next up previous


Band Matrices and Block Matrices


Definition 2.2.1. A matrix which elements different from zero are only on the main and some adjacent diagonals is called a band matrix.

Definition 2.2.2. It is said that the matrix tex2html_wrap_inline7193 is a band matrix with the lower bandwidth p if
displaymath7203
and with the upper bandwidth q if
displaymath7204
and with the bandwidth p+q+1.

Example 2.2.1. The matrix
displaymath7205
is a band matrix because all the elements different from zero are on the main and two lower and one upper diagonals. The lower bandwidth of the matrix A is 2 because aik=0 as i>k+2, and the upper bandwidth is 1 because aik=0 as k>i+1. The bandwidth of the matrix is 2+1+1=4. The elements of the matrix that are necessarily not zeros are denoted by crosses.

Some most important types of band matrices are presented in table 2.2.1. If tex2html_wrap_inline7299 is a diagonal matrix, tex2html_wrap_inline7301 and tex2html_wrap_inline7303 then the notation tex2html_wrap_inline7305 will be used.

Table 2.2.1.


tabular1857

Problem 2.2.1.* Find the type, lower bandwidth, upper bandwidth and bandwidth of the matrix A if
displaymath7206

Definition 2.2.3. A matrix tex2html_wrap_inline7311 is called a tex2html_wrap_inline7313block matrix if
eqnarray1876
where tex2html_wrap_inline7315 and tex2html_wrap_inline7317 and tex2html_wrap_inline7319 is a tex2html_wrap_inline7321matrix.

Example 2.2.2. The matrix
displaymath7207
is a tex2html_wrap_inline7323block matrix, where tex2html_wrap_inline7325 and n2=2 and
tex2html_wrap_inline7329
Let
eqnarray1915
and C=A+B. Then

displaymath7208

Proposition 2.2.1. If tex2html_wrap_inline7333 and C=AB are block matrices:
displaymath7209

displaymath7210

displaymath7211

displaymath7212

eqnarray1986
where tex2html_wrap_inline7339 tex2html_wrap_inline7341
tex2html_wrap_inline7317 , then

displaymath7213

Proof. Let
displaymath7214


displaymath7215
As tex2html_wrap_inline7345 is an element of the block tex2html_wrap_inline7347 of the matrix C standing in the i-th row and k-th column of this block, and tex2html_wrap_inline7355 is an element of the block tex2html_wrap_inline7357 of the matrix A standing in the i-th row and j-th column of this block, and tex2html_wrap_inline7365 is an element of the block tex2html_wrap_inline7367 of the matrix B standing in the j-th row and k-th column, then
displaymath7216
Therefore,
displaymath7217

displaymath7218

displaymath7219

displaymath7220
Therefore, all the corresponding elements of the matrices tex2html_wrap_inline7347 and tex2html_wrap_inline7377 are equal, and our proposition holds. tex2html_wrap_inline5817

Corollary 2.2.1. If tex2html_wrap_inline7381 tex2html_wrap_inline7383
displaymath7221

displaymath7222
and tex2html_wrap_inline7315 and tex2html_wrap_inline7387then


displaymath7223

displaymath7222
where tex2html_wrap_inline7389= 1 : qtex2html_wrap_inline7391= 1 : r) .

Corollary 2.2.2. If tex2html_wrap_inline7393
displaymath7225

displaymath7226

displaymath7227
and tex2html_wrap_inline7397 tex2html_wrap_inline7399then tex2html_wrap_inline7401

Example 2.2.3. It holds
displaymath7228

Example 2.2.4. It holds
displaymath7229
where A=(a) is a tex2html_wrap_inline7405matrix, B=(b) is a tex2html_wrap_inline7409matrix, C=(c) is a tex2html_wrap_inline7413matrix, D=(d) is a tex2html_wrap_inline7417matrix, E=(e) is a tex2html_wrap_inline7409matrix, F=(f) is a tex2html_wrap_inline7425matrix, G=(g) is a tex2html_wrap_inline7429matrix and H=(h) is a tex2html_wrap_inline7433matrix.

Example 2.2.5.* Let us find the product AB of block matrices A and B, when A and B are tex2html_wrap_inline7405matrices
displaymath7230
We denote
displaymath7231
where
displaymath7232
and
displaymath7233
We note that the dimensions of the matrices are in accordance with the conditions of multiplication of block matrices. If we denote
displaymath7234
then
displaymath7235

displaymath7236

displaymath7237
and
displaymath7238
Thus

displaymath7239

Problem 2.2.2.* Find the product AB of tex2html_wrap_inline7453-matrix A and tex2html_wrap_inline7457matrix B in block form, when
displaymath7240


next up previous