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The level of generality and abstraction in the Yoneda Lemma means that
many people find it quite bewildering. This document is meant to guide you
slowly through what the Yoneda Lemma and its corollaries say, and give you
some wider conceptual perspective. It contains no results other than those in
the lectures, and as such is not ‘required reading’ for the course, but it might
make your life easier.

Breathe deeply, take it slowly, and remain calm.

1 The Yoneda Lemma

Here’s the statement of the Lemma. The proof was in lectures so I won’t repro-
duce it here; in any case, once you have thoroughly understood the statement,
you should find the proof straightforward.

The Yoneda Lemma Let C be a locally small category. Then
[CP, Set](H4, X) =X (A) (%)

naturally in A € C and X € [C°P, Set].

First I will go through what this says at the formal level. Then I will try to
explain what it means in a more intuitive sense.



Reminder: (x) says
[C°P,Set](H 4, X)
~X(A)

What it says Experience shows that many students are confused by the left-
hand side of equation (). Let’s dissect it.

e ( is a category.

e (C°P is also a category, the opposite or dual of C, obtained by keeping the
same objects and reversing all the arrows.

e Set is a category too, whose objects are sets and whose morphisms are
functions.

e For any two categories A and B there is a category [A, 5], whose objects are
functors from A to B and whose morphisms are natural transformations.

e In particular we have the category [C°P, Set], whose objects are functors
C°? —— Set and whose morphisms are natural transformations.

e For any object A of C, there is a functor H,4 : C°P —— Set (also written
C(—,A)). This functor is defined on objects by Ha(B) = C(B, A), and
on morphisms by Ha(f) = f* (compose with f). (Think of dual vector
spaces if it helps.)

e X is a functor C°P —— Set.

e For any category D and objects D, D' of D, the set of morphisms from D
to D' is written D(D, D").

e In particular, the left-hand side of (x) is the set of morphisms in [C°P, Set]
from H4 to X. That is, it is the set of natural transformations of the form

ceop Set.

Hy
I
~o_ "
X

So the left-hand side of (x) is a set. The right-hand side is also a set. Hence
the isomorphism (*) is a bijection between sets.

In summary, Yoneda says that a transformation from H4 to X is the same
thing as an element of X (A).

Digression: size worries If you are happy with this explanation then so
much the better. But it does contain a slight economy with the truth: namely,
that for a locally small category C, the functor category [C°P,Set] is not in
general locally small, and so the left-hand side of (x) is a priori a class and
not necessarily a set. However, when we prove the Yoneda Lemma we set up a
bijection between this class and the right-hand side of (x), which certainly is a
set: hence the left-hand side is a set too.

It’s really best not to worry about this kind of point if you can help it. For
those who remain concerned, take C to be small rather than just locally small:
this guarantees that [C°P, Set] is locally small, and your worries are over.



What it says, continued Putting these worries aside, we have seen that for
fixed A and X, the Yoneda Lemma claims there is a bijection between a certain
pair of sets. What about ‘naturally in A and X’? Recall that if /G : D — &
are a pair of functors, we use the phrase ‘F (D)= G (D) naturally in D € D’ to
mean that there is a natural isomorphism F'= G. The use of this phrase in the
Yoneda Lemma carries the implication that each side of (x) is functorial in both
A and X; this means, for instance, that a map X —— X' induces a map

[C°P, Set](H 4, X) — [C°P, Set](H4, X')

(as can be seen), and that there’s a way of choosing the isomorphisms (x) for all
A and X which is compatible with such induced maps. So more exactly, what
the Yoneda Lemma says is that the ‘evaluation’ functor

Co x [C°P,Set] ——~  Set
(4, X) —  X(A)

is naturally isomorphic to the composite functor

CoP x [C°P, Set] 2255 [C°P, Set]P x [C°P, Set] — Set.

Here
H, :C — [C°",Set]

is the ‘Yoneda embedding’, as detailed in lectures, which sends an object A € C
to the functor H, and a morphism f: A —— A’ to the natural transformation
Hy:Hy — Hy.

I will now suggest some ways of understanding the Yoneda Lemma.

Smaller formulae At a very practical level, you can think of the Yoneda
Lemma as a useful tool: later in the course we’ll come across various large and
perhaps mystifying expressions, and by applying the isomorphism () from left
to right we will be able to reduce them to something more friendly.

Topological presheaves You can try to get a handle on the Yoneda Lemma
by considering the following special case.

Fix a topological space S, and denote by O(S) the poset of open subsets of
S, ordered by inclusion. Posets can be regarded as categories; thus an object of
the corresponding category (also denoted O(S)) is an open subset of S, and

1 ifVCU
(0 otherwise.

