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ABSTRACT. This short note presents some empirical data on the distribution of word pairs
obtained from English text. Particular attention is paid to the distribution of mutual infor-
mation.

1. INTRODUCTION

The mutual information of word pairs observed in text is commonly used in statistical
corpus linguistics for a variety of reasons: to help identify idioms and collocations, to
create dependency parsers, such as minimum spanning tree parsers, and many other uses.
This is because the mutual information of a word-pair co-occurrence is a good indicator
of how often two words ’go together’. However, little seems to have been written on the
distribution of word pairs, or the distribution of mutual information. The current work is a
short note reporting on the empirical distribution of word pairs seen in English text.

Mutual information is a measure of the relatedness of two words. For example “North-
ern Ireland” will have high mutual information, since the words “Northern” and “Ireland”
are commonly used together. By contrast, “Ireland is” will have negative mutual informa-
tion, mostly because the word “is” is used with many, many other words besides “Ireland”;
there is no special relationship between these two words. High mutual information word
pairs are typically noun phrases, often idioms and collocations, and almost always embody
some concept (so, for example, “Northern Ireland” is the name of a place — the name of
the conception of a particular country).

2. DEFINITIONS

In what follows, a “pair” will always mean an “ordered word pair”; an ordered pair is
simply a pair (x,y) where both words x and y occur in the same sentence, and the word x
occurs to the left of the word y in that sentence. The pairs are taken to be ordered because,
in English, word order matters. Some of the graphs below show pairs of neighboring
words; others show graphs of pairs simply taken from the same sentence (so that other
words may intervene in the middle of the pair).

The frequency of an ordered word pair (x,y) is defined as

P(x,y) =
N(x,y)
N(∗,∗)

where N(x,y) is the number of times that the pair (x,y) was observed, with word x to the
left of word y. The * represents ’any’, so that N(∗,∗) is the total number of word pairs
observed.
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The mutual information M(x,y) associated with a word pair (x,y) is defined as

(2.1) M(x,y) = log2
P(x,y)

P(x,∗)P(∗,y)

Here, P(x,∗) is the marginal probability of observing a pair where the left word is x; simi-
larly, P(∗,y) is the marginal probability of observing a pair where the right word is y.

In the following, a selection of 925 thousand sentences consisting of 13.4 million words
were observed, from a corpus consisting of Voice of America shows, Simple English
Wikipedia, and a selection of books from Project Gutenberg, including Tolstoy’s ’War
and Peace’.

3. UNIGRAM COUNTS, ZIPF’S LAW

Individual words, ranked by their frequency of occurrence, are known to be distributed
according to the Zipf power law; this was noted by Zipf in the 1930’s[4, 3, 1], and possibly
by others even earlier. The Zipf distribution takes the form

Ps(k)∼ k−s

where s is the characteristic power defining the distribution. Here, k is the k’th ranked
word, and P(k) is the probability of observing that word. The power law is illustrated in
figure3, and is generated from the current corpus. As may be seen, power laws become
straight lines in a log-log graph.

The Zipfian distribution for texts appears to be entirely due to a side effect of the ranking
of words [2]. That is, if one generates random texts, one can observe the very same Zipf
law, with the same parameters. The way that this may be demonstrated is straight-forward:
one begins with an alphabet of N letters, one of which represents a space (thus, N = 26+
1 = 27 for English, not counting letter cases). One then picks letters randomly from this
set, with a uniform distribution, to generate random strings. If the space character is picked,
then one has a complete word. After ranking and plotting such randomly generated words,
one obtains a Zipfian distribution with the same power law exponent as above. More
precisely, it may be shown that the exponent is

s =
log(N +1)

logN

for an alphabet of N letters [2]. This begs a question: what is the mutual information
content of a random text?

4. DISTRIBUTION OF MUTUAL INFORMATION

How is mutual information distributed in the English language? The graph 4.1 shows
the (unweighted) distribution histogram of mutual information, while the graph 4.2 shows
the weighted distribution.

