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Abstract
Extract from the language-learning diary, reporting on the first small dataset

containing connector sets. This is the 11 June 2017 update of the original 11
May 2017 report. It includes more data and figures, and updates the figures for
readability (legibility). It also revises notation slightly.

Introduction
This is a report on a small dataset of disjuncts and connector sets, extracted from MST
parses of a batch of sentences. First, a recap of what these are, then a characterization
of the database contents, and finally, a short report on the grammatical similarity of
words in the dataset.

Summary of results
The primary results reported below are these:

* Most scores and metrics that can be assigned to connector sets give a (scale-free)
Zipfian ranking distribution, and are thus fairly boring.

* The greater the average number of observations per disjunct, the more grammat-
ically acceptable (accurate) the disjunct seems to be. This is good news: it means that
the general technique is not generating ungrammatical garbage.

* Connector sets can be given a mutual information score. The ranking distribution
for this is not at all Zipfian. The MI score seems to be quite good at identifying words
that participate in idioms, set phrases and institutional phrases.

* The average number of connectors per disjunct, which should have indicated the
part-of-speech that the word belongs to, fails to do this. This seems to be due to the
small size of the dataset, the fact that it is polluted with lists and tables, masquerading
as sentences (its a Wikipedia sample), and that there seem the be very few verbs in the
sample (Wikipedia articles describe concepts and events, using the copula to describe
them: “is”, “has”, “was”, and is almost devoid of narrative verbs: “ran” “jumped” “hit”,
“ate” “thought” “took”.) The WP sources need to be supplemented with narrative texts,
ideally from young-adult literature.

* Cosine similarity applied to connector sets seems to be an effective way of de-
termining the grammatical similarity of words. This is despite the fact that closer ex-
amination reveals that the dataset is quite thin and poor, and the similarity is based on
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scant evidence. Despite the scant evidence, the similarity scores do seem to distinguish
different kinds of nouns quite well. A big surprise is that it also seems to cluster prepo-
sitions quite well. There seem to be few or no verbs in the dataset, as already noted.
It seems that even small datasets are sufficient to get started with grammatical similar-
ity clustering, but much larger samples are needed for discovering more sophisticated
grammar.

Recap
The story so far: Starting from a large text corpus, the mutual information (MI) of
word-pairs are counted. This MI is used to perform a maximum spanning-tree (MST)
parse (of a different subset of) the corpus. From each parse, a pseudo-disjunct is ex-
tracted for each word. The pseudo-disjunct is like a real LG disjunct, except that each
connector in the disjunct is the word at the far end of the link.

So, for example, in in idealized world, the MST parse of the sentence "Ben ate
pizza" would produce the parse Ben <–> ate <–> pizza and from this, we can extract
the pseudo-disjunct (Ben- pizza+) on the word "ate". Similarly, the sentence "Ben
puked pizza" should produce the disjunct (Ben- pizza+) on the word "puked". Since
these two disjuncts are the same, we can conclude that the two words "ate" and "puked"
are very similar to each other. Considering all of the other disjuncts that arise in this
example, we can conclude that these are the only two words that are similar.

Any given word will have many pseudo-disjuncts attached to it. Each disjunct has
a count of the number of times it has been observed. Thus, this set of disjuncts can be
imagined to be a vector in a high-dimensional vector space, which each disjunct being
a single basis element. The similarity of two words can be taken to be the cosine-
similarity between the disjunct-vectors.

Equivalently, the set of disjuncts can be thought of as a weighted set: each disjunct
has a weight, corresponding to the number of times it has been observed. A weighted
set is more or less the same thing as a vector, and these two are treated as the same, in
what follows. Note that the disjunct vectors are sparse: for any given word, almost all
coefficients will have a count of zero. For example, the dataset that will be examined
next has over a quarter of a million different pseudo-disjuncts in it; most words have
fewer than a hundred disjuncts on them.

Some terminology and notation are introduced next, followed by a characterization
of the dataset. This is followed by a statistical analysis of the word-disjunct pairs, and
is followed by an analysis of the resulting word-similarity.

Terminology
It is useful to introduce some notation for counting words, disjuncts, and connectors.
Let N(w) be the number of times that the word w has been observed, in the dataset. Let
N(w,d) be the number of times that the disjunct d has been observed on word w. The
pair (w,d) is referred to as a “connector set” or “cset” in the text below. Thus, for a word
w, there is a set (w,∗) = {(w,d)|N(w,d)> 0} of associated csets, called the “support”
of the word. The size of this set can be written using the standard notation for set-sizes
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as |(w,∗)|. Similarly, a disjunct d, is supported by the set (∗,d) = {(w,d)|N(w,d)> 0}
of associated csets.

The primary contents of the database are the counts N(w,d) and everything else of
interest in this section can be obtained from this. Note that N(w,d) can be understood
as a matrix, where the disjuncts identify columns, and the words identify rows. In
general, this is a very sparse matrix: the number of non-zero entries |(∗,∗)| is far less
than the number of rows times the number of columns.

Every time a word is observed in an MST parse, a disjunct is extracted for it; thus,
word observations and disjunct observations are on one-to-one correspondence. In
notation:

∑
d

N(w,d) = N(w,∗) = N(w)

Similarly, the total number of times that a disjunct was observed is just

N(∗,d) = ∑
w

N(w,d)

Frequencies can be obtained by dividing by the total number of observations, so
that p(w,d) = N(w,d)/N(∗) and p(w) = N(w)/N(∗) with N(∗) = ∑w N(w) the total
number of observations of words.

A single disjunct is always composed of a fixed number of connectors, indepen-
dently of any observations; let C(d,c) be the number of times that connector c appears
in disjunct d. Note that C(d,c) is almost always either zero or one; however, a con-
nector can appear more than once in a disjunct, so this count can rise to 2 or 3 or very
rarely higher. The wild-card sum C(d,∗) = ∑c C(d,c) is the total number of connec-
tors in the disjunct; it is the vertex degree of all edges connecting to that disjunct. It
is also useful to define C(d,+) and C(d,−) as the total number of right-linking and
left-linking connectors.