Hom(v,) = { )

The functor category [O(S)°P,Set] is called the category of presheaves on
S. (This year’s algebraic geometry course uses a different way of defining
(pre)sheaves; the two approaches are equivalent, but don’t worry about this
here.) Explicitly, a presheaf X on S consists of



e for each open U C S, a set X(U)

e for each open V and U with V CU, a function X (U) — X (V), usually
written pr— p|y and called ‘restriction’.

Restriction is required to satisfy functoriality axioms: (p|v)|w = plw and p|u =
p, for p € X(U) and W CV CU. The classic example of a presheaf on a space
is where X (U) is the set of continuous functions from U to the real numbers,
and restriction is restriction in the usual sense. A morphism a : X — Y
of presheaves is a natural transformation, and explicitly consists of a family
(ar : X(U) — Y(U))veo(s) of functions satisfying (v (p))|v = av(p|v) for
each p € X(U) and open V CU.

The representable presheaves are those of the form Hy : O(S)°P —— Set,
where U C S is open. Then Hy (V) is given by the formula (1), and the restric-
tion maps for Hy are uniquely determined.

Now ask yourself: given an open U CS and a presheaf X on S, what’s a
morphism Hy — X7 Well, it’s a family ay : Hy(V) — X (V) of functions,
one for each open V', which is compatible with the restriction maps. After some
contemplation you should see that such an « is entirely determined by the value
of ay at the single element of Hy(U). So a map Hy —— X is just the same
thing as an element of X (U): that is, there is a bijection

[O(S)°P, Set](Hy, X) = X (U).

And of course, this is the Yoneda Lemma (minus naturality) in the case C =
o(S).

Monoid actions Here is another potentially enlightening special case.

Fix a monoid M. As we have seen, monoids are the same thing as one-object
small categories, and viewing M in this way, [M°P, Set] is the category of right
M-sets (= sets equipped with a right action by M). If we write A for the single
object of the category M, then the representable functor Hy : M° —— Set
corresponds to what is sometimes called the ‘right regular representation of M’
that is, the set M acting on itself by composition. I will (perhaps confusingly)
write M for this particular right M-set. Then, for an arbitrary right M-set X,
a morphism a : M —— X of M-sets is entirely determined by «(1). Hence

[M°P, Set](M, X) = X,

in accordance with Yoneda again.

Coherence General category theory springs no nasty surprises: any sensible
equation you can write down is true. People sometimes say ‘all diagrams com-
mute’. Of course, you need to take this with a pinch of salt (and it’s no excuse
for omitting the proper checks in an exam. .. ). But contrast, for instance, group
theory, where there are plenty of equations, such as a - b = b - a, which are per-
fectly sensible but in general false. In category theory this equation wouldn’t



in general make sense: if a composite aob exists then the composite boa usually
doesn’t.

To put it another way, in general category theory, there’s at most one way
of taking inputs of given types and obtaining an output of a given type. More
snappily, there’s only one way of getting from A to B. For example:

e Given a natural transformation

a
<¢>
Q
3

and a map C SN C' in C, there’s precisely one way of obtaining a map
FC —— GC' in D: naturality of « says that the two routes from top-left
to bottom-right in the square

FC if» FC'

ol e

GC — GC'
Gf

are equal.

e Given a functor F' : C — D and maps A J.p_2. C in C, there’s
only one way of building a map FFA —— F'C": functoriality implies that
the two maps F(gof) and F(g)oF(f) are actually the same.

e For ‘general’ sets A, B, C, there’s only one sensible isomorphism
(AxB)xC —+ Ax (BxO0).

The Yoneda Lemma is another example. We have two ways of taking as
input a pair (A € C,X : C°® — Set), and producing as output a set: one
appears as the left-hand side of (%), and the other as the right. Yoneda says
that these two ways are, in fact, the same.

If Yoneda weren’t true then the world would look very different, and much
more complex. Starting simply from a functor X : C°? —— Set, we would
obtain a new functor

X' = [C°, Set](H., X) : C® — Set,

and hence a whole sequence of functors X, X', X", X" ..., potentially all dif-
ferent. In reality they are all the same.



2 Corollaries

The Yoneda Lemma has (at least) three corollaries. Each can be proved directly
as well, and in fact that’s not a bad exercise.

2.1 A representation is a universal element

Corollary  Let C be a locally small category and X : C°® —— Set. Then
a representation of X consists of an object A of C together with an element
u € X(A) such that

for any B € C and x € X(B), there is a unique map )
f:B — A satisfying (X f)(u) = z.

To clarify the statement, first recall that a representation of X is, by definition,
an object A of C together with a natural isomorphism a : Hy —— X. The
Corollary says that such pairs (A4,«a) are in one-to-one correspondence with
pairs (A, u) satisfying (f). This follows easily from the Yoneda Lemma.