The figures are constructed by means of “binning” or histograming. For a given value
of mutual information M and bin width ∆M, the (unweighted) bin count is the total number
of pairs (x,y) with M < M(x,y) ≤M + ∆M. The weighted bin count is defined similarly,
except that each pair contributes P(x,y) to the bin count.

Notable in the first figure is a distinct triangular shape, with a blunted, lop-sided nose,
and “fat” tails extending to either side. The triangular sides appear to be log-linear over
many orders of magnitude, and seem to have nearly equal but opposite slopes.
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FIGURE 3.1. Single Word Distribution
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The graph above shows the frequency distribution of the most commonly occurring words
in the sample corpus, ranked by their frequency of occurrence. The first point corresponds

to the beginning-of-sentence maker; the average sentence length of about 14.4 words
corresponds to a frequency of 1/14.4=0.07. This is followed by the words “the, of, in to,

and”, and so on. The distribution follows Zipf’s power law. The thicker red line
represents the data, whereas the thinner green line represents the power law:

P(k) = 0.1k−1.01

where k is the rank or the word, and P(k) is the frequency at which the k’th word is
observed. Notice that after the first thousand words, the probability starts dropping at a

greater rate than at first. This is bend is commonly seen such word frequency graphs; it is
not covered by Zipf’s distribution. To the author’s best knowledge, there has not been any

published analysis of this bend.

Triangular distributions are the hallmark of the sum of two uniformly distributed ran-
dom variables: the convolution of two rectangles is a triangle. Taking equation 2.1 and
propagating the logarithm through, one obtains

M(x,y) = log2 P(x,y)− log2 P(x,∗)− log2 P(∗,y)

which can be seen to be a sum of three random variables.
XXX pursue this idea.
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FIGURE 4.1. Histogram of Mutual Information
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This graph shows the distribution histogram of the mutual information of word pairs taken
from the text corpus. The figure shows approximately 10.4 million distinct word pairs

observed, with each distinct word pair counted exactly once. The sides of the distribution
are clearly log-linear, and are easily fit by straight lines. Shown are two such fits, one

proportional to e−0.28M and the other to e0.26M where M is the mutual information.

5. RANDOM TEXTS

As has been noted, the Zipfian distribution appears to be entirely explainable as a side-
effect of choosing word rank as an index. The question naturally arises: which of the
features of the distribution of mutual information are associated with the structure of lan-
guage, and which are characteristic of random text? This question is explored with two
different ways of generating random text.

In the first approach, random text is generated by generating random strings. An alpha-
bet of 12 letters and one space was defined (“etaion shrdlu”). A random number generator
was used to pick letters from this alphabet; when the space character was picked, the string
up to that point is declared a “complete word”, and added to the current sentence. A new
word is then started, and the process is repeated, until a total of thirteen words were assem-
bled into a sentence. Once such a randomly-generated sentence was at hand, it was handed
over to the word-pair counting subsystem. This process was repeated to obtain a total of
4.1 million words and 20.5 million word pairs. The distribution of mutual information is
shown in figure 5.1.
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FIGURE 4.2. Weighted Histogram of Mutual Information
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This graph shows the weighted frequency of mutual information. Unlike the previous
figure 4.1, where each pair was counted with a weight of 1.0, here, each pair is counted
with a weight of P(x,y). That is, for a fixed value of mutual information, frequent pairs

with that value of mutual information contribute more strongly than infrequent ones.
Several different log-linear behaviors are visible; these have been hand-fit with the

straight lines illustrated; these are given by e−0.5M , e−0.75M and eM . The two slopes on the
right hand side require no further scaling: they intercept P = 1 at M = 0. The appearance
of such simple fractions in the fit is curious: changing the slopes by as little as 5% leads to

a noticeably poorer fit. Whether this is a pure coincidence, or the sign of something
deeper, is unclear.

