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Abstract

The beta transformation is the iterated map Sx mod 1. The special case of
B =2 is known as the Bernoulli map, and is exactly solvable. The Bernoulli map
is interesting, as it provides a model for a certain form of pure, unrestrained chaotic
(ergodic) behavior: it is the full invariant shift on the Cantor space {0,1}“. The
Cantor space consists of infinite strings of binary digits; it is particularly notable
for a variety of features, one of which is that it can be used to represent the real
number line.

The beta transformation is a subshift: iterated on the unit interval, it singles out
a subspace of the Cantor space, in such a way that it is invariant under the action
of the left-shift operator. That is, lopping off one bit at a time gives back the same
subspace.

The beta transform is interesting, as it seems to capture something basic about
the multiplication of two real numbers: f and x. It offers a window into under-
standing the nature of multiplication. Iterating on multiplication, one would get
B"x — that is, exponentiation; although the mod 1 of the beta transform contorts
this in interesting ways.

Analyzing the beta transform is difficult. The work presented here is a pastiche
of observations, rather than that of deep insight or abstract analysis. The results are
modest. Several interesting insights emerge. One is that the complicated structure
of the chaotic regions of iterated maps seems to be due to the chaotic dynamics of
the carry bit in multiplication. That is, the multiplication of real numbers, when
expressed on Cantor space, requires the use of a carry bit (from long multiplication,
as taught in elementary school). The carry bit behaves in a complicated fashion,
and seems to be the root cause of chaotic structure. That is, if the carry bit is
suppressed, then one obtains only reshufflings on the Cantor space, which have
a completely uniform distribution lacking in structure: they are full shifts, not
subshifts.

Another interesting, surprising result is that the eigenvalues of the transfer op-
erator of beta transform seem to lie on a circle of radius 1/ in the complex plane.
This is found numerically, using a natural Haar-wavelet-like basis that presents it-
self naturally for the problem. Given that the transfer operator is purely real, the
appearance of such a quasi-unitary spectrum seems surprising. The relationships
to orthogonal polynomials, Hessenberg matrixes and Jacobi matrixes is explored.



1 Introduction

The last three or four decades of mathematical research has seen dramatic advances
in the theory of subshifts. This text is mostly not about that, except to point out that
this theory has very broad and important impact on many branches of physics and
mathematics. From the perpective of the amateur enthusiast, the theory of subshifts
finally exposes and makes clear some of the mysterious and intriguing behavior of
fractals and of chaotic dynamical systems.

This text focuses almost entirely on just one particular map of the unit interval, the
B-transform, defined as the iterated map Bx mod 1. As such, it is an example of an
iterated map on the unit interval of the real number line. Such maps have the form

f:00,1] = [0, 1]
and the topic is the exploration of the consequence of iterating the map by composing:

') =(fofo-of)(x)=ff(--f(x)--))

Such one-dimensional iterated maps have been heavily studied, and there is a large
body of results, interconnecting many different concepts and results from mathematics,
and so having a particularly broad range.

This text attempts to report some brand-new results on the B-transform. This is
perhaps surprising, as the f3-transform can be considered to be fairly well-studied, and
fairly well-understood, it being among the very simplest of iterated one-dimensional
maps. This text also attempts to report these results in a naive and unsophisticated
fashion, in the hope that this makes the text readable for the interested student and
casual enthusiast.

Thus, although the author is personally excited by the advances in the field, this
text is neither a survey of known results on the f-transform, nor does it much glance
at most of the typical avenues that are available for studying one-dimensional maps.
It does focus on one particular technique: that of the transfer operator, and thus it
contributes to the general “Koopmania”. Little prior knowledge is assumed, and the
needed concepts are introduced in a very casual and informal way. This will, no doubt,
completely discourage and dismay the formally trained mathematician. The best I can
offer is to reiterate: “new results”, and not along the usual well-worn paths.

This text begins with some pretty pictures, showing the iterated tent and logistic
maps, so as to whet the readers appetite for the considerably more dry material that
follows. The goal, as always to to simplify and abstract. This is a difficult task.

1.1 Bernoulli shift

The Bernoulli shift (aka the bit-shift map) is an iterated map on the unit interval, given
by iteration of the function

2x for0<x< 1
b(x) = L 2 (D
2x—1 for; <x<1



The symbolic dynamics of this map gives the binary digit expansion of x. That is, write
b"(x) = (bobo---ob)(x) =b(b(---b(x)--+))

to denote the n-fold iteration of b and let b°(x) = x. The symbolic dynamics is given

by the bit-sequence
1

by (x) = {O o< b(x) i )

<
1 if 5 <b"(x) <

Of course, the symbolic dynamics recreates the initial real number:
x= Z b, (x)27"!
n=0

All of this is just a fancy way of saying that a real number can be written in terms of
it’s base-2 binary expansion. That is, the binary digits for x are the b, = b, (x), so that

X = 0.b0b1b2 s

The Bernoulli shift has many interesting properties, connecting it to the Cantor
set and to many self-similar fractals. I have explored these in many other texts, as
have other authors, and will not repeat these here. The author is too lazy to provide a
bibliography; the reader is directed at search engines.

The current task is to attempt to see how many of these properties still hold in
slightly more complex systems, and whether any of the tools used to analyze and solve
the Bernoulli shift can be applied to these systems.

1.2 Shift space

The use of the word “shift” here deserves a small bit of formality. A “shift space” can
be formally defined to be a set of infinite sequences of a set of N letters (or symbols),
together with a shift operator T that takes each sequence, and lops off the left-most
symbol. For the Bernoulli shift, there are N = 2 letters, taken from the set {0, 1}.
For the Bernoulli shift, one is typically interested in the set of all possible infinite
sequences: this is the “full shift”. One writes {0,1}® for this shift space, ® denoting
countable infinity. For the Bernoulli shift, the map b (x) is the shift operator: it just lops
of the left-most symbol.

In general, a shift space does not have to include every possible sequence of sym-
bols; it does, however, by definition, have to be shift-invariant. That is, given some set
S of infinite sequences of N symbols, the set S is a shift space if and only if, by loping
off the leading symbol of each string, one regains S again. In formulas, a shift space S
must obey

TS=S

For example, S = {000---,111---} contains only two elements: the string of all
zeros, and the string of all ones; loping off the leading digit just returns S again. In
general, shift spaces may contain a finite, or a countable, or an uncountable number of



elements. In general, one defines the “full shift” as the space N® of all possible strings
of N symbols. Subsets that are shift spaces are called “subshifts”.

The words “symbolic dynamics” also deserve some mention: given one specific
sequence x out of the shift space, one can ponder “where it goes to”, as one lops off a
symbol at a time. This gives the “symbolic dynamics” or the “point dynamics” of the
sequence. The “orbit” is defined as the set {7"x|integer m > 0}~ that is, the set of all
places that x goes to. There are several possibilities: one is that x is a fixed point, so that
Tx = x. Another is that x is a repeating sequence of symbols, in which case iteration
repeats as well: 77'x = x holds whenever the repeat length is m; this is a periodic
orbit. Most importantly, there usually uncountably many non-periodic sequences or
orbits. That is, the number of periodic orbits is always countable: one merely arranges
them in lexicographic order, and one is done. As Cantor famously demonstrated (and
Hilbert so carefully expanded on) this cannot be done for the non-periodic orbits: they
are uncountable.

