
A General Intelligence Oriented Architecture for Embodied Natural
Language Processing

Ben Goertzel1 & Cassio Pennachin1 & Samir Araujo1 & Fabricio Silva1

& Murilo Queiroz1 & Ruiting Lian2 & Welter Silva1 &Michael Ross & Linas Vepstas1 & Andre Senna1

1 Novamente LLC
1405 Bernerd Place, Rockville MD 20851

2 Artificial Brain Laboratory
Xiamen University, Xiamen, China

Abstract

A software architecture is described which enables a
virtual agent in an online virtual world to carry out
simple English language interactions grounded in its
perceptions and actions. The use of perceptions to
guide anaphor resolution is discussed, along with the
use of natural language generation to answer simple
questions about the observed world. This architec-
ture has been implemented within the larger PetBrain
system, which is built on the OpenCog open-source
AI software framework and architected based on the
OpenCogPrime design for integrative AGI, and has
previously been used for nonlinguistic intelligent be-
haviors such as imitation and reinforcement learning.

Introduction

One key requirement of a humanlike AGI is the ability
to communicate linguistically about the world it expe-
riences, and to use its world-experience to understand
the language others produce. We describe here an ap-
proach to achieving these abilities, which has been im-
plemented within the PetBrain software system. After
reviewing the current version, we discuss extending it
into a more powerful AGI system.

The PetBrain implements a portion of OpenCog-
Prime (Goe09), an integrated conceptual and software
design aimed at achieving roughly humanlike AGI at
the human level and ultimately beyond. It is imple-
mented within the OpenCog open-source AI software
framework (GH08); and its purpose is to control a vir-
tual pet (currently a dog) in the Multiverse or RealX-
Tend virtual worlds. Previous papers have described
the PetBrain’s capability for imitative and reinforce-
ment learning (GPG08) and its personality and emo-
tion model (GPGA08); here we focus on its capability
for linguistic interaction, with a focus on the way its
virtual embodiment allows it to resolve linguistic am-
biguity and answer questions about itself and its life.
The paper is best read in conjunction with two online
videos illustrating the phenomena described 1, 2.

1http://novamente.net/example/grab ball.html
2http://novamente.net/example/nlp.html

Figure 1: High-level overview of PetBrain software ar-
chitecture

OpenCog and the PetBrain

OpenCogPrime is a cognitive architecture intended
for implementation within the OpenCog AGI software
framework, motivated by human cognitive science and
overlapping significantly with Stan Franklin’s LIDA
(FF08) and Joscha Bach’s MicroPsi (Bac09) architec-
tures. The architecture consists of a division into a
number of interconnected functional units correspond-
ing to different specialized capabilities such as percep-
tion, motor control and language, and also an atten-
tional focus unit corresponding to intensive integrative
processing. Within each functional unit, knowledge
representation is enabled via an Atomspace software
object that contains nodes and links (collectively called
Atoms) of various types representing declarative, pro-
cedural and episodic knowledge both symbolically and
subsymbolically. (For a description of the node and
link types typically utilized in OpenCog, the reader is
referred to (GP06); here we will mention a few node and
link types in passing, assuming the essential semantics
will be clear from context.) Each unit also contains
a collection of MindAgent objects implementing cog-
nitive, perception or action processes that act on this
Atomspace, and/or interact with the outside world.

The PetBrain, roughly depicted in Figure 1, is a sub-

Published by Atlantis Press, © the authors
 1

set of the OpenCogPrime architecture, implemented
within OpenCog. Currently it is used to control vir-
tual pets, but in fact it could be used more generally
to control various intelligent virtual agents; and work
is underway to customize it to control humanoid robots
as well (GdG98). The PetBrain stores all its knowl-
edge inside the Atomspace. Part of this knowledge
is produced by the agent’s (pet’s) sensors (exterocep-
tive and proprioceptive) and handled by the Perception
Manager component. The agent’s knowledge about the
whole environment is used by the Language Compre-
hension component to link the elements, mentioned in
the sentences heard by the agent, to the objects ob-
served by the agent in the virtual world. An agent can
recognize and execute commands requested by another
agent/avatar, besides answering questions.

