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The level of generality and abstra
tion in the Yoneda Lemma means that

many people �nd it quite bewildering. This do
ument is meant to guide you

slowly through what the Yoneda Lemma and its 
orollaries say, and give you

some wider 
on
eptual perspe
tive. It 
ontains no results other than those in

the le
tures, and as su
h is not `required reading' for the 
ourse, but it might

make your life easier.

Breathe deeply, take it slowly, and remain 
alm.

1 The Yoneda Lemma

Here's the statement of the Lemma. The proof was in le
tures so I won't repro-

du
e it here; in any 
ase, on
e you have thoroughly understood the statement,

you should �nd the proof straightforward.

The Yoneda Lemma Let C be a lo
ally small 
ategory. Then

[C

op

;Set℄(H

A

; X)

�

=

X(A) (�)

naturally in A 2 C and X 2 [C

op

;Set℄.

First I will go through what this says at the formal level. Then I will try to

explain what it means in a more intuitive sense.
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What it says Experien
e shows that many students are 
onfused by the left-

hand side of equation (�). Let's disse
t it.

� C is a 
ategory.

� C

op

is also a 
ategory, the opposite or dual of C, obtained by keeping the

same obje
ts and reversing all the arrows.Reminder: (�) says

[C

op

;Set℄(H

A

; X)

�

=

X(A)

� Set is a 
ategory too, whose obje
ts are sets and whose morphisms are

fun
tions.

� For any two 
ategoriesA and B there is a 
ategory [A;B℄, whose obje
ts are

fun
tors from A to B and whose morphisms are natural transformations.

� In parti
ular we have the 
ategory [C

op

;Set℄, whose obje
ts are fun
tors

C

op

-

Set and whose morphisms are natural transformations.

� For any obje
t A of C, there is a fun
tor H

A

: C

op

-

Set (also written

C(�; A)). This fun
tor is de�ned on obje
ts by H

A

(B) = C(B;A), and

on morphisms by H

A

(f) = f

�

(
ompose with f). (Think of dual ve
tor

spa
es if it helps.)

� X is a fun
tor C

op

-

Set.

� For any 
ategory D and obje
ts D;D

0

of D, the set of morphisms from D

to D

0

is written D(D;D

0

).

� In parti
ular, the left-hand side of (�) is the set of morphisms in [C

op

;Set℄

from H

A

to X . That is, it is the set of natural transformations of the form

C

op

H

A

X

R

�

+

Set:

So the left-hand side of (�) is a set. The right-hand side is also a set. Hen
e

the isomorphism (�) is a bije
tion between sets.

In summary, Yoneda says that a transformation from H

A

to X is the same

thing as an element of X(A).

Digression: size worries If you are happy with this explanation then so

mu
h the better. But it does 
ontain a slight e
onomy with the truth: namely,

that for a lo
ally small 
ategory C, the fun
tor 
ategory [C

op

;Set℄ is not in

general lo
ally small, and so the left-hand side of (�) is a priori a 
lass and

not ne
essarily a set. However, when we prove the Yoneda Lemma we set up a

bije
tion between this 
lass and the right-hand side of (�), whi
h 
ertainly is a

set: hen
e the left-hand side is a set too.

It's really best not to worry about this kind of point if you 
an help it. For

those who remain 
on
erned, take C to be small rather than just lo
ally small:

this guarantees that [C

op

;Set℄ is lo
ally small, and your worries are over.
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What it says, 
ontinued Putting these worries aside, we have seen that for

�xed A and X , the Yoneda Lemma 
laims there is a bije
tion between a 
ertain

pair of sets. What about `naturally in A and X '? Re
all that if F;G : D

-

E

are a pair of fun
tors, we use the phrase `F (D)

�

=

G(D) naturally in D 2 D' to

mean that there is a natural isomorphism F

�

=

G. The use of this phrase in the

Yoneda Lemma 
arries the impli
ation that ea
h side of (�) is fun
torial in both

A and X ; this means, for instan
e, that a map X

-

X

0

indu
es a map

[C

op

;Set℄(H

A

; X)

-

[C

op

;Set℄(H

A

; X

0

)

(as 
an be seen), and that there's a way of 
hoosing the isomorphisms (�) for all

