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The level of generality and abstration in the Yoneda Lemma means that

many people �nd it quite bewildering. This doument is meant to guide you

slowly through what the Yoneda Lemma and its orollaries say, and give you

some wider oneptual perspetive. It ontains no results other than those in

the letures, and as suh is not `required reading' for the ourse, but it might

make your life easier.

Breathe deeply, take it slowly, and remain alm.

1 The Yoneda Lemma

Here's the statement of the Lemma. The proof was in letures so I won't repro-

due it here; in any ase, one you have thoroughly understood the statement,

you should �nd the proof straightforward.

The Yoneda Lemma Let C be a loally small ategory. Then

[C

op

;Set℄(H

A

; X)

�

=

X(A) (�)

naturally in A 2 C and X 2 [C

op

;Set℄.

First I will go through what this says at the formal level. Then I will try to

explain what it means in a more intuitive sense.
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What it says Experiene shows that many students are onfused by the left-

hand side of equation (�). Let's disset it.

� C is a ategory.

� C

op

is also a ategory, the opposite or dual of C, obtained by keeping the

same objets and reversing all the arrows.Reminder: (�) says

[C

op

;Set℄(H

A

; X)

�

=

X(A)

� Set is a ategory too, whose objets are sets and whose morphisms are

funtions.

� For any two ategoriesA and B there is a ategory [A;B℄, whose objets are

funtors from A to B and whose morphisms are natural transformations.

� In partiular we have the ategory [C

op

;Set℄, whose objets are funtors

C

op

-

Set and whose morphisms are natural transformations.

� For any objet A of C, there is a funtor H

A

: C

op

-

Set (also written

C(�; A)). This funtor is de�ned on objets by H

A

(B) = C(B;A), and

on morphisms by H

A

(f) = f

�

(ompose with f). (Think of dual vetor

spaes if it helps.)

� X is a funtor C

op

-

Set.

� For any ategory D and objets D;D

0

of D, the set of morphisms from D

to D

0

is written D(D;D

0

).

� In partiular, the left-hand side of (�) is the set of morphisms in [C

op

;Set℄

from H

A

to X . That is, it is the set of natural transformations of the form

C

op

H

A

X

R

�

+

Set:

So the left-hand side of (�) is a set. The right-hand side is also a set. Hene

the isomorphism (�) is a bijetion between sets.

In summary, Yoneda says that a transformation from H

A

to X is the same

thing as an element of X(A).

Digression: size worries If you are happy with this explanation then so

muh the better. But it does ontain a slight eonomy with the truth: namely,

that for a loally small ategory C, the funtor ategory [C

op

;Set℄ is not in

general loally small, and so the left-hand side of (�) is a priori a lass and

not neessarily a set. However, when we prove the Yoneda Lemma we set up a

bijetion between this lass and the right-hand side of (�), whih ertainly is a

set: hene the left-hand side is a set too.

It's really best not to worry about this kind of point if you an help it. For

those who remain onerned, take C to be small rather than just loally small:

this guarantees that [C

op

;Set℄ is loally small, and your worries are over.
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What it says, ontinued Putting these worries aside, we have seen that for

�xed A and X , the Yoneda Lemma laims there is a bijetion between a ertain

pair of sets. What about `naturally in A and X '? Reall that if F;G : D

-

E

are a pair of funtors, we use the phrase `F (D)

�

=

G(D) naturally in D 2 D' to

mean that there is a natural isomorphism F

�

=

G. The use of this phrase in the

Yoneda Lemma arries the impliation that eah side of (�) is funtorial in both

A and X ; this means, for instane, that a map X

-

X

0

indues a map

[C

op

;Set℄(H

A

; X)

-

[C

op

;Set℄(H

A

; X

0

)

(as an be seen), and that there's a way of hoosing the isomorphisms (�) for all

A and X whih is ompatible with suh indued maps. So more exatly, what

the Yoneda Lemma says is that the `evaluation' funtor

C

op

� [C

op

;Set℄

ev

-

Set

(A;X) 7�! X(A)

is naturally isomorphi to the omposite funtor

C

op

� [C

op

;Set℄

H

�

�1

-

[C

op

;Set℄

op

� [C

op

;Set℄

Hom

-

Set:

Here

H

�

: C

-

[C

op

;Set℄

is the `Yoneda embedding', as detailed in letures, whih sends an objet A 2 C

to the funtor H

A

and a morphism f : A

-

A

0

to the natural transformation

H

f

: H

A

-

H

A

0

.