Dataset characterization
The following charts and analyses are derived from a single dataset, a relatively small
dataset, taken as a snapshot during counting. Its called ’en_pairs_sim’. It contains
37413 words that have disjuncts attached to them. These words have been observed
a total of 661104 times, for an average of 661104/37413 = 17.6 observations per
word. This dataset contains 291637 different, unique disjuncts, for an average of
661104/291637 = 2.27 observations per disjunct. The period appears 32536 times,
suggesting that this many sentences were observed. Each sentence thus has an aver-
age of 661104/32536 = 20.3 words per sentence. The dataset contains 446204 unique
connector-sets, for an average of 661104/446204 = 1.48 observations per cset. It is this
last number that makes this dataset feel thin and sparse.

The dataset is sparse in a completely different sense: viewing N(w,d) as a matrix
whose size is 37413× 291637, but only a very small number of these is non-zero:
this is 446204/(37413× 291637) = 4.089× 10−5. The sparsity of this matrix can be
defined as − log2 of this number, which is 14.58.

3



The total word-entropy for the dataset is defined as

Hword =−∑
w

p(w) log2 p(w)

and was measured to be Hword = 10.28 bits.1 The connector-set entropy is much higher.
It is defined as

Hcset =−∑
w,d

p(w,d) log2 p(w,d)

and is measured to be Hcset = 18.30 bits. The disjunct entropy is dual to the word
entropy:

Hdis junct =−∑
d

p(∗,d) log2 p(∗,d)

and is measured to be Hdis junct = 16.01 bits. The total mutual information between the
words and disjuncts is then

MIcset =−∑
w,d

p(w,d) log2
p(w,d)

p(∗,d)p(w,∗)
= Hcset −Hword−Hdis junct

and is measured to be MIcset =−7.985 bits.

Connector-set distribution
Some connector-sets will be observed far more often than others. Likewise for the
two sides of the connector-set: some words will have far more observations, and some
disjuncts will be seen more often.

Two graphs, dual to one-another. The one on the left shows N(w,∗), ranked by
count. The one on the right shows N(∗,d), also ranked.2. The first follows the canoni-
cal Zipf distribution. The green line is an eyeballed, approximate fit, of exponent -1.1.
The second has an exponent of -0.85.

1This and the following entropies were measured with the word-entropy-bits, disjunct-entropy-bits, etc.
functions in disjunct-stats.scm

2Obtained by running (print-ts-rank sorted-word-obs outport) from the disjunct-stats.scm file, on the
en_pairs_sim database. The second one prints sorted-dj-obs.
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The first ten words in the word ranking are: "the" "," "." "of" "and" "in" "to" "a"
"was". This is the ranking of how often these words appear, overall, in the MST-parsed
corpus. The number of periods should be equal to the number of sentences in the
corpus; commas and the word “the” can appear more than once in a sentence. This list
is repeated in the table below. The frequency is just the count divided by 661104.

word count frequency − log2frequency
the 38977 0.0589 4.084
, 37524 0.0568 4.139
. 32536 0.0489 4.353

of 22654 0.0343 4.867
and 17708 0.0268 5.222
in 14900 0.0225 5.471
to 12825 0.0194 5.688
a 11882 0.0180 5.798

was 6970 0.0105 6.568

The main point of this table is to demonstrate the log-likelihood column. At this
point, these numbers won’t seem to have much meaning; however, they provide an
overall scale that will be seen, repeatedly, in the analysis below. The range of magni-
tudes – 4 to 7 – is no accident, and similar ranges will be seen later.

The first ten pseudo-disjuncts in the disjunct-ranking are ".+ " "the- " "the+ " ",+ "
",- " "of+ " "of- " "a- " "and+ " "and- ". The meaning of the plus and minus signs was
explained above; but to recap: the disjunct “.+” means that there are many words that
expect to be followed by a period (on the right). The disjunct “the-” means that there
are many words that want to link to the word “the” on the left. This is grammatically
correct: “the” is a determiner, and it is always the dependent of some noun. The
disjunct “the+” is grammatical garbage/nonsense: it states that there are many words
that want to link to the word “the” on the right. This is never correct for English;
determiners always precede the noun that they modify. The rest of the disjunct look
reasonable: it’s legitimate to link to commas on both the left and right, and likewise to
the preposition “of” and conjunction “and”. The disjunct “a-” is correct, and the insane
disjunct “a+” doesn’t appear until the 14th slot.

It’s not clear at this point why the insane disjuncts “the+” and “a+” are so highly
ranked. The hope is that these appear due to the poor quality of the dataset (as will
become more clear, below), rather than a deficiency in the theory. Based on decades-
old research on MST parsing, its reasonable to hope that these disjuncts will disappear
from a larger, better corpus.

The ranking of connector sets is shown below. It’s a graph of the ranked counts
N(w,d).
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The top-ten connector-sets are ".: )-" "and: ,-" "in: the+" "(: )+" ",: and+" "the:
of-" "of: the+" "): .+" "He: was+". These are hard to read, so, decoded: the first is
a parenthesis followed by a period. The second is a comma, followed by “and”. The
third is the word-pair “in the”. All the others are pairs, also. Written in order: “()”
(presumably with other text between the parens) “, and” “of the” “of the” “) .” and “He
was”. Curiously the 1st and 8th give the same pair, as do 2nd and 5th, and the 6th and
7th. This makes sense: if one word-disjunct pair is observed a lot, the converse should
be also. This duality might be behind the slope of slightly less than -0.6 in the graph.