Most of our work with the PetBrain to date has in-
volved the Multiverse 3 virtual world, though we have
also worked with RealXTend. We’ve customized the
Multiverse Server and created a Multiverse Proxy to
mediate communication between the Virtual World and
the PetBrain. The Multiverse Proxy sends perceptual
data from Multiverse to the PetBrain, and in the cur-
rent system it also sends linguistic relationship. The
RelEx language comprehension system is used by the
Multiverse Proxy to parse the sentences given by the
user, via the Multiverse Client, and only the Relation
objects produced by RelEx are then sent to the Pet-
Brain. Conversely, the PetBrain sends Relation objects
based on conceptual Atoms to the Multiverse Proxy,
which invokes the NLGen system to transform these
into English to be conveyed to the user.

The current PetBrain architecture is not intended as
a human(or animal)-level AGI but rather as an inter-
esting proto-AGI software system incorporating mul-
tiple components designed with human-level AGI in
mind. Strategies for incrementally modifying the Pet-
Brain into a human-level AGI will be discussed below.

Natural Language Processing with RelEx
and NLGen
OpenCog’s current Natural Language Processing sub-
system (invoked by the PetBrain but also heavily used
outside it) contains two main components: RelEx
(GGP+06), which is the natural language comprehen-
sion engine, takes sentences and maps them into ab-
stract logical relations which can be represented in the
OpenCog Atomspace; and NLGen, a natural language
generation engine, that translates Atoms embodying
logical relations into English sentences.

RelEx itself contains multiple components, only the
largest or most pertinent of which will be reviewed
here. RelEx carries out syntactic parsing via the open-
source Link Parser created at Carnegie-Mellon Univer-
sity (ST91)4. It then contains semantic interpretation
code that converts the Link Parser output to a feature

3http://www.multiverse.net
4http://www.link.cs.cmu.edu/link/

structure representation (a directed graph), and uses
a series of hand-coded rules (“sentence algorithms”)
to modify the feature structure. The modified feature
structures are used to generate the RelEx semantic rela-
tionships corresponding to a sentence, which bear some
resemblance to the output of the Stanford dependency
parser 5, but often contain significant additional seman-
tic information. Finally, the RelEx2Frame component
uses additional hand-coded rules to map RelEx seman-
tic relationships into sets of more abstract logical rela-
tionships, constructed utilizing the FrameNet (BFL98)
ontology and other similar semantic resources (Goe08);
and the Frame2Atom component translates these rela-
tionships into OpenCogAtoms Thus, RelEx translates
English into Atoms. Among the many details we have
left out in this precis are the ranking of multiple out-
puts (parses and FrameNet interpretations are ranked
using a combination of inference and heuristics) and the
handling of ambiguity (e.g. anaphor resolution which
will be discussed below).

NLGen is a sentence generation system which is used
to generate sentences from RelEx semantic relation-
ships – which in turn may be produced by applying a
component called Frames2RelEx to appropriate Atoms
in the OpenCog Atomspace. One of the core ideas un-
derlying NLGen is that most language generation may
be done by reversing previously executed language com-
prehension processes (GPI+10),(LGL+10). Given a set
of interconnected Atoms to express, NLGen iterates
through the predicates P in this set, and for each one it
produces a graph GP of associated RelEx semantic rela-
tionships, and then matches this graph against its mem-
ory (which stores previously perceived sentences and
their semantic interpretations) via the SAGA match-
ing algorithm (TMS+07), looking for remembered sen-
tences that gave rise to semantic relationship-sets simi-
lar to GP . The results from doing this matching for dif-
ferent graphs GP are then merged, and some rules are
applied for handling phenomena like tense and deter-
miners, ultimately yielding one or more sentences based
on combining (instantiated abstractions of) pieces of
the remembered sentences corresponding to selected
predicates P . Finally, while this similarity matching
approach has quite broad applicability, for dealing with
complex sentences it must be augmented by additional
mechanisms, and a prototype exists that uses an imple-
mentation of Chomsky’s Merge operator for this pur-
pose (operating on the same RelEx relationships as the
primary NLGen system).