I will now suggest some ways of understanding the Yoneda Lemma.

Smaller formulae At a very pratial level, you an think of the Yoneda

Lemma as a useful tool: later in the ourse we'll ome aross various large and

perhaps mystifying expressions, and by applying the isomorphism (�) from left

to right we will be able to redue them to something more friendly.

Topologial presheaves You an try to get a handle on the Yoneda Lemma

by onsidering the following speial ase.

Fix a topologial spae S, and denote by O(S) the poset of open subsets of

S, ordered by inlusion. Posets an be regarded as ategories; thus an objet of

the orresponding ategory (also denoted O(S)) is an open subset of S, and

Hom(V; U) =

�

1 if V �U

; otherwise.

(y)

The funtor ategory [O(S)

op

;Set℄ is alled the ategory of presheaves on

S. (This year's algebrai geometry ourse uses a di�erent way of de�ning

(pre)sheaves; the two approahes are equivalent, but don't worry about this

here.) Expliitly, a presheaf X on S onsists of
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� for eah open U �S, a set X(U)

� for eah open V and U with V �U , a funtion X(U)

-

X(V ), usually

written p 7�! pj

V

and alled `restrition'.

Restrition is required to satisfy funtoriality axioms: (pj

V

)j

W

= pj

W

and pj

U

=

p, for p 2 X(U) and W �V �U . The lassi example of a presheaf on a spae

is where X(U) is the set of ontinuous funtions from U to the real numbers,

and restrition is restrition in the usual sense. A morphism � : X

-

Y

of presheaves is a natural transformation, and expliitly onsists of a family

(�

U

: X(U)

-

Y (U))

U2O(S)

of funtions satisfying (�

U

(p))j

V

= �

V

(pj

V

) for

eah p 2 X(U) and open V �U .

The representable presheaves are those of the form H

U

: O(S)

op

-

Set,

where U �S is open. Then H

U

(V ) is given by the formula (y), and the restri-

tion maps for H

U

are uniquely determined.

Now ask yourself: given an open U �S and a presheaf X on S, what's a

morphismH

U

-

X? Well, it's a family �

V

: H

U

(V )

-

X(V ) of funtions,

one for eah open V , whih is ompatible with the restrition maps. After some

ontemplation you should see that suh an � is entirely determined by the value

of �

U

at the single element of H

U

(U). So a map H

U

-

X is just the same

thing as an element of X(U): that is, there is a bijetion

[O(S)

op

;Set℄(H

U

; X)

�

=

X(U):

And of ourse, this is the Yoneda Lemma (minus naturality) in the ase C =

O(S).

Monoid ations Here is another potentially enlightening speial ase.

Fix a monoidM . As we have seen, monoids are the same thing as one-objet

small ategories, and viewing M in this way, [M

op

;Set℄ is the ategory of right

M -sets (= sets equipped with a right ation byM). If we write A for the single

objet of the ategory M , then the representable funtor H

A

: M

op

-

Set

orresponds to what is sometimes alled the `right regular representation ofM ':

that is, the set M ating on itself by omposition. I will (perhaps onfusingly)

write M for this partiular right M -set. Then, for an arbitrary right M -set X ,

a morphism � :M

-

X of M -sets is entirely determined by �(1). Hene

[M

op

;Set℄(M;X)

�

=

X;

in aordane with Yoneda again.