It is also interesting to turn this graph “on it’s side”. So, in this dataset, there were
15270 words observed exactly once (out of a total of 661104 observations of 37413
words). This is quite something: of all the words observed, almost half were seen only
once. More than half were seen twice, or less. These are presumably rare typos, foreign
words, IPA pronunciation guides: any word that appears only once must be unusual;
and yet, there are a lot of them! There are 5790 words that appear twice, 3093 that
appear exactly 3 times, etc. These counts are graphed below.3

3graph of binned-word-counts.dat, generated in disjunct-stats.scm
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This graph indicates that most (almost all) words were observed less than 100 times.
In this dataset, there were only 630 words that were observed more than 100 times, and
267 words that were observed 200 or more times.

Writing N for the number of times that some word was observed, it appears that
there are approximately 15270×N−3/2 words observed that many times. In formulas,
the size of the set of words {w|N(w) = N}is given by

|{w|N(w) = N}| ∼ N−3/2

where {w|cond} is a set of words (subject to the condition cond) and |{w|cond}| de-
notes the size of that set of words.

The next graph belabors the point, and yet it’s important.4 It shows nothing new,
but it does show it in a format that will be recur frequently, later. Thus, its worth
understanding now. This graph shows exactly the same data as the previous graph: it
is the same graph, except that the x-axis is now labeled differently, and some of the
counts have been binned together. So first: note that − log2 1/661104 = 19.334 and so
this is the location of the first spike on the far-right. Next, − log2 2/661104 = 18.334
and − log2 3/661104 = 17.750 are the locations of the second and third spikes: these
correspond to words that have been observed 1,2 and 3 times. The height of the spikes
are

|{w|N(w) = N}| ∼ 2−3/2×log2 N

as clearly demonstrated by the straight green line.

One peculiar difference between this, and the previous graph is the use of binning.
Notice here that the observed, red line bounces above the straight green line, while in
the previous graph, it was strictly below. If these both show the same data, how can
this be? This seems to be a bit of a paradox. The difference can be understood as
follows (and is important to keep in mind). This graph was generated by bin-counting.
The x-axis was divided into 200 equal-sized bins, and whenever the log-likelihood of

4Generated from binned-word-logli.dat
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a word landed within a particular bin, the count was accumulated into that bin. Both
this and the previous graph are distributions, but they use different measures. The two
measures are related by the Jacobian determinant5, which is given by the derivative of
the log. This is a curious effect, to be kept in mind when comparing different graphs.

Ranked average observations per disjunct
A more interesting distribution arises by looking at the average number of observa-
tions per disjunct (per word). That is, a single word may have hundreds of disjuncts,
observed thousands of times; what is the average number of times that a disjunct is
observed? By “average”, it is explicitly meant N(w,∗)/ |(w,∗)|, the number of obser-
vations divided by the support for those observations.

This number gives a hint of how “narrow” the grammatical usage of a word is. If
the average is high, it means that the word just does not have very many disjuncts on
it; the few that it does have are observed a lot. Recall that these disjuncts (pseudo-
disjuncts) connect to individual words, and not to word-classes. Thus, if a disjunct is
seen a lot, it probably connects to another word, forming a high-MI pair. This can be
explicitly seen in the example further below.

A graph of the ranked average number of observations, per disjunct, per word, is
shown on the left, below.6 Words with fewer than 100 observations have been excluded,
so as to minimize the spurious noise. Note that although the line is straight in this log-
log graph, the Zipf exponent is approximately -1/4. The graph on the right expresses
an alternate view of the same idea: this one shows a bin-count of all of the words.
Reaffirming the graph on the left, it indicates that almost all words have an average
disjunct observation count of less than three. Both of these graphs emphasize just how
thin and weak this dataset is: to be certain of a disjunct, it sure would be nice to observe
it, in actual use, more than half-a-dozen times!

The spike on the far right on the graph on the right suggests that there are about 30
words that have an average number of observations of greater than 6! Since they are
not showing up in the graph on the left, this shows that the underlying word have fewer
than 100 observations.

5https://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant
6Computed with the sorted-avg list in disjunct-stats.scm
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The first ten on the ranked list are "According" "Gestalt" "Cao" "Berger" "2015"
"It" "U.S" "United" "However" "y". Unsurprisingly, most of these are all capitalized,
suggesting that they are either part of a proper name, or that perhaps they begin a
sentence.

For example, the appearance of “United” is almost surely due to the high-MI pair
“United States”, and so this probably dominates the disjunct count. This is confirmed
by manual inspection7, per table below.

disjunct number of observations
the- States+ 108

in- the- States+ 41
States+ 35

the- Kingdom+ 16
the- the- States+ 14

Only the first four disjuncts seem to be grammatically acceptable. In the first,
second and fourth usage, “States” seems to be a head word, with “United” being the
dependent. In the third case, it would appears that “United” is the head-word, and
“States” the dependent.

The fifth most frequent disjunct is grammatical garbage: noise from bad MST
parses. There are even more disjuncts, which occur with lower frequency: there are
156 in all. Almost all of these are presumably junk of some kind. We conclude that
the signal/noise ratio here is about 10log10(108/14) or about 9 dB. These first four
disjuncts really pull up the average, which is quite low, given this skew: the average
number of observations per disjunct for “United” is 2.96.

The corresponding table for “It” is

disjunct number of observations
is+ 216

was+ 197
has+ 55

was+ was+ 12
is+ was+ 10

This also is much as expected: “It” is a sentence opener, and the three sentence
types it opens are “It is”, “It was” and “It has”. The fourth and fifth disjuncts are
grammatical garbage. The average number of disjunct observations is 3.03, almost
identical to that for “United”.

The skewness appears to be very sharp. This suggests that we should not waste
time looking at mean-square variations in the average, although we’ll do this anyway.
But first, its worth graphing the skewness directly. Again, this is done on a log-log
graph, in a Zipfian way.