Embodiment-Based Anaphor Resolution
One of the two ways the PetBrain currently relates lan-
guage processing to embodied experience is via using
the latter to resolve anaphoric references in text pro-
duced by human-controlled avatars.

In our current work, the PetBrain controlled agent
lives in a world with many objects, each one with their

5http://nlp.stanford.edu/software/lex-parser.shtml

Published by Atlantis Press, © the authors
 2

own characteristics. For example, we can have multiple
balls, with varying colors and sizes. We represent this
in the OpenCog Atomspace via using multiple nodes:
a single ConceptNode to represent the concept ”ball”,
a WordNode associated with the word ”ball”, and nu-
merous SemeNodes representing particular balls. There
may of course also be ConceptNodes representing ball-
related ideas not summarized in any natural language
word, e.g. ”big fat squishy balls,” ”balls that can use-
fully be hit with a bat”, etc.

As the agent interacts with the world, it acquires in-
formation about the objects it finds, through percep-
tions. The perceptions associated with a given object
are stored as other nodes linked to the node represent-
ing the specific object instance. All this information
is represented in the Atomspace using FrameNet-style
relationships (exemplified in the next section).

When the user says, e.g., ”Grab the red ball”, the
agent needs to figure out which specific ball the user
is referring to – i.e. it needs to invoke the Reference
Resolution (RR) process. RR uses the information in
the sentence to select instances and also a few heuristic
rules. Broadly speaking, Reference Resolution maps
nouns in the user’s sentences to actual objects in the
virtual world, based on world-knowledge obtained by
the agent through perceptions.

In this example, first the brain selects the ConceptN-
odes related to the word ”ball”. Then it examines all
individual instances associated with these concepts, us-
ing the determiners in the sentence along with other ap-
propriate restrictions (in this example the determiner is
the adjective ”red”; and since the verb is ”grab” it also
looks for objects that can be fetched). If it finds more
than one ”fetchable red ball”, an heuristic is used to se-
lect one (in this case, it chooses the nearest instance).

The agent also needs to map pronouns in the sen-
tences to actual objects in the virtual world. For exam-
ple, if the user says ”I like the red ball. Grab it,” the
agent must map the pronoun ”it” to a specific red ball.
This process is done in two stages: first using anaphor
resolution to associate the pronoun ”it” with the previ-
ously heard noun ”ball”; then using reference resolution
to associate the noun ”ball” with the actual object.

The subtlety of anaphor resolution is that there may
be more than one plausible ”candidate” noun cor-
responding to a given pronouns. RelEx’s standard
anaphor resolution system is based on the classical
Hobbs algorithm(Hob78). Basically, when a pronoun
(it, he, she, they and so on) is identified in a sen-
tence, the Hobbs algorithm searches through recent sen-
tences to find the nouns that fit this pronoun accord-
ing to number, gender and other characteristics. The
Hobbs algorithm is used to create a ranking of candi-
date nouns, ordered by time.

We improve the Hobbs algorithm results by using the
agent’s world-knowledge to help choose the best candi-
date noun. Suppose the agent heard the sentences:

"The ball is red."

"The stick is brown."

and then it receives a third sentence

"Grab it.".

the anaphor resolver will build a list containing two
options for the pronoun ”it” of the third sentence: ball
and stick. Given that the stick corresponds to the most
recently mentioned noun, the agent will grab it instead
of (as Hobbs would suggest) the ball.

Similarly, if the agent’s history contains

"From here I can see a tree and a ball."
"Grab it."