A and X whi
h is 
ompatible with su
h indu
ed maps. So more exa
tly, what

the Yoneda Lemma says is that the `evaluation' fun
tor

C

op

� [C

op

;Set℄

ev

-

Set

(A;X) 7�! X(A)

is naturally isomorphi
 to the 
omposite fun
tor

C

op

� [C

op

;Set℄

H

�

�1

-

[C

op

;Set℄

op

� [C

op

;Set℄

Hom

-

Set:

Here

H

�

: C

-

[C

op

;Set℄

is the `Yoneda embedding', as detailed in le
tures, whi
h sends an obje
t A 2 C

to the fun
tor H

A

and a morphism f : A

-

A

0

to the natural transformation

H

f

: H

A

-

H

A

0

.

I will now suggest some ways of understanding the Yoneda Lemma.

Smaller formulae At a very pra
ti
al level, you 
an think of the Yoneda

Lemma as a useful tool: later in the 
ourse we'll 
ome a
ross various large and

perhaps mystifying expressions, and by applying the isomorphism (�) from left

to right we will be able to redu
e them to something more friendly.

Topologi
al presheaves You 
an try to get a handle on the Yoneda Lemma

by 
onsidering the following spe
ial 
ase.

Fix a topologi
al spa
e S, and denote by O(S) the poset of open subsets of

S, ordered by in
lusion. Posets 
an be regarded as 
ategories; thus an obje
t of

the 
orresponding 
ategory (also denoted O(S)) is an open subset of S, and

Hom(V; U) =

�

1 if V �U

; otherwise.

(y)

The fun
tor 
ategory [O(S)

op

;Set℄ is 
alled the 
ategory of presheaves on

S. (This year's algebrai
 geometry 
ourse uses a di�erent way of de�ning

(pre)sheaves; the two approa
hes are equivalent, but don't worry about this

here.) Expli
itly, a presheaf X on S 
onsists of
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� for ea
h open U �S, a set X(U)

� for ea
h open V and U with V �U , a fun
tion X(U)

-

X(V ), usually

written p 7�! pj

V

and 
alled `restri
tion'.

Restri
tion is required to satisfy fun
toriality axioms: (pj

V

)j

W

= pj

W

and pj

U

=

p, for p 2 X(U) and W �V �U . The 
lassi
 example of a presheaf on a spa
e

is where X(U) is the set of 
ontinuous fun
tions from U to the real numbers,

and restri
tion is restri
tion in the usual sense. A morphism � : X

-

Y

of presheaves is a natural transformation, and expli
itly 
onsists of a family

(�

U

: X(U)

-

Y (U))

U2O(S)

of fun
tions satisfying (�

U

(p))j

V

= �

V

(pj

V

) for

ea
h p 2 X(U) and open V �U .

The representable presheaves are those of the form H

U

: O(S)

op

-

Set,

where U �S is open. Then H

U

(V ) is given by the formula (y), and the restri
-

tion maps for H

U

are uniquely determined.

Now ask yourself: given an open U �S and a presheaf X on S, what's a

morphismH

U

-

X? Well, it's a family �

V

: H

U

(V )

-

X(V ) of fun
tions,

one for ea
h open V , whi
h is 
ompatible with the restri
tion maps. After some


ontemplation you should see that su
h an � is entirely determined by the value

of �

U

at the single element of H

U

(U). So a map H

U

-

X is just the same

thing as an element of X(U): that is, there is a bije
tion

[O(S)

op

;Set℄(H

U

; X)

�

=

X(U):

And of 
ourse, this is the Yoneda Lemma (minus naturality) in the 
ase C =

O(S).

Monoid a
tions Here is another potentially enlightening spe
ial 
ase.

Fix a monoidM . As we have seen, monoids are the same thing as one-obje
t

small 
ategories, and viewing M in this way, [M

op

;Set℄ is the 
ategory of right

M -sets (= sets equipped with a right a
tion byM). If we write A for the single

obje
t of the 
ategory M , then the representable fun
tor H

A

: M

op

-

Set


orresponds to what is sometimes 
alled the `right regular representation ofM ':

that is, the set M a
ting on itself by 
omposition. I will (perhaps 
onfusingly)

write M for this parti
ular right M -set. Then, for an arbitrary right M -set X ,

a morphism � :M

-

X of M -sets is entirely determined by �(1). Hen
e

[M

op

;Set℄(M;X)

�

=

X;

in a

ordan
e with Yoneda again.