7View disjuncts by saying (filter (lambda (cset) (< 10 (get-count cset))) (cog-incoming-by-type (Word
"foo") ’LgWordCset)) where 10 is the minimum number of counts.
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Disjunct count distribution
The graph below shows the distribution of the disjunct observations on the two words
“United” and “It”. Indeed, it looks Zipfian; since we know that all but the first three or
four disjuncts are noise, this graph illustrates “pink noise” or “1/f noise”.8

Can one get a smoother distribution by summing together these two graphs? Sure...
and one can sum together not just these two words, but all words (that have been ob-
served at least 100 times). That graph is shown below.9

Its kind of a strange graph. Yes, the x-axis of this graph does imply that there are
dozens, if not hundreds of words with more than a thousand disjuncts on them, and
maybe half-a-dozen that have more than ten-thousand (unique, different) disjuncts on
them! Exactly what does this mean? This is covered in the next section.

8Computed with the dj-united and dj-it arrays indisjunct-stats.scm
9Computed with the accum-dj-all function in disjunct-stats.scm
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Disjunct Support Distribution
Is it possible that some words have a large number of disjuncts on them? Yes, it is. For
example, the period was observed to have 18200 unique, different disjuncts associated
with it. The word “the” has 15420 unique, different disjuncts, the comma has 14510.
Rounding out this list are "of" "and" "in" "a" "to" "was". Its not clear what fraction of
these disjuncts are grammatically valid, and what fraction are junk.

The graph below shows the distribution of the size of the support: the ranking of
|(w,∗)|. Again, the graph appears to be approximately Zipfian.10

Terminology: the “support” of a vector is the number of basis elements that have a
non-zero coefficient. This is the set (w,∗) defined earlier. Equivalently, this is the size
of the set of disjuncts associated with a word, when counted without multiplicity.

Ranked Euclidean length (RMS Size)
A different distribution arises by looking at the ranked RMS sizes of the disjunct sets11.
Here, the RMS size12 is computed by taking the root-mean-square of the counts on
each disjunct in the set, that is, by computing

√
∑d N(w,d)2 for each word w and then

ranking. Interpreting d as a basis element of a vector space, this can be recognized as
the Euclidean length of the count-vector.

The RMS size of the set is thus larger not only when more disjuncts have been
observed, but also when most of the observations are made of only a small handful of
disjuncts. That is, the RMS size should be relatively larger, if the word is less gram-
matically flexible. So for example, prepositions tend to be very flexible; adjectives,
not so much. Thus, we expect adjectives to appear higher-up on this ranking list, than

10Generated by sorted-support in disjunct-stats.scm
11Obtained by running (print-ts-rank sorted-lengths outport) from the disjunct-stats.scm file on the

en_pairs_sim database.
12The word “length” can be used to describe the root-mean-square size of the set of disjuncts associated

with a word. That is, each element of the set is a disjunct, and that disjunct has a count, the number of times
it has been observed. The root-mean-square of these counts can be taken as the set-size. But this set can also
be interpreted as a vector, and so the RMS size is the same thing as the Euclidean length of the vector. Thus,
the word “length” is sometimes used for the RMS size; they’re the same thing.

11



the observation-based list. And this might be true, relatively, but certainly not true
absolutely.

The first ten words of the RMS-size-list are: "." "and" "," "in" "the" ")" "(" "of"
"as" "to". Not that interesting: these are all words that were observed a lot in the text.
The RMS size is dominated by the total number of observations of a word in text.
In and of itself, its insufficient to indicate how “concentrated” the disjuncts are, how
grammatically narrow a word is. For this, some other quantity is needed.

Note that the graph above is Zipfian, but the slope is approximately -0.65. The
green line is an “eyeball” fit. Why the slope is approximately 2/3rds of the canonical
slope is not clear.

Mean-square to size ratio
More interesting is the ratio of mean-square size to the total size. In formulas, by
ranking according to √

∑d N2(w,d)
N(w,∗)

=

√
∑d p2(w,d)
p(w,∗)

This seems like the interesting ratio, because the Zipf exponent of -0.65 would be dou-
bled, when working with mean-square sizes, thus making the two rankings comparable.

Words high in this score will be words that have relatively few disjuncts on them,
or at least, few that matter much, that rise above the level of noise. The first ten on this
list are (after excluding all words with fewer than 100 observations): "It" "According"
"He" ")" "and" "(" "United" "as" "." "well". Note that most are capitalized: that means
that these words appeared at the beginning of sentences; the way in which the can link
to what follows is fairly constrained, and thus it is no surprise that these have only a
few disjuncts on them.

Excluding the capitalized words, and punctuation, in this list what remains is quite
surprising. It is shown in the table below.13

13Extracted from ranked-sqlen-norm.dat

12



rank score word
5 41.4 and
8 31.6 as
10 30.1 well
11 29.9 in
18 18.8 first
21 17.2 is
22 16.7 also
23 15.3 can
24 15.3 on
25 14.9 at

rank score word
26 14.4 been
31 13.2 but
32 13.1 part
34 12.8 with
35 12.8 old
36 12.7 same
38 11.9 one
39 11.6 which
43 10.8 not
49 10.2 the

It is surprising because, grammatically, we expect most of these words to have a
large number of varied disjuncts attached to them. We expect them to be diffuse, not
sharp: we expect that these would have a large number of observations smeared over
a large variety of disjuncts, instead of having their weight concentrated in only one or
two disjuncts, the way that “United” was, above. So what is going on, here?

The distribution is unusual; it is shown below. Note that the x-axis is drawn with a
log-scale. It appears to be linear, with an exponent of -4.