Hobbs algorithm returns as candidate nouns ”tree”
and ”ball”, in this order. But using our integrative
Reference Resolution process, the agent will conclude
that a tree cannot be grabbed, so ”ball” is chosen.

Embodiment-Based Question Answering
Our agent is also capable of answering simple ques-
tions about its feelings/emotions (happiness, fear, etc.)
and about the environment in which it lives. After a
question is asked to the agent, it is parsed by RelEx
and classified as either a truth question or a discur-
sive one. After that, RelEx rewrites the given question
as a list of Frames (based on FrameNet 6 with some
customizations), which represent its semantic content.
The Frames version of the question is then processed
by the agent and the answer is also written in Frames.
The answer Frames are then sent to a module that con-
verts it back to the RelEx format. Finally the answer,
in RelEx format, is processed by the NLGen module,
that generates the text of the answer in English. We
will discuss this process here in the context of the sim-
ple question ”What is next to the tree?”, which in an
appropriate environment receives the answer ”The red
ball is next to the tree.”

Question answering (QA) of course has a long history
in AI (Zhe09), and our approach fits squarely into the
tradition of “deep semantic QA systems”; however it
is innovative in its combination of dependency parsing
with FrameNet and most importantly in the manner of
its integration of QA with an overall cognitive architec-
ture for agent control.

Preparing/Matching Frames
In order to answer an incoming question, the agent tries
to match the Frames list, created by RelEx, against
the Frames stored in its own memory. In general these
Frames could come from a variety of sources, including
inference, concept creation and perception; but in the
current PetBrain they primarily come from perception,
and simple transformations of perceptions.

However, the agent cannot use the incoming percep-
tual Frames in their original format because they lack
grounding information (information that connects the

6http://framenet.icsi.berkeley.edu

Published by Atlantis Press, © the authors
 3

mentioned elements to the real elements of the environ-
ment). So, two steps are then executed before trying
to match the Frames: Reference Resolution (described
above) and Frames Rewriting. Frames Rewriting is a
process that changes the values of the incoming Frames
elements into grounded values. Here is an example, us-
ing the standard Novamente/OpenCog indent notation
described in (GP06) (in which indentation denotes the
function-argument relation, as in Python, and RAB de-
notes the relation R with arguments A and B):

Incoming Frame (Generated by RelEx)

EvaluationLink
DefinedFrameElementNode Color:Color
WordInstanceNode "red@aaa"

EvaluationLink
DefinedFrameElementNode Color:Entity
WordInstanceNode "ball@bbb"

ReferenceLink
WordInstanceNode "red@aaa"
WordNode "red"

After Reference Resolution

ReferenceLink
WordInstanceNode "ball@bbb"
SemeNode "ball_99"

Grounded Frame (After Rewriting)

EvaluationLink
DefinedFrameElementNode Color:Color
ConceptNode "red"

EvaluationLink
DefinedFrameElementNode Color:Entity
SemeNode "ball_99"

Frame Rewriting serves to convert the incoming
Frames to the same structure used by the Frames stored
into the agent’s memory. After Rewriting, the new
Frames are then matched against the agent’s memory
and if all Frames were found in it, the answer is known
by the agent, otherwise it is unknown.

Currently if a truth question was posed and all
Frames were matched successfully, the answer will be
”yes”; otherwise ”no”. Mapping of ambiguous matches
into ambiguous responses is left for a later version.

If the question requires a discursive answer the pro-
cess is slightly different. For known answers the
matched Frames are converted into RelEx format by
Frames2RelEx and then sent to NLGen, which prepares
the final English text to be answered. There are two
types of unknown answers. The first one is when at
least one Frame cannot be matched against the agent’s
memory and the answer is ”I don’t know”. And the
second type of unknown answer occurs when all Frames
were matched successfully they cannot be correctly con-
verted into RelEx format or NLGen cannot identify the
incoming relations. In this case the answer is ”I know
the answer, but I don’t know how to say it”.