In what follows, the text will in general confine itself to uncountable case. Periodic
orbits exist, but will be ignored; in a certain strict sense, they constitute a set of measure
zero. A number of glosses like this will be made: for example, the real numbers, and
the Cantor space {0, 1}“’ are both uncountable; however, they are not in one-to-one
correspondence, as some real numbers can have two different representations as bit
sequences. Specifically, these are the fractions (2n+ 1) /2™ for positive integers m,n —
they can be validly represented by bit-sequences ending in all-zeroes, or all-ones. There
are countably many such fractions, termed the dyadic fractions. For the most part, this
difference between the real number line, and the Cantor space will be ignored.

1.3 Downshift

The downshift is similar to the Bernoulli shift, replacing the number 2 by a constant
real-number value 1 < 8 < 2. It can be defined as

| Bx f0r0§x<%
TB(X)_{ﬁ(xé) for%ﬁxﬁl )

This map, together with similar maps, is illustrated in figure 5 below.
Just as the Bernoulli shift generates a sequence of digits, so does the downshift:

write
. 0 if0<TH(x) <
T i < T <1

Given the symbolic dynamics, one can reconstruct the original value whenever 1 < f8

e )

That is, one clearly sees that T (x) acts as a shift on this sequence:

CRSICHCHCETS)

“



In this sense, this shift is “exactly solvable”: the above provides a closed-form solution
for iterating and un-iterating the sequence.
Multiplying out the above sequence, one obtains the series

1 & ky

That is, the bit-sequence that was extracted by iteration can be used to reconstruct the
original real number. Setting 8 = 2 in eqn 2 gives the Bernoulli shift.

Unlike the Bernoulli shift, not every possible bit-sequence occurs in this system. It
is a subshift of the full shift: it is a subset of {0,1} that is invariant under the action
of Tg. This is explored in greater detail in a later section.

1.4 Density Visualizations

Why is the beta transform interesting to explore? This can be partly illustrated with
some graphs. Shown in figure 2 is the “bifurcation diagram” for the beta transform.
It visualizes the long-term dynamics of the downshift. Comparing to the usual bifur-
cation diagram, e.g. for the Feigenbaum logistic map (shown in figure 4) one thing
becomes immediately apparent: there are no actual “bifurcations”, no “islands of sta-
bility”, no period-doubling regions. Although there are periodic orbits, these form a set
of measure zero: the iteration produces purely chaotic motion for all values of 3. Thus,
the beta transform provides a clean form of “pure chaos”, without the pesky “islands
of stability” popping up intermittently.

The visualization of the long-term dynamics is done by generating a histogram, and
then taking the limit, as follows. One divides the unit interval into a fixed sequence of
equal-sized bins; say a total of N bins, so that each is 1/N in width. Pick a starting x,
and then iterate: if, at the n’th iteration, one has that j/N < bj(x) < (j+1)/N, then
increment the count for the j’th bin. After a total of M iterations, let ¢(j; M) be the
count in the j’th bin. This count is the histogram. In the limit of a large number of
iterations, as well as small bin sizes, one obtains a distribution:

M) G
pOx) = lim Jim =57 for G <y <=y

This distribution depends on the initial value x chosen for the point to be iterated; a
“nice” distribution results when one averages over all starting points:

PMZA%W@W

Numerically, this integration can be achieved by randomly sampling a large number of
starting points. Observe that p(y) is a probability distribution:

1:/01p(x)dx



Figure 1: Downshift Density Distribution
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The above figure shows three different density distributions, for pj2(y), p1.6(y) and
p1.8(y), calculated numerically. This is obtained by histogramming a large number
of point trajectories, as described in the text. The small quantities of jitter are due
to a finite number of samples. To generate this figure, a total of M = 4000 iterations
were performed, using randomly generated arbitrary-precision floats (the Gnu GMP
package), partitioned into N = 800 bins, and sampled 24000 times (or 30 times per
bin) to perform the averaging integral.

This probability distribution is an eigenstate of the transfer operator for the beta trans-
form; the definition of the transfer operator of the beta transform is given later. Prob-
ability distributions are the same thing as measures; this particular distribution is in-
variant under iteration, and thus is often called the invariant measure, or sometimes the
Haar measure.

For each fixed f3, one obtains a distinct distribution pg(y). The figure 1 illustrates
some of these distributions. Note that, for < 1, the distribution is given by pg(y) =
6(), a Dirac delta function, located at y = 0.

The general trend of the distributions, as a function of , can be visualized with
a Feigenbaum-style “bifurcation diagram”, shown in figure 2. This color-codes each
distribution pg(y) and arranges them in a stack; a horizontal slice through the diagram
corresponds to pg(y) for a fixed value of 8. The term “bifurcation diagram” comes
from its use to visualize the logistic map iterator.

1.5 Tent Map

The tent map is a closely related iterated map, given by iteration of the function

o(x) = Bx f0r0§x<%
B B(1—x) for%gxgl



Figure 2: Downshift Bifurcation Diagram

This figure shows the density pg(y), rendered in color. The constant f3 is varied from 0
at the bottom to 2 at the top; whereas y runs from O on the left to 1 on the right. Thus, a
fixed value of B corresponds to a horizontal slice through the diagram. The color green
represents values of pg(y) ~ 0.5, while red represents pg(y) 2, 1 and blue-to-black
represents pg(y) < 0.25. The diagram is “interesting” only for 1 < f3; for smaller s,
one has that pg(y) = &(y), indicated by the column of red pixels on the left side of
the image. The lines forming the fan shape are not actually straight, they only seem to
be; in fact, they have a slight curve. This means that one cannot apply simple-minded
guess-work to discover the overall diagram shown here.




Figure 3: Tent Map Bifurcation Diagram

The bifurcation diagram for the tent map. The value of  runs from 1 at the bottom
of the image, to 2 at the top. The color scheme is adjusted so that green represents the
average value of the distribution, red represents areas of more than double the average
value, while blue shows those values that are about half the average value. Note that
this is a different color scheme than that used in figure 2; that scheme would obliterate
the lower half of this figure in red.

The black areas represent parts of the iterated range that are visited at most a finite
number of times. To the left, a straight line indicates that after one iteration, points in
the domain §/2 < x < 1 are never visited. To the right, points in the domain 0 < x <
B (1 —f/2) are never visited more than a finite number of times.

Its similar to the downshift, except that the second arm is reflected backwards, forming
a tent. The bifurcation diagram is shown in figure 3. Its is worth contemplating the
similarities between this, and the corresponding downshift diagram. Clearly, there are
a number of shared features.