Are there other interesting measures? One could contemplate the ratio of the mean-
square size to the support ∑d N(w,d)2/ |(w,∗)|. Another possibility would be this, mi-
nus the average-squared, which would give the second moment, aka, the mean-square
deviation from the average, specifically

∑d N(w,d)2

|(w,∗)|
−
[

N(w,∗)
|(w,∗)|

]2

=
1

|(w,∗)|∑d

[
N(w,d)− N(w,∗)

|(w,∗)|

]2

Neither of these variations seem promising; they seem to offer up more of the same, at
least on this dataset. A larger and more refined dataset might reveal otherwise.
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Mutual information
The concept of the “fractional mutual information” for a pair is interesting to explore.
Define this as

MIpair(w,d) =− log2
p(w,d)

p(w,∗)p(∗,d)
(1)

This is “fractional” in the sense that the total MI for the set of all pairs can be written
as

MIcset = ∑
w,d

p(w,d)MIpair(w,d)

Fractional MI is interesting because it usually has a reasonably nice distribution. For
this particular dataset, it ranges from about -20 to +8. The distribution is shown in the
graphs below.14

These graphs are generated by computing the value for MIpair(w,d) for each of the
446204 (w,d) pairs (aka ’connector sets’), and approximating it’s distribution by bin
counting. In each graph above, there are 200 bins, each of width of about 30/200, and
each pair is assigned to one of the binds, according to it’s MI value. The graph on the
left then shows how many pairs there are in each bin. The graph on the left is similar,
but not the same: it sums the frequencies for all the pairs in each bin. In formulas: the
graph on the left shows the value of

sizeof
{
(w,d)|MIpair(w,d) is in bin

}
while the graph on the right shows

∑
MIpair(w,d) is in bin

p(w,d)

where ’x is in bin’ simply means lo≤ x < hi with the bin being the interval [lo,hi).
Both of these graphs show “combs” in the left side. These combs are exactly the

same combs as noted in the last figure in section Connector-set distribution on page 7.
The combs are due to the large number of words that have been observed only a small
handful of times. In essence, the combs attest that the bulk of the high-MI pairs have
been observed more than just a few times; i.e. the high MI values are meaningful.

14These are graphed by binned-cset-mi and weighted-cset-mi in the disjunct-stats.scm file.
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Mutual Information of words
The mutual information of a single word can be defined by summing the (fractional)
mutual information between a word, and all of it’s disjuncts:

MIword(w) =
1

p(w) ∑
d

p(w,d)MIpair(w,d)

This is also written in the “fractional” style, so that, again, the total MI of the entire
dataset can be written as

MIcset = ∑
w

p(w)MIword(w)

That is, MIword(w) is the fractional contribution of the word to the total MI. The frac-
tional MI is very convenient for comparing different words, since it factors out the
frequency of how often a word is observed: the MI of two words with two very differ-
ent frequencies can be directly compared. As can be seen from the graph below, the
fractional MI ranges between +3 and +19 for this dataset.

The total MI for the dataset is measured to be 7.985 bits.
The distribution can be visualized in two different ways. The graph on the left,

below15 shows the ranked MI of the 630 words that have been observed more than 100
times in this dataset. Note that it is a semi-log plot; it is NOT Zipfian. Note that the MI
seems to decay logarithmically, for a good long ways, and then drops off a cliff.

The graph on the right shows the distribution, for all 37413 words, bin-counted into
100 bins. Unfortunately, this sampling remains small and noisy, so the suggestion of a
log-linear decay to both left and right is hidden by rather noisy spikes. The combs on
the far right are again the same combs as noted in the last figure in section Connector-
set distribution on page 7.

What re the disjuncts like at either end of this distribution? The first ten words
in the ranking are: "Cao" "Award" "x" "y" "Prime" "we" "per" "Division" "League"
"Game". The word “United”, examined previously, is 86th in this rank. Lets look at
some of these.

The word “Award” has only two disjuncts that were observed more than twice:
15This is graphed by sorted-word-mi-hi-p in disjunct-stats.scm
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count disjunct
8 Grammy- for+ Best+
7 Academy- for+ Best+

It is already clear from this one example that the hi-MI words will be those that take
part in idioms, “set phrases” or “institutional phrases”, and that the disjunct identifies
the words taking part in the setting.

count disjunct for “Prime”
23 Minister+
5 the- Minister+
3 as- Minister+
3 Governor-General- Minister+

Only one disjunct for “Division” was observed 4 times; those with 3 observations
or less suggest that they were extracted from tables listing WWII military battles and
equipment.

count disjunct for “Division”
4 NCAA-

The disjuncts for “League” correspond to word-pairs, and these will clearly be
high-MI word-pairs.

count disjunct for “League”
8 Baseball+
5 Premier-
4 Justice-

This ranking also captures a fair amount of the “garbage” in Wikipedia (which is the
source for the dataset): the disjuncts on “x” and “y” indicate that these occur almost
exclusively in mathematical formulas of some sort, involving single-letter variables,
plus signs and equal signs. The most frequent disjunct on “per” was observed 5 times,
and was “100,000+ 100,000+ 100,000+ 100,000+ 100,000+” suggesting that it arose
in some parse of a table listing. None of the disjuncts on “we” were observed more
than 4 times, and seemed to consist of some sort of grammatical word-salad. This is
not surprising: Wikipedia has a severe shortage of pronouns; style guidelines prohibit
their use.

At the other extreme, the ten words with the lowest MI are: "The" "a" "to" "in" "of"
"and" "the" "," ".". These are already familiar from previous rankings: they occur with
very high frequency; the disjunct lists on them will be lengthly variable, diffuse.
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Mutual information of disjuncts
Symmetrically, one also has the mutual information of a disjunct, in comparison to all
of the words it connects to:

MIdis junct(d) =
1

p(∗,d) ∑
w

p(w,d)MIpair(w,d)

Again, this is presented in the “fractional” style, so that the total MI of the entire dataset
can be written as before:

MI = ∑
d

p(∗,d)MIdis junct(d)

The distribution is shown below.16 The combs on the far left are again the same combs
as noted in the last figure in section Connector-set distribution on page 7.