Coheren
e General 
ategory theory springs no nasty surprises: any sensible

equation you 
an write down is true. People sometimes say `all diagrams 
om-

mute'. Of 
ourse, you need to take this with a pin
h of salt (and it's no ex
use

for omitting the proper 
he
ks in an exam. . . ). But 
ontrast, for instan
e, group

theory, where there are plenty of equations, su
h as a � b = b � a, whi
h are per-

fe
tly sensible but in general false. In 
ategory theory this equation wouldn't
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in general make sense: if a 
omposite a

Æ

b exists then the 
omposite b

Æ

a usually

doesn't.

To put it another way, in general 
ategory theory, there's at most one way

of taking inputs of given types and obtaining an output of a given type. More

snappily, there's only one way of getting from A to B. For example:

� Given a natural transformation

C

F

G

�

R

�

+

D

and a map C

f

-

C

0

in C, there's pre
isely one way of obtaining a map

FC

-

GC

0

in D: naturality of � says that the two routes from top-left

to bottom-right in the square

FC

Ff

-

FC

0

GC

�

C

?

Gf

-

GC

0

�

C

0

?

are equal.

� Given a fun
tor F : C

-

D and maps A

f

-

B

g

-

C in C, there's

only one way of building a map FA

-

FC: fun
toriality implies that

the two maps F (g

Æ

f) and F (g)

Æ

F (f) are a
tually the same.

� For `general' sets A;B;C, there's only one sensible isomorphism

(A�B)� C

�

-

A� (B � C):

The Yoneda Lemma is another example. We have two ways of taking as

input a pair (A 2 C; X : C

op

-

Set), and produ
ing as output a set: one

appears as the left-hand side of (�), and the other as the right. Yoneda says

that these two ways are, in fa
t, the same.

If Yoneda weren't true then the world would look very di�erent, and mu
h

more 
omplex. Starting simply from a fun
tor X : C

op

-

Set, we would

obtain a new fun
tor

X

0

= [C

op

;Set℄(H

�

; X) : C

op

-

Set;

and hen
e a whole sequen
e of fun
tors X;X

0

; X

00

; X

000

; : : :, potentially all dif-

ferent. In reality they are all the same.
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2 Corollaries

The Yoneda Lemma has (at least) three 
orollaries. Ea
h 
an be proved dire
tly

as well, and in fa
t that's not a bad exer
ise.

2.1 A representation is a universal element

Corollary Let C be a lo
ally small 
ategory and X : C

op

-

Set. Then

a representation of X 
onsists of an obje
t A of C together with an element

u 2 X(A) su
h that

for any B 2 C and x 2 X(B), there is a unique map

f : B

-

A satisfying (Xf)(u) = x.

(z)

To 
larify the statement, �rst re
all that a representation ofX is, by de�nition,

an obje
t A of C together with a natural isomorphism � : H

A

-

X . The

Corollary says that su
h pairs (A;�) are in one-to-one 
orresponden
e with

pairs (A; u) satisfying (z). This follows easily from the Yoneda Lemma.

We 
an think of u as a `universal' or `generi
' element. I will try to explain

what's going on by two examples.

Example 1 Fix ve
tor spa
es U and V , and 
onsider the fun
tor

Bilin(U; V ;�) : Ve
t

-

Set;

W 7�! Bilin(U; V ;W )

= fbilinear maps U � V

-

Wg:

Then a representation of Bilin(U; V ;�) 
an be des
ribed in either of two equiv-

alent ways:

a. as a ve
tor spa
e T together with an isomorphism

Ve
t(T;W )

�

=

Bilin(U; V ;W )

natural in W 2 Ve
t

b. as a ve
tor spa
e T together with a bilinear map h : U � V

-

T , su
h

that

for any ve
tor spa
e W and bilinear g : U �V

-

W , there is

a unique linear f : T

-

W making

U � V

h

-

T

W

f

?

g

-


ommute.
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Part (a) is just the de�nition of representation. Part (b) is the des
ription

given in the Corollary, or rather the dual of the Corollary (
on
erning 
ovariant

fun
tors X : C

-

Set: try writing out this statement). The map 
alled h

should for 
onsisten
y be 
alled u (but would then look like an element of U).

Those who know about su
h things will re
ognise T as the tensor produ
t U
V ,

and h as the map (u; v) 7�!u
 v.

