up previous