So, at first, this looks much like the word-MI graph, until one realizes its really
almost a mirror-image. Also very notable is that the MI is negative, in all cases! What
does this mean? In this case, it means that entropy is dominating over any “attrac-
tive” effect: basically, that the various disjuncts are getting used for a very large and
widespread set of words, and that any one disjunct is not favoring any particular word
or word-set; indeed, any given disjunct is mostly dis-favoring any word or small set of
words, and is instead appearing with just about all words. This is explored a bit more
in the next section.

Fractional Entropy
There is a simpler variant than the mutual information, that is also worth understanding:
the fractional contribution to the total entropy. This is given by the sum

Hword(w) =−
1

p(w) ∑
d

p(w,d) log2 p(w,d)

16Use binned-dj-mi to get this.
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This is written in the “fractional” style, so that the total entropy of the entire dataset
can be written as

Hcset = ∑
w

p(w)Hword(w)

Analogously, one also has the fractional contribution of the disjuncts:

Hdis junct(d) =−
1

p(∗,d) ∑
w

p(w,d) log2 p(w,d)

where, again, one has that

Hcset = ∑
d

p(d)Hdis junct(d)

The ranked fractional entropy is shown in the left graph below.17 It only shows
those words that have been observed 100 times, or more. It resembles the graph for
the ranked fractional MI, above. The graph on the right shows the distribution of the
entropy, for all of the words. This affirms (or explains?) the sharp knee in the graph on
the left: the knee occurs because almost all words have a large disjunct-entropy. This
is explained below.

The top-ranked words (which have been observed 100 times or more) are these:

Entropy Word
19.22 possible
19.18 education
19.18 lost
19.15 days
19.15 children
19.14 players
19.14 available
19.12 every
19.12 remained
19.10 above

17Generated from sorted-word-ent in disjunct-stats.scm.
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This is not a list that has been exposed with other statistics. These words are more
“interesting” than any of the previous lists, which seemed to be filled with quirks as-
sociated with the dataset. By contrast, these are “normal” words: mostly nouns, some
modifiers, a verb, a preposition. Why these?

The answer lies in looking at the disjunct set, shown in the table below. All of
these words have a large support, but were observed very infrequently. For example,
“possible” has only one disjunct that was observed 3 times, 4 that were observed twice,
and 101 that were observed only once. A quick examination shows that many, maybe
most, are grammatically reasonable, for example: (investigate- routes+) (is- also- for+)
(is- only- to+) (made- through+) (many- as-) and so on. But all of these were observed
precisely once. The table below illustrates this.

Entropy Word |(w,∗)|2 |(w,∗)|1 |(w,∗)|0
19.22 possible 1 5 106
19.18 education 1 7 100
19.18 lost 1 7 100
19.15 days 2 7 98
19.15 children 1 9 101

A bit of notation. Recall the definition for the set that supports a word:

(w,∗) = {(w,d)|N(w,d)> 0}

together with the notation |(w,∗)| to indicate the size of this set. Extend this notation
as

|(w,∗)|k = sizeof {(w,d)|N(w,d)> k}

That is, |(w,∗)|k is the size of the support for when the disjuncts on word w have been
seen more than k times.

From this table, it is now clear why “large entropy” can be intuitively understood
to mean “many possibilities”. Each of these words was seen in a very broad setting of
possibilities: in a sense, the broadest possible. Each of these words was observed with
a vary large set of different disjuncts, and this set was as spread-out as possible: the
vast majority of disjuncts were observed exactly once.

More terms
Some curious terms show up in relating the fractional mutual information to the frac-
tional entropy. Expanding out the above summations, one obtains

MIword(w) = Hword(w)+ log2 p(w,∗)+ 1
p(w) ∑

d
p(w,d) log2 p(∗,d)

The last term is bizarre...
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Vertex degrees and hubiness
Vertex degrees can be defined as the average number of connectors per disjunct. In
principle, the vertex degree is an excellent indicator of the part of speech. For example,
determiners, adjectives and adverbs typically have a degree of one: they have one
connector, which is modifying the noun (or verb) that they act on. By contrast, nouns
typically have a degree of two: one connector to attach to a verb, another to a modifier,
and that’s it. Verbs have a degree of three: one connector to a subject, one to a direct
object, a third to an indirect object or a modifier. Of course, nouns might have two or
more modifiers, or maybe zero modifiers; verbs are also quite variable, but the general
concept of vertex degree is appealing. Closely related to this is the idea of “hubiness”,
which can be defined as the second moment of the degree.

Thus, its worth looking at this. Define the average degree as

K(w) =
∑d,c N(w,d)C(d,c)

N(w,∗)

This is graphed, below, for all words that have at least 100 observations.18

This graph is unexpected; in part, having an average number of connectors that
exceed 5 or 6 is intuitively surprising. What’s happening here? The first ten items in
the ranking are: "-" "de" "y" ":" "(" ")" "General" "Department" "x" "Act".

Consider “de”. There are 12 observations of the disjunct “Janeiro+”. There are 9
observations of the disjunct “la+”. There are 51 observations of a disjunct that has 117
connectors on it!! This starts out as “Diego- Francisco- Francisco- Alonso- Carlos-
Fernández- Carlos-” and ends with “Figueroa+ (+ (+ y+” suggesting that there were
possibly 51 really bad parses of a very long table of Spanish kings, which was mistaken
for being a single sentence. Clearly, its junk; its frequently-occurring junk, which
suggests that the table was repeatedly included in maybe 51 different Wikipedia pages.