1.6 Logistic Map

The logistic map is related to the tent map, and is given by iteration of the function

fi (x) = 2Bx(1 —x)

It essentially replaces the triangle forming the tent map with a parabola of the same
height. That is, the function is defined here so that the the same value of 3 corresponds
to the same height for all three maps. Although the heights of the iterators have been
aligned so that they match, each exhibits rather dramatically different dynamics. The
B-transform has a single fixed point for < 1, and then explodes into a fully chaotic
regime above that. By contrast, the logistic map maintains a single fixed point up to
B = 3/2, where it famously starts a series of period-doubling bifurcations. The onset



The logistic map bifurcation diagram. The value of  runs from 1.75 at the bottom of
the image, to 2 at the top. The color scheme is adjusted so that green represents the
average value of the distribution, red represents areas of more than double the average
value, while blue shows those values that are about half the average value. Clearly, the
orbits of the iterated points spend much of their time near the edges of the diagram.

of chaos is where the bifurcations come to a limit, at § = 3.56995/2 = 1.784975.
Within this chaotic region are “islands of stability”, which do not appear in either the
B-transform, or in the tent map. The tent map does show a period-doubling regime,
but in this region, there are no fixed points: rather, the motion is chaotic, but confined
to multiple arms. At any rate, the period doubling occurs at different values of  than
for the logistic map.

The bifurcation diagram is shown in figure 4. Again, it is worth closely examining
the similarities between this, and the corresponding tent-map diagram, as well as the
B-transform diagram. Naively, it would seem that the general structure of the chaotic
regions are shared by all three maps. Thus, in order to understand chaos in the logistic
map, it is perhaps easier to study it in the-transform.

The general visual similarity between the figures 2, 3 and 4 should be apparent,
and one can pick out and find visually similar regions among these three illustrations.
Formalizing this similarity is a bit harder, but it can be done: there is a way to make all
three of these maps be “topologically conjugate” to one-another. This is perhaps sur-
prising to some readers, but is based on the observation that the “islands of stability”
in the logistic map are contuable, and are in one-to-one correspondance with certain
“trouble points” in the iterated beta transformation. These are in turn in one-to-one
correspondance with rational numbers. With a slight distortion of the beta transforma-
tion, the “trouble points” can be mapped to the islands of stability, in essentially the
same way that “phase locking regions” or “Arnold tongues” appear in the circle map.
But this is all for a later section, again, mentioned here only to whet the appetite.



1.7 Beta Transformation

After exactly one iteration of the downshift , all initial points /2 < x < 1 are swept
up into the domain 0 < x < f3/2, and never leave. Likewise, the range of the iterated
downshift is 0 < x < §/2. Thus, an alternative representation of the downshift, filling
the entire unit square, can be obtained by dividing both x and y by /2 to obtain the
function

Bu for0<u< %

tﬁ(u)_{ﬁu—l forégugl ©

which can be written more compactly as 7g (x) = Bx mod 1. In this form, the function
is known as the beta transform, and is often called the B-transformation, as if to present
a typesetting challenge to publishers. The orbit of a point x in the downshift is identical
to the orbit of a point u = 2x/f3 in the beta transformation.

Although the downshift and the S-transformation are essentially “the same func-
tion”, this text works almost exclusively with the downshift. There is no particular
technical reason for this; it is rather due to happenstance.

After a single iteration of the tent map, a similar situation applies. After one iter-
ation, all initial points /2 <x < 1 are swept up into the domain 0 < x < f3/2. After
a finite number of iterations, all points 0 < x < (1 —f3/2) are swept up, so that the
remaining iteration takes place on the domain 8 (1 — /2) < x < f8/2. It is worth defin-
ing a “sidetent” function, which corresponds to the that part of the tent map in which
iteration is confined. It is nothing more than a rescaling of the tent map, ignoring those
parts outside of the above domain that “wander away”. The sidetent is given by

Bu—1)+2 for0<u<EBrl
splu) = B(1—u) forﬁﬁ;lgugl

Performing a left-right flip on the side-tent brings it closer in form to the beta-transformation.
The flipped version, replacing u — 1 —u is

Bu for0<u< i
fB(”): ) 1 b
—Bu forﬁgugl

The tent map (and the flipped tent) exhibits fixed points (periodic orbits; mode-
locking) for the smaller values of . These can be eliminated by shifting part of the
tent downwards, so that the diagonal is never intersected. This suggests the “sidetarp™:

ap(u) = Bu f0r0§u<é
B B(l—u) for%ﬁugl

The six different maps under consideration here are depicted in figure 5. It is interesting

to compare three of the bifurcation diagrams, side-by-side. These are shown in figure
6.
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Figure 5: Iterated piece-wise linear maps
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The downshift map, shown in the upper left, generates orbits that spend all of thier time

in the shaded area: a box of size % X g Enlarging this box to the unit square gives

the B-transformation. The tent map resembles the downshift, except that one arm is
flipped to make a tent-shape. After a finite number of iterations, orbits move enitrely
in the shaded region; enlarging this region to be the unit square gives the sidetent map.
Flipping it left-right gives the fliptent map. Although it is not trivially obvious, the
fliptent map and the sidetent map have the same orbits, and thus the same bifurcation
diagram.

The bottom three maps all have fixed points and periodic orbits, esssentially be-
cause the diagonal intersects the map. The top three maps have no periodic orbits, and
are purely chaotic, essentially because the diagonal does not intersect them. Note tht
the slopes and the geometric proportions of all six maps are identical; they are merely
rearrangents of the same basic elements.
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Figure 6: Beta transform and Side-tent

The left figure shows the bifurcation diagram for the B-transform, as it is normally
defined as the Bx mod 1 map. It is the same map as the downshift, just rescaled to
occupy the entire unit square. In all other respects, it is identical to 2.

The middle figure is a similarly-rescaled tent map, given the name “side tent”
in the main text. It is essentially identical to 3, with the middle parts expanded and
the sides removed. In both figures, § runs from 1 at the bottom to 2 at the top. The
right-hand-side figure is the “sidetarp”, clearly its an oddly-folded variant of the beta
transform.

1.8 Beta Transformation Literature Review and References

The B-transformation, in the form of 75 (x) = Bx mod 1 has been well-studied over
the decades. The bit expansion 4 was introduced by A. Renyi[l], who demonstrates
the existance of the invariant measure. The ergodic properties of the transform were
proven by W. Parry[2], who also shows that the system is weakly mixing.

An explicit expression for the invariant measure was given by W. Parry[2], as

1 & dy
Pp(Y)ng%

where d), is the digit sequence

0 ifefi(1)<y
d,(y) = B
n () { 1  otherwise

and F' is a normalization constant.