One problem immediately evident from these statistics is that the random generator
produced far too many unique, distinct words. This is despite several efforts that were
taken to limit word size: the likelihood of choosing a space was dramatically increased,
so as to generate relatively short strings. Also, a hard-cutoff was forced to limit all strings
to a length of 8 characters or less. Nonetheless, this means that there are, in principle,
128 + 127 + · · · ≈ 4.7× 108 distinct “words” in the language, and 1017 observable word
pairs. Thus, the 20 million observed word pairs are just a minuscule portion of all possible
words pairs. Each observed word (and only a tiny fraction of all possible words were ob-
served) participates in only a relatively small number of possible word pairs. Thus, simply
due to sampling effects, one finds that almost all pairs have a high mutual information con-
tent: there have not been enough pairs observed to realize that the words are “maximally
promiscuous” in their pairing.
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FIGURE 5.1. Mutual Information in Random Text
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This figure shows the (weighted and unweighted) mutual information obtained from
analyzing randomly generated text. While the overall shape is quite different than that for
English text, shown in figures 4.1 and 4.2, it is perhaps surprising that the average mutual
information is quite high. This is because, despite the small alphabet, and the relatively

small word size, and the seemingly large sample of word pairs, only a tiny fraction of all
possible word pairs was observed. This means that most words participate in only a

relatively small number of pairs, and thus get a defacto high value of mutual information.
Whether or not the left or right sides of the figure are best fit by Gaussian or plain

exponentials is not clear. That perhaps the fall-off behavior is Gaussian is suggested by
the following two graphs.

To overcome this problem, the experiment is repeated, with a word length limit of 4
characters. The total vocabulary then consists of 124 + 123 + 122 + 12 = 22620 words.
Given a vocabulary of this size, there are about 512 million word pairs possible. After
observing 11.5 million distinct pairs (or about 2.2% of all possible pairs), the mutual infor-
mation is graphed in figure 5.2. Note that the emphasis is on “distinct” pairs: at least 25%
of the pairs were observed at least twice. Because many of the generated words are short
(two or three letters long), and are generated fairly often, many of the pairs were observed
dozens, hundreds or thousands of times.

Taking the small-vocabulary idea to an extreme, a third experiment is conducted, where
the vocabulary consists of all words of length 3 or less, constructed from 12 letters: a
total vocabulary of 123 +122 +12 = 1884 words. There are a total number of 3.5 million
possible word pairs. Generating random sentences, as described previously, a total of
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FIGURE 5.2. Small Random Vocabulary
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This figure shows the distribution of mutual information, obtained by sampling randomly
created sentences. Unlike the graph shown in figure 5.1, this figure shows a much smaller

vocabulary: that consisting 22.6 thousand words. The generated text contained 11.5
million distinct observed word pairs, or about 2.2% of all possible random word pairs.

This graph retains the strong offset to positive MI, but is far more gently humped; the flat
top has all but disappeared. The right hand side of the curve is clearly Gaussian; the

dashed blue line is given by 0.19exp−0.2(MI−8.3)2.

16.6 million word pairs were generated, with a total of 3.07 unique pairs observed. The
distribution of mutual information is graphed in figure 5.3.

6. LINKED WORDS

Instead of considering all possible word pairs in a sentence, one might instead limit
consideration to words that are in some way related to one-another. To that end, the same
corpus was parsed by means of the Link Grammar parser (need ref), to obtain pairs of
words linked by Link Grammar linkages.

The basic insight of Link Grammar is that every word can be treated as a puzzle-piece, in
that a word can only connect to other words that have matching connectors. The connector
types are labeled; the natural output of parsing is a set of connected word pairs. It is an
important coincidence to notice that, usually, the word pairs that the parser generates also
have positive, and usually a large positive value of mutual information. This observation
provides insight into why the Link Grammar “works” or is a linguistically successful theory
of parsing: its rule set captures word associations.
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FIGURE 5.3. Mutual Information for a Tiny Vocabulary
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This figure shows the distribution of mutual information for a tiny vocabulary, consisting
of 1884 possible words, and 3.5 million word pairs. Enough sentences were generated to
count a total of 16.6 million word pairs, of which 3.07 million were unique. The graph is
still clearly shifted: some word pairs were observed far more frequently than others. This
time, the right-hand side of the curve is well-fitted by a Gaussian: the dashed blue line,

labeled as “parabola” in the image, is given by 0.48exp−0.92(MI−3.9)2.