We can think of v as a ‘universal’ or ‘generic’ element. I will try to explain
what’s going on by two examples.

Example 1 Fix vector spaces U and V, and consider the functor

Bilin(U,V;—-): Vect —— Set,
W —  Bilin(U,V; W)
= {bilinear maps U x V.—— W}.

Then a representation of Bilin(U, V; —) can be described in either of two equiv-
alent ways:

a. as a vector space 1" together with an isomorphism
Vect (T, W) = Bilin(U, V; W)
natural in W € Vect

b. as a vector space T' together with a bilinear map h: U x V —— T, such
that

for any vector space W and bilinear g : U x V. —— W, there is
a unique linear f : T —— W making

h
UxV ——

b

commute.



Part (a) is just the definition of representation. Part (b) is the description
given in the Corollary, or rather the dual of the Corollary (concerning covariant
functors X : C —— Set: try writing out this statement). The map called h
should for consistency be called « (but would then look like an element of U).
Those who know about such things will recognise 7" as the tensor product U®V,
and h as the map (u,v) — u ® v.

You will observe that the first description is substantially shorter than the
second. Indeed, it’s clear enough that if the situation of (b) holds then there is
certainly an isomorphism

Vect(T,W) — Bilin(U,V; W)

natural in W, got by composition with h. But it looks at first as if (b) says
rather more than (a): that not only are the two things naturally isomorphic,
they are naturally isomorphic in a rather specific manner. The Corollary tells
us that this is an illusion: all such natural isomorphisms arise in this manner.
It’s the word ‘natural’ in (a) that hides all the explicit detail.

F
—

Example 2 Let C _ | D be an adjunction, and fix an object A of C. Then
G
the functor

C(A,G-): D — Set
is representable, as can be expressed in either of the following two ways:
a. C(A,GB)=D(FA, B) naturally in B € D

b. the unit map g4 : A — G(FA) is an initial object of the comma cate-
gory (A=G).

Again, the first description comes from the definition of representability, and the
second from (the dual of) the Corollary. (It takes a moment to see this; I leave
that to you.) We looked at the second description from another perspective in
section B of lectures.



2.2 The Yoneda embedding

The next result is a corollary of the Yoneda Lemma (and not of the previous
corollary).

Corollary  For any locally small category C, the functor
H, :C — [C°P,Set]

is full and faithful.

The functor H, is known as the Yoneda embedding. The fact that it’s faithful
is what justifies the name ‘embedding’; the fact that it’s also full means it’s an
especially nice kind of embedding—a map H4 —— Hp in [C°P, Set] is exactly
the same as a map A — B in C.

It’s also true that H, is injective on objects (if A # B then Hy # Hpg),
which follows from our convention that the hom-sets of a category are disjoint
(Remark A1.3(a) of the notes). But this should be regarded as unimportant: we
really aren’t interested in equality of objects in a category, only isomorphism.

Anyway, the fact that H, is full and faithful (and injective on objects) means
that we can regard C as sitting inside [C°P, Set] as a full subcategory:

C°P, Set]

Later in the course we’ll see how any functor C°? —— Set can be built out of
representables H 4, in very roughly the same way that any number is built as a
product of primes.



2.3 Isomorphic representables

The previous corollary has in turn the following corollary:

Corollary  For objects A and B of a locally small category C,

Hi~Hp < A~B <« HA~HB,

The force of this is that H4 = Hg = A= B; the other direction of implication
follows immediately from functoriality of H,. The second <= is just the dual
result, and therefore also follows immediately.

The Corollary can be explained as follows. Regard Ha(U) = C(U, A) as ‘A
viewed from U’: then our result says that two objects are the same if and only
if they look the same from all viewpoints.

The category of sets is very unusual in this context: for sets A and B,

A=B < Hs(1)=Hgp(1),

and so the Corollary has a trivial proof for C = Set. In other words, in Set it’s
enough to look at everything from the one-element set 1—the only thing that
matters about a set is its elements!

In contrast, take C = Gp. Imagine that we have two groups A and B, and
someone is telling us that A and B ‘look the same from U’ for various groups
U. Then, for instance,

e H4(1)= Hp(1) would tell us nothing at all
e Hy(Z)=Hpg(Z) would tell us that A and B have isomorphic underly-

ing sets—that is, the same cardinality, but perhaps quite different group
structures

e Hy(Z/pZ)=Hg(Z /pZ) would tell us that A and B have the same number
of elements of order p, for a prime p,

and so on. Each of these only gives partial information about the similarity of
A and B, but the whole natural isomorphism H4 =2 Hpg tells us that A2 B.