The -transformation has been shown to have the same ergodicity properties as the
Bernoulli shift.[3] The symbolic dynamics of the beta-transformation was analyzed by
F. Blanchard[4]. A characterization of the periodic points are given by Bruno Maia[5].
The fact tht the beta shift, and its subshifts are all ergodic is established by Climen-
haga and Thompson[6]. The zeta function, and a lap-counting function, are given by
Lagarias[7]. The Hausdorf dimension, the topological entropy and genreal notions of
topological pressure arising from conditional variational principles is given by Daniel
Thompson[&]. A proper background on this topics is given by Barreira and Saussol[9].
None of these topics are actually touched on below.
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2 Symbolic Dynamics

The Bernoulli shift corresponds to the sequence of binary digits of a real number. Such
sequences can be imagined to belong to the space of all possible sequences of binary
digits, the Cartesian product of infinitely many copies of the set containing two ele-
ments:

{0,1} x {0,1} x {0, 1} x --- = {0,1}® =29

This space has a natural topology, the product topology, which differs sharply from the
natural topology on the real-number line. Essentially all of the strange phenomena of
fractals and of iterated functions follows from the product topology on this sequence.

One notable effect that can be explained in terms of the product topology is the
fractal self-similarity of many kinds of fractals: this arises from the self-similarity of
the product space under the action of a shift: specifically, the left-shift, which discards
the left-most digit, and shifts the rest over by one. The shift operator itself is that
operator that performs this shift; self-similar fractals can be seen to be eigenstates of
the shift operator.

Another notable effect is the close proximity of the Cantor set to the proceedings. In
a certain sense, the Cantor set can be understood to be the most basic manifestation of
the product space. When attuned to its presence, it can be seen everywhere throughout
the proceedings.

A third byproduct is the manifestation of the infinitely-deep binary tree. This arises
when the set {0, 1} of the product space is re-interpreted as the set {L,R} of left-right
moves. At each point in a binary sequence, one can make a choice of one of two things:
to move left or right. This naturally suggests a binary decision tree.

A fourth byproduct is the presence of some implicit, ambient hyperbolic space.
The infinite binary tree, when drawn on flat two-dimensional space, simply “runs out
of room”, as each subsequent branching pushes closer together. The infinite binary
tree can be embedded in the simplest hyperbolic space, the Poincaré disk or upper-
half-plane, in such a way that the distance, the spacing between two neighboring nodes
is always the same. Visually, this takes the form of some prototypical M.C. Escher
drawing, of a repeated fractal form moving out to the edge of a disk. This makes the
self-similar shape of the infinite binary tree manifest: as one moves from one location to
another, one always sees “the same thing” in all directions: the space is homogeneous.

The rational numbers play a very special role in the infinite binary tree. Dyadic
rationals, of the form (2p+ 1) /2" for integers p and n correspond to bit sequences
(eqn 2) that terminate in all-zeros after a finite number of moves. That is, after an
initial “chaotic” sequence, they settle down to a fixed point of period one. General
rational numbers p/q behave similarly, in that after an initial “chaotic” sequence, they
settle down to periodic orbits of some fixed period. The bit-sequence becomes cyclic.
This cyclic behavior implies that most of classical number theory can be dragged into
the proceedings. Any particular statement that classical number theory makes with
regard to rational numbers, or even modular forms, can be promptly ported over to a
statement about the bit-sequences and the orbits of the Bernoulli shift, usually taking
on a strange and unrecognizable form.

All of these things go together, like hand in glove: whenever one is manifest and

13



visible, the others are lurking right nearby, in the unseen directions. All of these things
can be given a formal and precise definition, and their explicit inter-relationships artic-
ulated. This has been done by a wide variety of authors over the last four decades; a
proper bibliography would be overwhelming. I have written on all of thee topics, trying
to present them in the simplest, most jargon-free way that I can, in a dozen different
texts available wherever you found this one. The ideas will not be repeated here; they
are not immediately useful to the current proceedings. None-the-less, the general in-
terplay between all of these concepts is extremely important to understand, and burbles
constantly under the surface of the current proceedings. In essence, shifts and subshifts
are interesting precisely because they touch on so any different topics; and, conversely,
so many different areas of mathematics can inform the subshift.

2.1 Symbolic Dynamics

Given that iteration can generate strings of binary digits, and that these can be reassem-
bled back into rel numbers, it is interesting to ask what those mappings look like. To

firm up the notation, let(b,) = (bo, b1 ,---) denote a sequence of bits (or symbols) and
write
1 & by
xp((bn)) =5 ) 2w
2 n=0 ﬁ

as the real number generated from that sequence. Conversely, given a real number x,
let (k,,; B (x)) denote the sequence of bits obtained by iterating the downshift on x with
constant f3; that is, the sequence generated by eqn. 4. The bit sequence for (k. (x)) is
just the bit sequence (b, (x)) generated by eqn 2. The transformations between symbol
sequences and real numbers make sense only when 1 < 8 < 2.

Two interesting functions can be considered. One is the compressor

cprg (v) = x2 ((kuip (v)))

and the other is the expander

pdrg (v) = xg (ka2 (v))) (7

The terms “compressor” and “expander” are being invented here to indicate negative
and positive Lyapunov exponents associated with the two functions. For almost all y,
the compressor function is pushing nearby points closer together; the total measure of
the range of the compressor function is less than one. Likewise, for almost all y, the
expander function is pushing nearby points apart. These two functions are illustrated
in figures 7 and 8.

The two functions are adjoint; specifically, one has that pdrg (cprﬁ (y)) =y but
that cprg (pdrﬁ (y)) # y. The former relation is equivalent to eqn. 5. Not all possi-

ble sequences of bit strings appear in the downshift sequence (kn;ﬁ (x)); that is, this
function is not a surjection onto {0, 1}“. This manifests itself as the gaps in the range
of the compressor function, clearly visible in figure 7. If a sequence of bits is viewed
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Figure 7: Compressor Function
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This illustrates the compressor function for various values of . As should be clear,
almost all input values are mapped to a set of discrete output values.

Figure 8: Expander Function

Expander Function pdr

pdr

This illustrates the expander function for various values of . As should be clear,
almost all neighboring input values are mapped to wildly different output values.
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as a sequence of left-right moves walking down a binary tree, this implies that some
branches of the tree are never taken, and can be pruned. Only branches on the right are
ever pruned: That is, there can be arbitrarily long sequences of zeros in the expansion,
but the longest possible sequence of 1’s is always bounded. The longest run of 1’s
possible is the largest value of # that satisfies

1+B+p>+---p"!

2 2 ﬁnfl
Solving, the bound is
“og (2 —
n:ljﬂog( ﬁ)J @®)
log B

That is, every n’th right branch is pruned from the binary tree. For example, a run of
three 1’s in a row is possible only for § > (l + \@) /2 =~ 1.618034 the Golden Ratio.

The range of cprg (y) is most of, but not all of the Cantor set. The figure 9 visualizes
the range of the compressor as a function of 3.