The figures 6.1 and 6.2 reproduce the previous two graphs, except that this time, the
set of word pairs is limited to those that have been identified by Link Grammar. This set
consists of 2.37 million distinct word pairs.

7. MUTUAL INFORMATION SCATTERPLOTS

The previous sections explored the histogram distribution of the mutual information of
word pairs. Alternately, one might wish to understand how mutual information correlates
with the probability of observing word pairs. A scatterplot showing such a correlation is
shown in figure 7.1. Slices through this scatterplot are shown in figure 7.2.

8. CONCLUSION

Some conclusion to be written.
One thing that I’ve learned from these experiments is that the rightward skew is not at all

something that is "capturing actual associative structure in the language", but is arguably
yet another statistical artifact.
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FIGURE 5.4. Zipf for tiny vocab
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Distribution of words in the tiny data set. For comparison, the straight dashed green line
represents the Zipf law distribution 0.1k1.01.

Simply by drawing random pairs out of a bag, one will, for smaller sample sizes, see
a rightward shift in the MI distribution, simply because one has not yet seen *all* pos-
sible random word pairs. Thus, the small sample size make it look like some words are
associated with others, even though the association is purely accidental.

How big a sample size is this? I tried a "tiny" vocabulary of 1884 words, for a total of
3.5M possible word pairs. After randomly drawing 16M pairs (and thus observing 3.07M
unique pairs), I still saw a strong rightward shift in the MI.

I’m now guessing that, in order to have this sample-size effect wash out, one needs
to observe at least N^3 pairs for a vocabulary of N words. How big is this number? for
English, its huge: assuming an "average" speaker vocabulary of 30K words, one would
have to sample (30K)^3=27 trillion word pairs before one could argue that a right-ward
shift in the MI graph is due to the "associative structure of language". Yikes!
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FIGURE 6.1. Histogram of Linked Word Pairs
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This figure shows a histogram of word pairs that have been linked to one-another by
means of the Link Grammar parser. The data set contains approximately 2.37 million

such word pairs; each is counted precisely once (thus, this is the “unweighted”
distribution). Several log-linear regimes are visible. That on the left has exactly the same
slope as in figure 3, namely e0.26M . The average slope on the right is as before, e−0.28M ,

but seems to be composed of two distinct regions, first with a shallower, and then a
steeper slope of e−0.195M and e−0.48M .

E-mail address: linasvepstas@gmail.com
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FIGURE 6.2. Weighted Linked Words
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This figure shows weighted linked word pairs; it is the analogue to figure 4.2, but for
linked word pairs. That is, the histogram bin counts are weighted by the probability

P(x,y) of seeing the linked word pair (x,y). Again, several sloped regions are visible; the
linear fits are given by e1.1M , e−0.3M and e−0.85M .
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FIGURE 7.1. Word Pair Scatterplot
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Scatterplot of word pairs

This figure shows a scatterplot of the probability of occurrence P(x,y) versus the mutual
information M(x,y) for word pairs (x,y). Shown are 200 thousand pairs (out of the
sample set of 10.4 million pairs). Rather than plotting the probability P(x,y) on a

logarithmic axis, this plot uses a linear axis, labeled with −log2P(x,y). This axis labeling
gives a better feeling for the relative sizes of the horizontal and vertical scales.
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FIGURE 7.2. Slices through the word-pair scatterplot
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The above graph shows five slices through the mutual-info vs. pair-probability scatterplot.
For each slice, the mutual information is held constant, and the frequency as a function of

the log pair probability is graphed.