Figure 2: Overview of language comprehension process

Frames2RelEx
As mentioned above, this module is responsible for re-
ceiving a list of grounded Frames and returning another
list containing the relations, in RelEx format, which
represents the grammatical form of the sentence de-
scribed by the given Frames. That is, the Frames list
represents a sentence that the agent wants to say to an-
other agent. NLGen needs an input in RelEx Format
in order to generate an English version of the sentence;
Frames2RelEx does this conversion.

Currently, Frames2RelEx is implemented as a rule-
based system in which the preconditions are the re-
quired frames and the output is one or more RelEx
relations e.g.

#Color(Entity,Color) =>
present($2) .a($2) adj($2) _predadj($1, $2)
definite($1) .n($1) noun($1) singular($1)
.v(be) verb(be) punctuation(.) det(the)

where the precondition comes before the symbol =>
and Color is a frame which has two elements: Entity
and Color. Each element is interpreted as a variable
Entity = $1 and Color = $2. The effect, or output of
the rule, is a list of RelEx relations. As in the case of
RelEx2Frame, the use of hand-coded rules is considered
a stopgap, and for a powerful AGI system based on
this framework such rules will need to be learned via
experience (a topic beyond the scope of this paper).

Example of the Question Answering
Pipeline
Turning to the example ”What is next to the tree?”,
Figure illustrates the processes involved:

The question is parsed by RelEx, which creates the
frames indicating that the sentence is a question re-
garding a location reference (next) relative to an object
(tree). The frame that represents questions is called

Published by Atlantis Press, © the authors
 4

Questioning and it contains the elements Manner that
indicates the kind of question (truth-question, what,
where, and so on), Message that indicates the main
term of the question and Addressee that indicates the
target of the question. To indicate that the question is
related to a location, the Locative relation frame is also
created with a variable inserted in its element Figure,
which represents the expected answer (in this specific
case, the object that is next to the tree).

The question-answer module tries to match the ques-
tion frames in the Atomspace to fit the variable element.
Suppose that the object that is next to the tree is the
red ball. In this way, the module will match all the
frames requested and realize that the answer is the value
of the element Figure of the frame Locative relation
stored in the Atom Table. Then, it creates location
frames indicating the red ball as the answer. These
frames will be converted into RelEx format by the
RelEx2Frames rule based system as described above,
and NLGen will generate the expected sentence ”the
red ball is next to the tree”.

Example of the Language Generation
Pipeline
To illustrate the process of language generation using
NLGen, as utilized in the context of query response,
consider the sentence ”The red ball is near the tree”.
When parsed by RelEx, this sentence is converted to:

_obj(near, tree)
_subj(near, ball)
imperative(near)
hyp(near)
definite(tree)
singular(tree)
_to-do(be, near)
_subj(be, ball)
present(be)
definite(ball)
singular(ball)

So, if sentences with this format are in the system’s
experience, these relations are stored by NLGen and
will used to match future relations that must be con-
verted into natural language. NLGen matches at an
abstract level, so sentences like ”The stick is next to
the fountain” will also be matched even if the corpus
contain only the sentence ”The ball is near the tree”.

If the agent wants to say that ”The red ball is near
the tree”, it must invoke NLGen with the above RelEx
contents as input. However, the knowledge that the
red ball is near the tree is stored as frames, and not as
RelEx format. More specifically, in this case the related
frame stored is the Locative relation one, containing
the following elements and respective values: Figure →
red ball, Ground → tree, Relation type→ near.

So we must convert these frames and their elements’
values into the RelEx format accept by NLGen. For
AGI purposes, a system must learn how to perform this
conversion appropriately; currently, however, we have

implemented a temporary short-cut: a system of hand-
coded rules, in which the preconditions are the required
frames and the output is the RelEx format that will
generate the sentence that represents the frames. The
output of a rule may contains variables that must be
replaced by the frame elements’ values. For the example
above, the output subj(be, ball) is generated from the
rule output subj(be, $var1) with the $var1 replaced by
the Figure element value.