2.2 Shifts with holes

Viewed as a shift space, as opposed to a cut-down binary tree, the trimming can be
thought of as a punching of holes into the full shift. This requires a bit of mental gym-
nastics. Let (a,c) be an (open) interval on the real number line: (a,c¢) = {x|a < x < c}.
Given the Bernoulli shift b (x) = 75 (x) from eqns 1 or 3, consider the set

S (a,c) = {x|b" (x) ¢ (a,c) forany n >0}

That is, as one iterates on some fixed x, one requests that no iterate " (x) ever lands
in the interval (a,c). In essence, one has punched a hole in the unit interval; this
corresponds to a “hole” in the full Bernoulli shift. The set .# (a,c) is what remains
after punching such a hole.

How can this be visualized? Considering the case n = 0, its clear that .# (a,c)
cannot contain (a,c). Thatis, .# (a,c) N (a,c) = 0. For n = 1, the interval (a,c) can

come from one of two places: either from (4,5) or from (%!, <41), and so neither

of these can be in .# (a,c). Continuing, for n = 2, the intervals (§,%), (%, %),
(42, <2) and (%52, <) must also be gone. Continuing in this fashion, one proceeds
with an infinite hole-punch: to obtain .# (a,c), one just cuts out (a,c) and everything

that iterates to (a,c). For the holes, write

o 21
+k c+k
jf(a,c): U U <a2n 762)1 )

n=0 k=0

and for the interval with the holes punched out:
S (a,c) =[0,1]\H (a,c)

where |J denotes set-union and \ denotes set subtraction. It is not hard to see that,
in the end, this forms a contorted Cantor set, using the standard midpoint-subtraction
algorithm. The canonical Cantor set is built by taking (a,c) = (3,3).
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Figure 9: Range of the compressor

I

This figure illustrates a color coded visualization of the range of the compressor func-
tion. As before 8 varies from 0 at the bottom to 2 at the top, and y varies from O on
the left to 1 on the right. In general, the compressor function maps intervals of the
real number line to single points; the color corresponds to the size (the measure) of the
intervals that were mapped to that particular point. Blue corresponds to a compression
of the measure by about 1, green to a compression of about 2-3, and yellow-red to a
compression greater than that.
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Note that both 77 (a,c¢) and .# (a,c) are subshifts: applying the left-shift to them
just returns the same set again. Bot are invariant under the action of the shift operator.
In formulas,

b (a,c) = H (a,c)
and

b7 (a,c) = F (a,c)
where, for notational simplicity, the parenthesis are not written, so that for the set S,
write bS = b(S). As shifts, its more appropriate to view both as sets of bit-sequences,
so that the proper relationship between one and the other should have been written as

S (a,c) ={0,1}°\ A (a,c)

How should these subshifts be visualized as strings? Let (b, (x)) be the bit sequence
generated by x, for some a < x < c. The cut operation states that such strings can never
occur anywhere in .# (a,c). Explicitly, .# (a,c) never contains sequences of the form
dodidy - - - dibo (x) by (x) by (x) - - - for any arbitrary leading bits dodd; - - - di.

How should these subshifts be visualized as binary trees? The simplest case to
visualize is to take a = m/2" and ¢ = (m+1) /2" being dyadic rationals, for some
integers m, n. In this case, one takes the bit-expansion for both have the same n leading
bits: one starts at the root of the tree, and walks down the binary tree, making left-right
moves in accordance with this sequence, and after n moves, arrives at a node above a
subtree. Just cut out this subtree, in it’s entirety. That’s the first cut. Now repeat the
process, for the left and right subtrees, from off the root, ad infinitum. For a and ¢ not
dyadic rationals, the process is more complicated. If a and c are ordinary rationals, thus
having a repeating bit-sequence, one performs in the same way, but cyclically walking
down the side branches of subtrees. For a and c irrational, the algorithm is considerably
more complicated, and is left as an exercise for the reader :-).

A general classification of shifts with holes, for the beta transform, was performed
by Lyndsey Clark[10].

2.3 Generalized compressors and expanders

The range of the compressor function is a shift with a hole. Specifically, for a given
B, the range of cprg is S (2 , 2) The construction for shifts with holes can then be

applied to construct generalized compressor and expander functions. One way, which
is really rather cheesy, but it works, is to define the function

= = +k
deprg o (a;x) = Z l?’”“ Z b (xa )

and then define the generalized compressor as

X
cpr(a;x):/ depr (a;y) dy
0

That is, as one walks along the unit interval, from left to right, one picks up points with
weights on them, obtaining a generalized Devil’s staircase (Cantor-Vitali) function.
This generalization does not seem to be terribly useful here, and is left to rot.
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2.4 Self-similarity

Subshifts are, by definition, self-similar. If S is a subshift, and T is the shift operator,
then T'S = S is a part of the definition of the subshift. It is fun to see how this actually
manifests itself on the unit interval.

So, the two functions cpr and pdr are self-similar. The pdr function demonstrates
classic period doubling self-similarity: namely, under g(x) = x/2, it behaves as

(pdrﬁ og) (x) = pdrg (%) = %pdrﬁ (x)

while under reflection r(x) = 1 — x, it behaves as

(pdrﬁ o r) (x) = pdry (1 —x) = 2(Bﬁ—1) — pdry (x)

Note that

| _ B
lim pdrp (%) = 55— 73

The full dyadic monoid is generated by the generators g and r; see other posts from me
for lengthly expositions on the structure of the dyadic monoid and its relationship to
the Cantor set and a large variety of fractals.

Here, g is the generator that corresponds to the shift operator 7. The notation g is
used only to stay consistent with other things that I’'ve written. The generator r indicates
that the subshift is also invariant under reflection; in this case, under the exchange of
the symbols 0 <+ 1 in the corresponding shift.

The function cpr also exhibits self-similarity, although it alters (expands) what hap-
pens on the x axis. Several self-similarities are apparent. First, for 0 < x < 1, one has

o () - b (%)

Equivalently, for 0 <y < /2 one can trivially restate the above as

1
cprg (g) = 5cpip () ©)

Although it follows trivially, this restatement helps avoid later confusion.
The left and right halves are identical to one-another, but offset:

L) =y (2)
cprﬁ 2 3 —2 Cpl'ﬁ 3

It follows that

1 oy) 11
cprg 5—&-3 :§+§cprﬁ(y)

Combining the above results into one, one has that
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cprg <l);) +cprg <; + ;;) = %Jrcpfﬁ »)

This last form is interesting, as it makes an appearance in relation to the transfer oper-
ator, defined below.

2.5 Other things with similar symmetry

The cpr curve is just one that belongs to a class of such curves. As an example, one
may construct a Takagi (blancmange) curve by iterating triangles whose peak is lo-
cated at 1/f3. The Takagi curve is an example of a curve transforming under a 3-
dimensional representation of the dyadic monoid; the cpr curves transforms under a
two-dimensional representation. See my paper on the Takagi curve for details. Figure
10 shows such a curve. Denote by takg., (x)a curve constructed in this fashion. The
transformation properties of this curve include self-similarity on the left, as

takg.,, (;) = x+w takg., (x)
for 0 < x <1 and self-similarity on the right, as

takg.,, (é +x <1 - ;)) =1—x+wtakg,, (x)

Both of these properties follow directly from the construction of the curve; they can be
taken as the defining equations for the curve. That is, the curve can be taken as that
function which satisfies these two recursion relations.