Coherene General ategory theory springs no nasty surprises: any sensible

equation you an write down is true. People sometimes say `all diagrams om-

mute'. Of ourse, you need to take this with a pinh of salt (and it's no exuse

for omitting the proper heks in an exam. . . ). But ontrast, for instane, group

theory, where there are plenty of equations, suh as a � b = b � a, whih are per-

fetly sensible but in general false. In ategory theory this equation wouldn't
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in general make sense: if a omposite a

Æ

b exists then the omposite b

Æ

a usually

doesn't.

To put it another way, in general ategory theory, there's at most one way

of taking inputs of given types and obtaining an output of a given type. More

snappily, there's only one way of getting from A to B. For example:

� Given a natural transformation

C

F

G

�

R

�

+

D

and a map C

f

-

C

0

in C, there's preisely one way of obtaining a map

FC

-

GC

0

in D: naturality of � says that the two routes from top-left

to bottom-right in the square

FC

Ff

-

FC

0

GC

�

C

?

Gf

-

GC

0

�

C

0

?

are equal.

� Given a funtor F : C

-

D and maps A

f

-

B

g

-

C in C, there's

only one way of building a map FA

-

FC: funtoriality implies that

the two maps F (g

Æ

f) and F (g)

Æ

F (f) are atually the same.

� For `general' sets A;B;C, there's only one sensible isomorphism

(A�B)� C

�

-

A� (B � C):

The Yoneda Lemma is another example. We have two ways of taking as

input a pair (A 2 C; X : C

op

-

Set), and produing as output a set: one

appears as the left-hand side of (�), and the other as the right. Yoneda says

that these two ways are, in fat, the same.

If Yoneda weren't true then the world would look very di�erent, and muh

more omplex. Starting simply from a funtor X : C

op

-

Set, we would

obtain a new funtor

X

0

= [C

op

;Set℄(H

�

; X) : C

op

-

Set;

and hene a whole sequene of funtors X;X

0

; X

00

; X

000

; : : :, potentially all dif-

ferent. In reality they are all the same.
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2 Corollaries

The Yoneda Lemma has (at least) three orollaries. Eah an be proved diretly

as well, and in fat that's not a bad exerise.

2.1 A representation is a universal element

Corollary Let C be a loally small ategory and X : C

op

-

Set. Then

a representation of X onsists of an objet A of C together with an element

u 2 X(A) suh that

for any B 2 C and x 2 X(B), there is a unique map

f : B

-

A satisfying (Xf)(u) = x.

(z)

To larify the statement, �rst reall that a representation ofX is, by de�nition,

an objet A of C together with a natural isomorphism � : H

A

-

X . The

Corollary says that suh pairs (A;�) are in one-to-one orrespondene with

pairs (A; u) satisfying (z). This follows easily from the Yoneda Lemma.

We an think of u as a `universal' or `generi' element. I will try to explain

what's going on by two examples.

Example 1 Fix vetor spaes U and V , and onsider the funtor

Bilin(U; V ;�) : Vet

-

Set;

W 7�! Bilin(U; V ;W )

= fbilinear maps U � V

-

Wg:

Then a representation of Bilin(U; V ;�) an be desribed in either of two equiv-

alent ways:

a. as a vetor spae T together with an isomorphism

Vet(T;W )

�

=

Bilin(U; V ;W )

natural in W 2 Vet

b. as a vetor spae T together with a bilinear map h : U � V

-

T , suh

that

for any vetor spae W and bilinear g : U �V

-

W , there is

a unique linear f : T

-

W making

U � V

h

-

T

W

f

?

g

-

ommute.
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Part (a) is just the de�nition of representation. Part (b) is the desription

given in the Corollary, or rather the dual of the Corollary (onerning ovariant

funtors X : C

-

Set: try writing out this statement). The map alled h

should for onsisteny be alled u (but would then look like an element of U).

Those who know about suh things will reognise T as the tensor produt U
V ,

and h as the map (u; v) 7�!u
 v.