Considering specifically question-answering (QA),
the PetBrain’s Language Comprehension module rep-
resents the answer to a question as a list of frames. In
this case, we may have the following situations:

• The frames match a precondition and the RelEx out-
put is correctly recognized by NLGen, which gener-
ates the expected sentence as the answer;

• The frames match a precondition, but NLGen did not
recognize the RelEx output generated. In this case,
the answer will be ”I know the answer, but I don’t
know how to say it”, which means that the question
was answered correctly by the Language Comphre-
hension, but the NLGen could not generate the cor-
rect sentence;

• The frames didn’t match any precondition; also ”I
know the answer, but I don’t know how to say it” ;

• Finally, if no frames are generated as answer by the
Language Comprehension module, the agent’s answer
will be ”I don’t know”.

If the question is a truth-question, then NLGen is
not required: the answer is ”Yes” if and only if it was
possible to create frames constituting an answer.

From Today’s PetBrain to Tomorrow’s
Embodied AGI

The current PetBrain system displays a variety of in-
teresting behaviors, but is not yet a powerful AGI sys-
tem. It combines a simple framework for emotions and
motivations with the ability to learn via imitation, re-
inforcement and exploration, and the ability to under-
stand and produce simple English pertaining to its ob-
servations and experiences; and shortly it will be able
to carry out simple inferences based on its observations
and experiences. Assuming the underlying theory is
correct, what needs to be done to transform the cur-
rent PetBrain into an AGI system with, say, the rough
general intelligence level of a young child?

Firstly, the current PetBrain QA system has one ma-
jor and obvious shortcoming: it can only answer ques-
tions whose answer is directly given by its experience.
To answer questions whose answers are indirectly given
by experience, some sort of inference process must be in-
tegrated into the system. OpenCog already has a prob-
abilistic engine, PLN (Probabilistic Logic Networks),
and one of our next steps will be to integrate it with
the PetBrain. For instance, suppose the agent is in a
scenario that has many balls in it, of different colors.

Published by Atlantis Press, © the authors
 5

Suppose it has previously been shown many objects,
and has been told things like ”The ball near the tree is
Bob’s”, ”the stick next to Jane is Jane’s”, etc. Suppose
that from its previous experience, the agent has enough
data to infer that Jane tends to own a lot of red things.
Suppose finally that the agent is asked ”Which ball is
Bob’s.” The current agent will say ”I don’t know,” un-
less someone has told it which ball is Bob’s before, or
it has overheard someone referring to a particular ball
as Bob’s. But with PLN integrated, then the agent will
be able look around, find a red ball and say (for in-
stance) ”The ball near the fountain” (if the ball near
the fountain is in fact red).

Next, there are known shortcomings in the NLP in-
frastructure we have used in the PetBrain, some of
which have been mentioned above, e.g. the use of hard-
coded rules in places where there should be experien-
tially adaptable rules. Remedying these shortcomings
is relatively straightforward within the OpenCog archi-
tecture, the main step being to move all of these hard-
coded rules into the Atomspace, replacing their inter-
preters with the PLN chainer, and then allowing PLN
inference to modify the rules based on experience.

Apart from NLP improvements and PLN integration,
what else is missing in the PetBrain, restricting its level
of general intelligence? It is missing a number of impor-
tant cognition components identified in the OpenCog-
Prime AGI design. Adaptive attention allocation is
prime among these: the ECAN framework (GPI+10)
provides a flexible capability for assignment of credit
and resource allocation, but needs to be integrated with
and adapted to the virtual agent control context. Con-
cept creation is another: inference about objects and
linguistic terms is important, but inference becomes
more powerful when used in synchrony with methods
for creating new concepts to be inferred about. Finally
the PetBrain’s motivational architecture is overly spe-
cialized for the ”virtual dog” context and we intend
to replace it with a new architecture based on Joscha
Bach’s MicroPsi (Bac09).