You will observe that the �rst des
ription is substantially shorter than the

se
ond. Indeed, it's 
lear enough that if the situation of (b) holds then there is


ertainly an isomorphism

Ve
t(T;W )

-

Bilin(U; V ;W )

natural in W , got by 
omposition with h. But it looks at �rst as if (b) says

rather more than (a): that not only are the two things naturally isomorphi
,

they are naturally isomorphi
 in a rather spe
i�
 manner. The Corollary tells

us that this is an illusion: all su
h natural isomorphisms arise in this manner.

It's the word `natural' in (a) that hides all the expli
it detail.

Example 2 Let C

F

-

?

�

G

D be an adjun
tion, and �x an obje
t A of C. Then

the fun
tor

C(A;G�) : D

-

Set

is representable, as 
an be expressed in either of the following two ways:

a. C(A;GB)

�

=

D(FA;B) naturally in B 2 D

b. the unit map �

A

: A

-

G(FA) is an initial obje
t of the 
omma 
ate-

gory (A)G).

Again, the �rst des
ription 
omes from the de�nition of representability, and the

se
ond from (the dual of) the Corollary. (It takes a moment to see this; I leave

that to you.) We looked at the se
ond des
ription from another perspe
tive in

se
tion B of le
tures.
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2.2 The Yoneda embedding

The next result is a 
orollary of the Yoneda Lemma (and not of the previous


orollary).

Corollary For any lo
ally small 
ategory C, the fun
tor

H

�

: C

-

[C

op

;Set℄

is full and faithful.

The fun
tor H

�

is known as the Yoneda embedding. The fa
t that it's faithful

is what justi�es the name `embedding'; the fa
t that it's also full means it's an

espe
ially ni
e kind of embedding|a map H

A

-

H

B

in [C

op

;Set℄ is exa
tly

the same as a map A

-

B in C.

It's also true that H

�

is inje
tive on obje
ts (if A 6= B then H

A

6= H

B

),

whi
h follows from our 
onvention that the hom-sets of a 
ategory are disjoint

(Remark A1.3(a) of the notes). But this should be regarded as unimportant: we

really aren't interested in equality of obje
ts in a 
ategory, only isomorphism.

Anyway, the fa
t that H

�

is full and faithful (and inje
tive on obje
ts) means

that we 
an regard C as sitting inside [C

op

;Set℄ as a full sub
ategory:
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C

Later in the 
ourse we'll see how any fun
tor C

op

-

Set 
an be built out of

representables H

A

, in very roughly the same way that any number is built as a

produ
t of primes.
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2.3 Isomorphi
 representables

The previous 
orollary has in turn the following 
orollary:

Corollary For obje
ts A and B of a lo
ally small 
ategory C,

H

A

�

=

H

B

() A

�

=

B () H

A

�

=

H

B

:

The for
e of this is that H

A

�

=

H

B

) A

�

=

B; the other dire
tion of impli
ation

follows immediately from fun
toriality of H

�

. The se
ond () is just the dual

result, and therefore also follows immediately.

The Corollary 
an be explained as follows. Regard H

A

(U) = C(U;A) as `A

viewed from U ': then our result says that two obje
ts are the same if and only

if they look the same from all viewpoints.

The 
ategory of sets is very unusual in this 
ontext: for sets A and B,

A

�

=

B () H

A

(1)

�

=

H

B

(1);

and so the Corollary has a trivial proof for C = Set. In other words, in Set it's

enough to look at everything from the one-element set 1|the only thing that

matters about a set is its elements!

In 
ontrast, take C = Gp. Imagine that we have two groups A and B, and

someone is telling us that A and B `look the same from U ' for various groups

U . Then, for instan
e,

� H

A

(1)

�

=

H

B

(1) would tell us nothing at all

� H

A

(Z)

�

=

H

B

(Z) would tell us that A and B have isomorphi
 underly-

ing sets|that is, the same 
ardinality, but perhaps quite di�erent group

stru
tures

� H

A

(Z=pZ)

�

=

H

B

(Z=pZ) would tell us that A and B have the same number

of elements of order p, for a prime p,

and so on. Ea
h of these only gives partial information about the similarity of

A and B, but the whole natural isomorphism H

A

�

=

H

B

tells us that A

�

=

B.
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