You will observe that the �rst desription is substantially shorter than the

seond. Indeed, it's lear enough that if the situation of (b) holds then there is

ertainly an isomorphism

Vet(T;W )

-

Bilin(U; V ;W )

natural in W , got by omposition with h. But it looks at �rst as if (b) says

rather more than (a): that not only are the two things naturally isomorphi,

they are naturally isomorphi in a rather spei� manner. The Corollary tells

us that this is an illusion: all suh natural isomorphisms arise in this manner.

It's the word `natural' in (a) that hides all the expliit detail.

Example 2 Let C

F

-

?

�

G

D be an adjuntion, and �x an objet A of C. Then

the funtor

C(A;G�) : D

-

Set

is representable, as an be expressed in either of the following two ways:

a. C(A;GB)

�

=

D(FA;B) naturally in B 2 D

b. the unit map �

A

: A

-

G(FA) is an initial objet of the omma ate-

gory (A)G).

Again, the �rst desription omes from the de�nition of representability, and the

seond from (the dual of) the Corollary. (It takes a moment to see this; I leave

that to you.) We looked at the seond desription from another perspetive in

setion B of letures.

7



2.2 The Yoneda embedding

The next result is a orollary of the Yoneda Lemma (and not of the previous

orollary).

Corollary For any loally small ategory C, the funtor

H

�

: C

-

[C

op

;Set℄

is full and faithful.

The funtor H

�

is known as the Yoneda embedding. The fat that it's faithful

is what justi�es the name `embedding'; the fat that it's also full means it's an

espeially nie kind of embedding|a map H

A

-

H

B

in [C

op

;Set℄ is exatly

the same as a map A

-

B in C.

It's also true that H

�

is injetive on objets (if A 6= B then H

A

6= H

B

),

whih follows from our onvention that the hom-sets of a ategory are disjoint

(Remark A1.3(a) of the notes). But this should be regarded as unimportant: we

really aren't interested in equality of objets in a ategory, only isomorphism.

Anyway, the fat that H

�

is full and faithful (and injetive on objets) means

that we an regard C as sitting inside [C

op

;Set℄ as a full subategory:
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C

Later in the ourse we'll see how any funtor C

op

-

Set an be built out of

representables H

A

, in very roughly the same way that any number is built as a

produt of primes.
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2.3 Isomorphi representables

The previous orollary has in turn the following orollary:

Corollary For objets A and B of a loally small ategory C,

H

A

�

=

H

B

() A

�

=

B () H

A

�

=

H

B

:

The fore of this is that H

A

�

=

H

B

) A

�

=

B; the other diretion of impliation

follows immediately from funtoriality of H

�

. The seond () is just the dual

result, and therefore also follows immediately.

The Corollary an be explained as follows. Regard H

A

(U) = C(U;A) as `A

viewed from U ': then our result says that two objets are the same if and only

if they look the same from all viewpoints.

The ategory of sets is very unusual in this ontext: for sets A and B,

A

�

=

B () H

A

(1)

�

=

H

B

(1);

and so the Corollary has a trivial proof for C = Set. In other words, in Set it's

enough to look at everything from the one-element set 1|the only thing that

matters about a set is its elements!

In ontrast, take C = Gp. Imagine that we have two groups A and B, and

someone is telling us that A and B `look the same from U ' for various groups

U . Then, for instane,

� H

A

(1)

�

=

H

B

(1) would tell us nothing at all

� H

A

(Z)

�

=

H

B

(Z) would tell us that A and B have isomorphi underly-

ing sets|that is, the same ardinality, but perhaps quite di�erent group

strutures

� H

A

(Z=pZ)

�

=

H

B

(Z=pZ) would tell us that A and B have the same number

of elements of order p, for a prime p,

and so on. Eah of these only gives partial information about the similarity of

A and B, but the whole natural isomorphism H

A

�

=

H

B

tells us that A

�

=

B.
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