There is also the question of whether virtual worlds
like Multiverse are sufficiently rich to enable a young
artificial mind to learn to be a powerful AGI. We
consider this non-obvious at present, and in parallel
with our virtual-worlds work we have been involved
with using the PetBrain to control a Nao humanoid
robot (GdG98). The OpenCog framework is flexible
enough that intricate feedback between robotic sensori-
motor modules and cognitive/linguistic modules (such
as those described here) can be introduced without
changing the operation of the latter.

References

Joscha Bach. Principles of Synthetic Intelligence. Ox-
ford University Press, 2009.
Collin F. Baker, Charles J. Fillmore, and John B.
Lowe. The berkeley framenet project. In In Proc.
of COLING-ACL, pages 86–90, 1998.

Stan Franklin and David Friedlander. Lida and a the-
ory of mind. In Proc. of AGI-08, 2008.
Ben Goertzel and Hugo de Garis. Xia-man: An exten-
sible, integrative architecture for intelligent humanoid
robotics. In IIn Proc. of BICA-08, pages 86–90, 1998.
Ben Goertzel, Izabela Freire Goertzel, Hugo Pinto,
Mike Ross, Ari Heljakka, and Cassio Pennachin. Using
dependency parsing and probabilistic inference to ex-
tract relationships between genes, proteins and malig-
nancies implicit among multiple biomedical research
abstracts. In BioNLP ’06: Proc. of the Workshop
on Linking Natural Language Processing and Biology,
pages 104–111, 2006.
Ben Goertzel and David Hart. Opencog: An open-
source platform for agi. In Proc. of AGI-08, 2008.
Ben Goertzel. A pragmatic path toward endowing
virtually-embodied ais with human-level linguistic ca-
pability. In Proc. of IJCNN 2008, 2008.
Ben Goertzel. Opencogprime: A cognitive synergy
based architecture for embodied general intelligence.
In Yingxu Wang and George Baciu (eds), Proc. of
ICCI-09, Hong Kong, 2009.
Ben Goertzel and Cassio Pennachin. The novamente
cognition engine. In Artificial General Intelligence.
Springer, 2006.
Ben Goertzel, Cassio Pennachin, and Nil Geisweiller.
An integrative methodology for teaching embodied
non-linguistic agents, applied to virtual animals in sec-
ond life. In Proc. of AGI-08, 2008.
Ben Goertzel, Cassio Pennachin, Nil Geisweiller, and
Samir Araujo. An inferential dynamics approach to
personality and. emotion driven behavior determina-
tion for virtual animals. In Proc. of Catz and Dogz
2008 (AISB) Symposium, 2008.
Ben Goertzel, Joel Pitt, Matthew Ikle, Cassio Pen-
nachin, and Rui Liu. Glocal memory: a design prin-
ciple for artificial brains and minds. Neurocomputing,
Special Issue of Artificial Brain, 2010.
Jerry R. Hobbs. Resolving pronominal references. Lin-
gua, 44:311–338, 1978.
Ruiting Lian, Ben Goertzel, Rui Liu, Michael Ross,
Murilo Queiroz, and Linas Vepstas. Sentence gera-
tion for artificial brains: a glocal similarity matching
approach. Neurocomputing, Special Issue of Artificial
Brain, 2010.
Daniel D. K. Sleator and Davy Temperley. Parsing
english with a link grammar. In In Third International
Workshop on Parsing Technologies, 1991.
Yuanyuan Tian, Richard C. McEachin, Carlos Santos,
David J. States, and Jignesh M. Patel. Saga: a sub-
graph matching tool for biological graphs. Bioinfor-
matics (Oxford, England), 23(2):232–239, Jan. 2007.
Zhiping Zheng. Bibliography on auto-
mated question answering, May 2009.
http://www.answerbus.com/bibliography/index.shtml.

Published by Atlantis Press, © the authors
 6