Similarly, “Department” has 18 observations of a disjunct with 41 connectors on
it. It starts with “Education- Education- Health- Services- Services- Immigration-” and

18Computed with sorted-avg-connectors in disjunct-stats.scm
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ends with “Veterans+ of+ Treasury+ Treasury+”, again suggesting a bad parse of a
table mistaken for a sentence, and included in 18 different Wikipedia pages.

The list continues in a similar way, for quite a while. The green line suggests that
if some 30 or so pathological cases are ignored, the system settles down to a more re-
spectable behavior. Entries 30 through 50 in the rankings are "Bay" "Street" "Island"
"of" "century" "right" "Game" "Georgian" "or" "a" ";" "near" "Party" "team" "law"
"Australia" "her" "research" "Church" "east" "Government". Notable is a preponder-
ance of capitalized words, suggesting more tables of various sorts, and a complete lack
of verbs. A spot-check of words like “team” and “law” shows that the pathological
behavior continues. Several conclusions are possible.

One conclusion is that there is a severe shortage of verbs in Wikipedia articles,
and this makes sense: its primarily descriptive, rather than active: running, jumping,
hitting, putting, mixing, giving, setting are not the kinds of verbs that are required to
describe a typical encyclopedia topic.

Another conclusion is that perhaps the number of observations of pairs are insuf-
ficient to get deep, reliable MST parsing. Junk links get used because there were not
enough appropriate word-pairs seen to give a good-quality MST parse. A related con-
clusion is that the connector-set dataset is also too thin: The grammatically reasonable
connectors are observed not even a few dozen times, barely pushing them out of the
noise-floor of onesie-twosie observations of junk.

So: bigger datasets, and an urgent need for non-Wikipedia content. Fiction, and
presumably teen fiction should be filled with the kinds of active verbs describing hu-
man motions and actions, and should be absent of tables and lists masquerading as
sentences.

Hubiness
Similar to the above, hubiness can be defined as the second moment of the connector
count:

hub(w) =
∑d,c N(w,d)C2(d,c)

N(w,∗)
−K2(w)

Given the earlier Zipfian results on the average degree K(w), it should be no surprise
that a ranked listing of words by hubiness is very nearly identical to the listing for
average degree. This is, after all, what the scale-free nature of the Zipfian distribution
really means. Not only is the ranking nearly the same, but one also has the approximate
equality hub(w)≈ 2K(w) to some ten or twenty percent.

Disjunct Cosine Similarity
The cosine similarity between two vectors is simply their inner product. In this case,
given two words w1 and w2, it is given by

sim(w1,w2) =
∑d N(w1,d)N(w2,d)

len(w1)len(w2)
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where len(w) is the root-mean-square length (Euclidean length) of the connector-set
vector:

len(w) =
√

∑
d

N2(w,d)

The current dataset being analyzed contains 1985 words whose length is greater
than 8; the ranking-by-length was already shown up above, in a previous graph. The
similarity between all pairs of these was computed; this resulted in 15808 pairs with
a cosine similarity of greater than 0.5. These can be sorted and ranked.19 They are
shown below.

Well, that’s new! The similarity ranking is very well fit by a cubic! In the above, the
green line is given by 1− log3(rank)/1800 and it fits the tailing end of the distribution
so well, that the red data line is almost completely hidden under the green line!

The graph below shows the distribution of cosine similarity.20 There are 5544
words for which 4 < len(w). This shows the distribution of the 2.17 million word-pairs
formed from these words, and for which 0.1 ≤ sim(w1,w2). The eyeballed fit is for
exp(−8sim).

19See the good-sims and ranked-sims in disjunct-stats.scm file.
20Produced by binned-good-sims.

22



The top-ten similarity pairs are: ’Poir .. Perls’ ’Poir .. Sevan’ ’Sevan .. Perls’
’Sevan .. Ruins’ ’Ruins .. Perls’ ’Poir .. Ruins’ ’Gongora .. Perls’ ’Poir .. Gongora’
’Gongora .. Sevan’ ’Gongora .. Ruins’ ’Poir .. Gag’. The first three all have a cosine
of 1.0, and the rest in the 0.999 range. The three words “Poir” “Perls” and “Sevan” all
have exactly one disjunct, containing exactly one connector, linking them to a period,
presumably at the end of a sentence. Its observed a few dozen times, and that’s it.
“Gongora” has three disjuncts; (.+) is observed 56 times, (,+) is observed twice and
(,+ .+) is observed twice. So, yes, all these words have been discovered to behave in
a grammatically similar fashion, however, this behavior seems quite boring: links to a
period.

The next 300 entries are all links between capitalized words, most of them to the
words above. After that, the list is just barely slightly more varied, with e.g. “tonight”
showing up occasionally, presumably because there are many sentences that end with
the word “tonight”, followed by a period. There are very few links to lower-case words,
but the ones that show up are.. interesting. The table below gives some hand-picked
examples.

rank cosine word-pair
504 0.868 ’in .. from’
633 0.855 ’in .. at’
637 0.854 ’In .. By’
643 0.854 ’in .. After’
740 0.846 ’canal .. swamp’
754 0.843 ’at .. At’
757 0.843 ’in .. In
818 0.838 ’in .. on’
840 0.836 ’creation .. existence’
878 0.833 ’e.g .. i.e’
965 0.826 ’and .. but’
969 0.826 ’in .. With’
971 0.826 ’in .. inside’
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This table is surprising in several different ways. First, that the first entry in which
two words are both not capitalized does not occur until about 3% into the list. Next,
that this entry, and most of the others, involve prepositions! Not adjectives, adverbs,
verbs; although we noted already that the source text is verb-poor. It is also pleasantly
surprising that all of these equivalences appear to be correct, including the equivalence
of upper-case prepositions that start sentences, with lower-case ones that appear mid-
sentence. The identification of e.g. with i.e. seems like a bonus, as does the ’and .. but’
equivalence.