The derivative of the skew Takagi curve is shown in figure 11, and, for lack of a
better name, could be called the skew Haar fractal wavelet. It can be defined as the
formal derivative

harg.,, (x) = % takg.,, (x)

This formal derivative is well-defined, as the skew Takagi is smooth and piecewise-
linear almost everywhere; the places where it has corners is a dense set of measure
zero. That is, the derivative is defined everywhere, except on a set of measure zero,
which happens to be dense in the unit interval.

Note that the Haar fractal wavelet is piece-wise constant everywhere. It is con-
structed from a “mother wavelet” given by

1
hﬁ(x)z{ﬁﬁ for0<x< g (10)

gip forp <x<1

which is then iterated on to form the fractal curve harg.,, (x). The self symmetries are

harg, (;) — B +wharg,, (x)

harg,, (; +x (1 _ é)) - —ﬁli 4w harg, (x)

20

and



Figure 10: Skew Takagi Curve

Skew Takagi Curve
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This figure shows a skew Takagi curve, and the first four steps of its construction. The
initial triangle is of height 1; the apex is located at 1/8, for § = 1.6 in this figure.
Subsequent triangles obtain a height of w=0.7 above the apex point, and are similarly
skew.

Figure 11: Skew Haar Wavelet

Skew Haar Curve
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This figure shows the derivative of the skew Takagi curve. Note that it is piece-wise
constant everywhere. The mother wavelet is shown, as well as the fourth iteration. The
specific values graphed are § = 1.6 and w = 0.7.
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2.6 Periodic Orbits

The Bernoulli shift, given by eqn 2, generates every possible bit-sequence. As was
observed in a previous section, not every possible bit-sequence occurs in the downshift.
The longest sequence of all-ones possible was given by eqn 8. Arbitrary finite lengths
of zeros do appear; but are there fixed points, i.e. sequences that terminate in all-zeros?
Clearly, x = 1/2f3" is such a fixed point: after n+ 1 iterations of eqn 3, x goes to zero,
and stays there. Is this the only such fixed point? The answer depends on 3. If § can be
written in the form of 3" = 2m+ 1 for some integers n and m, then the values of x which
can iterate down to zero in n+ 1 steps are dense in the interval [0, 3/2]. (TODO: this
needs a simple, non-tedious proof). Otherwise, the fixed points are isolated. Curiously,
such values f3 are dense in the interval [1/2,1).
Similar statements can be made about the values for which the orbits are periodic.

3 Transfer operators

The discovery and study of invariant measures, as well as of decaying states can be
approached via the transfer operator, or, properly named, the Ruelle-Frobenius-Perron
operator. This is an operator that captures the behavior of a distribution under the action
of a map. The invariant measure is an eigenstate of this operator; indeed, it provides a
formal definition for what it means to be invariant under the action of the map.

Given an iterated map g : [0,1] — [0, 1] on the unit interval, the transfer operator
defines how distributions are acted on by this map. It is defined as

Zy= Y LW

!/
N NTIE]

The left adjoint of the transfer operator is the composition operator (Koopman opera-
tor). This is defined as

[Cof]1(v) = f(g(¥))

The Koopman operator is adjoint, in the sense that .Z;%, = 1 but that, in general,
CoLy # 1.

3.1 The B-transform Transfer Operator

The transfer operator for the downshift map bg(x) is

) os(5p) mosr<n

[gﬁf] (y):{O forf/2<y<1

or, written more compactly
E7% (y)=é[f(g> +f(z;+;>}®<§—y> (11
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where O is the Heaviside step function. The density distributions graphed in figure 1
are those functions satisfying

[Zsp] () =p () (12)

That is, the p(y) satisfies

o gb (o) o

This is generally referred to as the Ruelle-Frobenius-Perron eigenfunction, as it corre-
sponds to the largest eigenvalue of the transfer operator, and specifically, the eigenvalue
1.

More generally, one is interested in characterizing the eigenspectrum

[Zsp] () =2p (y)

for eigenvalues |A| < 1 and eigenfunctions p(y). Solving this equation requires choos-
ing a space of functions in which to work. Natural choices include any of the Banach
spaces, and in particular, the space of square-integrable functions. Particularly inter-
esting is the space of almost-smooth functions, those having discontinuities at only a
countable number of locations, but otherwise being infinitely differentiable. Although
the discussion so far implicitly conditions one to restrict oneself to real-valued func-
tions, and to consider only real-valued eigenvalues, this is perhaps too sharp a restric-
tion. As will be seen below, the complex eigenvalues seem to play some important role.
At any rate, it should be obvious that, whatever the choice of function space, one must
have that p (y) = 0 whenever 8 < 2y. This turns out to be a rather harsh condition.

A very minor simplification can be achieved with a change of variable. Let y =
% — &. Then the eigenequation becomes

o (3-2) o (1-5) 5 (-5)

The second term vanishes whenever /2 < 1—¢/B or € < (1 — 3/2) and so one has
the simpler recurrence relation

P () = =p (y) (14)

whenever B(f —1) <2y <.

The equations 13 and 14 can be treated as recurrence relations, defining the A =1
eigenstate. Recursing on these gives exactly the densities shown in figure 1. Computa-
tionally, these are much, much cheaper to compute, at least for § much larger than 1,
although convergence issues present themselves as § approaches 1. The resulting den-
sity may be called the Ruelle-Frobenius-Perron eigenstate; because it can be quickly
computed, it provides an alternative view of figure 1, free of stochastic sampling noise.
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3.2 Almost solutions

If one ignores the Heaviside step function in the definition, one easily finds a number of
“almost solutions” to the transfer operator. These are most easily discussed by defining

the operator
(25 1] (y):Hf@) +f<[y3+;>}

Solving this operator is relatively straight-forward. Consider, for example, the mono-
mial f(y) =y". Clearly, L@By”] is a polynomial of degree n and that therefore, the
space of polynomials is closed under the action of &?3. But this result is even stronger:
the monomials provide a basis in which &g is upper-triangular, i.e. solvable. It’s
eigensolutions in this basis are polynomials. The eigenspectrum is clearly discrete,
and is given by ( ﬁ)_"_l for integers n corresponding to the degree of the polynomial
eigensolution.

This all goes horribly wrong if one instead considers . and the almost-monomials

fiy)=y'e <% - y). This does not provide a basis that is closed under the action of

Zp. Attempting to find the closure by iterating on £ generates a splatter of step
functions. This case is examined more closely in the next section.

Attempting some guess-work, the self-similarity of the cpr function suggests an
opening. Specifically, let eig (x) = cprg (x) — 1/2. The one finds that

[Pgeig] (v) =% [eiﬁ (;) eip (/yi i ;ﬂ
_eig(y)

B

This is a non-polynomial, fractal eigenfunction of ‘@B , and, with a bit of elbow-grease,
one can find many more. This includes the Takagi functions, and their higher-order
analogs, which are, roughly speaking, Takagi functions constructed from polynomials.
These all have interesting self-similarity properties under the dyadic monoid.
Unfortunately, one has that eig (x) 7 0 when 8 < 2; it won’t do as an eigenfunction
of Zp. There is no obvious, simple modification of eig (x) that would cause it to be a

valid eigensolution of . Manually installing a factor of ©® (g — y) and then iterating

to find the closure leads to the same splatter of step functions as in the case of the
polynomials.
Another interesting case arises if one attempts a Fourier-inspired basis. Define

ep.uy (X) = exp i2m (20 41) B"x

for integer /. One then obtains a shift sequence

[Ppepuna] (1) = %eﬁ;n,l;, (x) <1 +epn (;))

This is not a viable candidate for Zp, as it is again beset by the step function. As a shift
sequence, it can be used to construct coherent states that are eigenfunctions of ﬂﬁ,
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having any eigenvalue within the unit disk. Specifically, observe that eg.q, (1/2) =
expim (2[4 1) = —1 so that [Qzﬁeﬁ;o;l] (x) = 0 and so the shift sequence terminates
after finite iteration. Given a complex value z, construct the coherent state as

P (x) = Z Zneﬁ;n;l (x)
n=0
The shift is then
e g 1
[y[i(m;z] (x) = B Z < (1 +eﬁ;n+1;[ (2)> €B;n;1 (x)
n=0

This is not particularly useful, until one notices that for for certain values of S, this
contains nilpotent sub-series.
Specifically, fix a value of n = N and consider those values of B for which eg.y,; (1/2) =

—1. This holds whenever 8" is an odd integer, that is, whenever 8 = (2m + 1)1/ N (and,
as always, B < 2). For these special values of B, one has that [Zgeg.y,] (x) =0 and
so the functions

N
Oz (x) = Z Zneﬁ;nzl (x)
n=0

vanish after N iterations of ?/7’3. That is, these can be used to form a a basis in
which @ﬁ is nilpotent. Conversely, letting m and N be free, the values for which

B = (2m+ 1)V are dense in the interval [1,2) and so any 8 is arbitrarily close to
one with a nilpotent function space. These values of 3 are exactly the same values for
which the bit sequences given by eqn 4 eventually terminate in all zeros; i.e. become
periodic fixed points with period 1.

The existence of a dense set of fixed points is dual to the the existence of nilpotent
densities. That is, one “causes” or “forces” the other to happen. This idea should be
further elaborated, as it establishes a duality between countable and uncountable sets,
which has an element of curiosity to it.

Presumably, there are special values of B which allow a periodic orbits to originate
from a dense set. Such values of 3, and such periodic orbits, should then correspond
to specific self-similarities of the ¢;.. (x) function, specifically manifesting as cyclic
behavior in (1+eg,,.14 (5) )? for some period p. Whether there is some similar man-
ifestation for £ is wholly unclear.

3.3 Iterated transfer operator

To understand the nature of the steady-state solution (the Frobenius-Perron eigenstate),
its is worth iterating on the recurrence relation for it, by hand, the first few times. To
do this, it is convenient to write it in the form

211 0) = 2§ (@0 + 7 (@)

where @ (y) = 1 if y < /2 else zero; this is a step function to denote the vanishing for
the operator for 2y > f. (This differs from the use of ® as the Heaviside step function
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in earlier sections; the intent is the same, but the goal is to have a briefer notation
here. Which is which should be clear from context.) The functions & (y) = y/f and
o(y) = % + a(y) are convenient shorthands for symbolic iteration.
Iterating once gives
(L2 f] ) = % [©(a ) [f (e () + £ (@oa) )] +
® (o) [f (o) () +f (0 ()]
Using a simplified notation g (y) = f (e (y)) + f (@ (y)) allows this to be iterated a third
time:
(L f0)= G [O@p)[0(a?()g(o? () +O(wa(y)g(@a )]+
© (0 () [@(an(y)s(an (y)+0 (o ()8 (@ (v))]]

and a fourth time, this time omitting the argument, and the various nesting parenthesis.

(2] (v) = % [@a®a? [ ga’ + Owa’gwa’] +
Oa®wu [Banagawa + 0w’ agw’al
QWO [O0’wga’n + OMaWgOAn)]
OwOw? [dan’gaw’ + Ow’gw’]]
Notice that the primary structure is given by a product of step functions. This is more
conveniently visualized as a tree:

/.\
Oa Ow
Oaa Oaw Owa Oww

Oaoa Oaow Bawad OUWW O Owaw PWWa BWWW
a a

a ) 'y [} [ [}
n ) n n n n
A

A} n
) )

) [N
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-
-~

]

[ 1
[ 1
LA ) 1

~
~ e

: \) : “ : \) \) “
LA} LA LAY A '

For any given iteration, the result is the sum of the vertexes at a given level, while
the product of step functions is the product of the step functions in the tree, following
the path to each node. Because any particular step function might be zero, it effectively

acts to cut off the tree at that location. It is therefore interesting to understand general

products of the o and B functions.

It is convenient to define
y
+ z
B

N =

% (y) =
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so that & (y) = 1 (y) and @ (y) = 71 (y), so that a general iterated sequence of inter-
mixed ¢’s and @’s can be written uniformly in terms of 7. Given a sequence of bits
bob1b; - - - b, with each by being either zero or one, the iterated sequence of functions
can be written as

by b ”"} + (15)

(Voo Yo, Yo =+~ Vo) (¥) = ! [bo+ B +ﬁ2 "+p ﬁnyﬂ

So, for example:

y

at(y) = B

while | L/

y
00)=3+5(3+5)
and, in general, that

1 1 1 1 y
w0 =3 g ]

Iterated sequences of pairs of functions, of the form ¥, ¥, ¥, - - - ¥, are reminiscent of
de Rham curves, which generalize Cesaro curves and the Koch snowflake. The proper
definition of a de Rham curve assumes the sequence is of infinite length, and applies a
certain continuity condition, and is generally carried out on the complex plane, so that
a continuous, nowhere-differentiable curve results. Here, the curve is distinctly not
continuous: eqn 15 is a finite-length form of the shift series 5 which can be visualized
as the expander function pdr 7, as shown in figure 8.