Lets look at this gift-horse in the mouth. The equivalence ’canal .. swamp’ is
rather pathetic. So, ’canal’ was observed with 68 different, unique disjuncts, but most
have a count of only 1 or 2. The top-ranked disjunct on ’canal’ is (the-) which is seen
20 times, followed by (the- .+) 8 times. Similarly, ’swamp’ has 18 distinct disjuncts
attached, most with counts of 1 or 2; the top-ranked disjunct is (the-) with 14 counts,
and (the- .+) 3 times. So, yes, these are both nouns, evidenced by the connection to the
word “the”, but the evidence is otherwise very weak.

Likewise, ’creation’ gets the disjunct (the- of+) 18 times, and no other disjuncts
observed more than twice. ’existence’ gets the same disjunct 10 times, and no other is
observed more than 3 times. In total, ’creation’ had 22 disjuncts on it, while ’exstence’
had 26, with almost all having counts of 1 or 2. Again, the evidence is thin, with one
notable point: ’creation’ is not at all like ’canal’, in that ’canal’ has zero counts of (the-
of+) while ’creation’ has only one count of (the-). As nouns, they are actually quite
different, even based on the thin evidence available.

The equivalence of ’in .. from’ is much more interesting. The preposition ’in’ has
a total of 8338 different unique disjuncts – this is huge, compared to the nouns above.
Likewise, ’from’ has 2185 different disjuncts observed. The top-ranked disjuncts for
each are shown in the tables below.

count ’in’ disjunct
627 the+
75 a+
61 which+
49 the+ the+
36 used-
33 his+
32 order+

count ’from’ disjunct
155 the+
20 :+ :+ :+ .. 0+ 0+ 0+
18 a+
9 derived-
9 until+
9 degree-
8 his+

The similarity of these two are driven primarily by the word-pairs “in the” and
“from the”, followed by “in a” and “from a”. Notable also is the common appearance
of the pronoun “his”, with “in his” and “from his”. The second disjunct on ’from’
appears to be some sort of garbage, presumably due to the parse of a list of numeric
values of some kind.

Just as the case with nouns, the evidence for the similarity for these two prepositions
seems quite thin. The surprise is that, despite this, the identification does seem correct.

At any rate, the dataset seems a bit thin, but we already knew this; its based on a
fairly small sample.
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Pair Cosine Similarity
To correctly gauge the disjunct-based cosine similarity, it should be contrasted against
the simpler pair-based cosine similarity. This is given by

simpair(w1,w2) =
∑w Npair(w1,w)Npair(w,w2)

len(w1)len(w2)

where len(w) is the root-mean-square length (Euclidean length) of the pair vector:

len(w) =
√

∑
v

Npair(w,v)Npair(v,w)

and Npair(w,v) is the count of having observed the ordered word-pair (w,v). Equiva-
lently, writing the normalized frequency of observing a word pair as p(w,v)=N(w,v)/N(∗,∗),
this similarity can be written in the form

simpair(w1,w2) =
∑w p(w1,w)p(w,w2)√

∑v p(w1,v)p(v,w1)
√

∑v p(w2,v)p(v,w2)

Note that this similarity measure is NOT symmetric: sim(w1,w2) 6= sim(w2,w1). This
is because it’s built out of a manifestly non-symmetric count: p(w,v) 6= p(v,w) and
should really be written as p(w,v) = p(R;w,v) with the relation R encompassing all
of the constraints of pair-wise word relationships (including, for example, that the pair
might have been extracted from a random planar tree parse). Of course, one could
construct a symmetrized similarity measure.

The point here is that this measure treats words as similar with they link, pair-wise,
to the same kinds of words, with the same kinds of frequencies. This is not unlike
the similarity that the disjunct-cosine is measuring, except that the disjunct carries
additional grammatical information with it: it captures more complex relationships
between the words in a sentence.

Cosine Information
The cosine similarity was defined as

sim(w1,w2) =
∑d N(w1,d)N(w2,d)√

∑d N2(w1,d)
√

∑d N2(w2,d)

which, after dividing by N(∗,∗) so that p(w,d) = N(w,d)/N(∗,∗), gives the equivalent
expression

sim(w1,w2) =
∑d p(w1,d)p(w2,d)√

∑d p2(w1,d)
√

∑d p2(w2,d)

Comparing this to the expression for mutual information suggests that using the vector
support, instead of the vector length, could be interesting. In particular, these might be
interesting:

com(w1,w2) =− log2
∑d p(w1,d)p(w2,d)

p(w1,∗)p(w2,∗)

25



and

mim(w,d) =− log2
p(w,d)

∑w,d p2(w,d)

I don’t know what to call these; the first seems to be some kind of “cosine informa-
tion”, the second, some sort of “mutual length” device.

Quality Cosine
More possibilities exist. The motivation for using cosine similarity is to find pairs
of words that act in a grammatically similar fashion: they are used in the same way,
with the same kinds of disjuncts. However, observational counts are subject to the vi-
cissitudes of the input text: perhaps, instead of using vectors where the components
are given by the frequency, once could instead use components based on, say, the
“quality” of the disjunct itself. A disjunct could be judged as being “high quality”
if mi(w,d) = MIpair(w,d) as defined in equation 1 on page 14 is high. This motivates a
“quality cosine”:

qim(w1,w2) =
∑d mi(w1,d)mi(w2,d)√

∑d mi2(w1,d)
√

∑d mi2(w2,d)

But what if the high quality is based on a pathetically small number of observations?
Perhaps there should be some observational weighting. One can contemplate defining
pi(w,d) = p(w,d)mi(w,d) and so the cosine

pim(w1,w2) =
∑d pi(w1,d)pi(w2,d)√

∑d pi2(w1,d)
√

∑d pi2(w2,d)

The suitability of these different means of judging similarity is not clear.

The End
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