3.4 The Tree Function

Given a bit sequence (by) and value for y, define the tree function as

=

T ((b1):y) = O ) [ 1O (Voo Vo, Yoo -+ W6, ()

n=0

For any given fixed sequence of bits and value of y, this function is either zero or one.
One way to understand this function is to ask how it varies for fixed 8 and y, but with
the bit sequence coming from the Bernoulli shift of eqn 2, so that b, = b, (x). This
simplifies notation, so that one can write

oo

Tp (x:y) = T (b (x)):3) = © () [T © (%n (v))

n=0

With Yen () = Yoo Yo, Yoo - - - ¥, (). Its clear that the tree function has maximum support

when y = 0. Figure 12 shows several gamma functions, and the corresponding tree

function that results. Figure 13 shows the x vs. y behavior of the tree functions.
TODO: Graph the figures13 and 14 in the usual gloriously-colored-3D style.
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Figure 12: Gamma functions
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Examples of “typical” gamma functions. Both figures show gamma functions for § =
1.6; the one on the left shows them for y = 0, while the one on the right shows them
for y = 0.7. Every gamma function is a sequence of plateaus; the zig-zag line is a
high-order gamma, essentially showing the limiting case. The tree function is unity
whenever all of these curves are below f3/2, and is zero when above. So, for example,
for the left figure, the tree function is unity, for all values of x less than about 0.4952;
it drops to zero, then returns to unity above x = 0.5, until about 0.6221, when it briefly
plunges and rises again. Then, another dip, before finally settling to zero near 0.6541.
For the right figure, a high-order zig-zag rises above 0.8 somewhere near 0.4914; then
Y1 (0.7) rises above 0.8 and stays there, driving the tree function to zero, rendering all
other orders irrelevant.
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Figure 13: Tree functions

The above illustrate the y vs. x dependence of the tree functions; the left image is for
B = 1.4, the right is for B = 1.6. Green indicates the regions where the tree function is
unity, and black where it is zero. To be clear, this shows 7 (x;y) with x and y plotted
along the x and y axes. The tree functions shown in figure 12 are just two horizontal
slices taken from the right image: a slice along the bottom, and a slice a bit above the
middle.

3.5 Haar Basis Matrix Elements
The symmetric Haar wavelets are built from the mother wavelet
O Wvatt
and has individual wavelets given by
hj (x) = 22p (2" — j) for0< j<2"—1

The matrix elements of the transfer operator are

1
(mi| 2]} = [ s () [ L] ()

where the operator £} is given by eqn 11. Computing these by hand promptly pushes
into a big mess. One can obtain explicit expressions, just that they are tedious to obtain.
Some preliminary observations include that

(mi|Zp|nj)y=0if g <ij2m!
because the transfer operator vanishes above 3/2. In the same vein, matrix elements

vanish unless
ERESTAL LRS!

om’ om on’ on ]#@
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Figure 14: Tree function variations

These figures illustrate the S vs. x dependence of the tree function. The upper left
shows Tg (x;0), the upper right shows Tg (x;0.3), the lower left shows Tg (x;0.5), the
lower right shows T (x;0.7). In each case, x runs from O to I along the x axis, while
B runs from 1 to 2 along the vertical axis. As before, green indicates where the tree
function is unity, and black where it is zero. The tree functions shown in figure 12
correspond to horizontal slices in the first and last images. Note that many (possibly
all??) of the green spikes in the upper-left image reach all the way down to the bottom,

although they are mostly much thinner than a pixel and thus not rendered. The vague
blue hazing near the spikes is an attempt at anti-aliasing, to highlight the sharpness.
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2 b5

In all other cases, the Haar wavelets completely fail to overlap, and thus the matrix ele-
ments are zero. In addition, only three pairs of wavelets overlap in a non-zero fashion.
That is, for a fixed m,n and j, there are at most six different values of i for which the
matrix elements are non-vanishing: the first three of these are the values for which

Bj [i i+1 B(j+%) iitl BG+1) [i i+l
o Sl | O T S | T S om

and likewise for three more. The observation is that the integral vanishes unless the
first wavelet intersects an edge transition of the second wavelet.

The primary failure of this basis is that there is no obvious way to diagonalize the
transfer operator in this basis. There is no obvious way of solving it, of finding it’s
eigenfunctions and eigenvalues, other than by brute-force numerical attack.

3.6 Julia Set

Consider the two iterators ag (y) = min (g, ﬂy) and a; (y) = max (0, By— %) Indi-

vidually, they are the two arms of the downshift. Here, they have been separated from
each other, so that the full domain 0 <y <1 is allowed. Exploring all possible inter-
iterations for these gives the Julia set for the transfer operator: it indicates where a
point “came from”, for the iterated transfer operator. There are several related ways to
visualize this. One way is to fix y and then, given a bit-sequence (b,) to compute

J((bn)) = Qp, ©dp, ©dp, o (y)

Figure 15 shows a visualization for finite bit-sequences: in essence, the very first few
iterations. Although it is similar to figure 9, it is not the same.
For a related notion, consider the defintion of “laps”, from Jeffrey Lagerias etal.[7].

4 Hessenberg basis

There is a set of Haar-like wavelets in which the transfer operator is of the form of a
Hessenberg operator - that is, the operator becomes almost upper-diagonal, with only
one diagonal, just below the main diagonal, that is non-zero. Explicitly, the transfer
operator .%3 has matrix entries [.%j] ;; such that (%3] ;; =0 whenever i > j+1. A
matrix having this form is called a Hessenberg matrix; such matrixes have various
interesting properties, and occur naturally in spectral measure theory. In particular,
they generalize the Jacobi operator for real Borel measures. This is explored in greater
detail in this section.
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Figure 15: Julia Set visualization
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Consider the binary tree of dyadic fractions: that is, the tree whose rows are 1/2, (1/4
3/4), (1/8 3/8 5/8 7/8), ... Consider a function J on this tree. For the head of the tree, set
J(1/2) = B. For the next row, set J (1/4) = ao (J(1/2)) and J (3/4) =a; (J(1/2)). It-
erate in this fashion so that J ((2k — 1) /2""!) = ag (J (k/2")) and J ((2k+1) /2") =
ay (J (k/2™)) recursively. This produces a function J taking values on every dyadic
fraction k/2".

In the above figure,  runs from 1 at the bottom to 2 at the top. A single horizontal
slice through the image shows a color-coded version of J, with red coding values near
1, green coding values near 1/2 and blue, fading to black coding values of 1/4 and less.
Note that there are many faint blue lines that extend quite far down, but not all the way
down: these form a stair-step. The image is 1024 pixels wide: it shows the first ten rows
of the binary tree. Although this image is similar to figure 9, it differs in many details.
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4.1 Hessenberg wavelet basis

The transfer operator can be fairly easily brought into Hessenberg matrix form. A
sequence of of orthonormal functions is constructed in this section; when used as a
basis, the transfer operator becomes almost upper-diagonal.

The trick to the construction is to define wavelets such that the transfer operator ap-
plied each wavelet causes the end-points of the wavelet to exactly line up with the end-
or mid-points of previous wavelets, thus avoiding the nasty interval-overlap algebra
required with the Haar basis. This is accomplished by carefully picking the midpoint
of the next wavelet in the sequence to be located exactly at the discontinuity of the
transfer operator applied to the previous wavelet.

The construction proceeds as follows. Let

1
{ 5 for0<x< /2

Vo (x) =
0 for /2 <x<1

Consider £ yp. Itis the sum of two parts: two step-functions; one which is constant
for x < /2 and another that is constant for % + % < g Solving explicitly for the

location of the step, itis x = B (B — 1) /2. For convenience, define m; = (8 —1) /2
and mo = 3 /2. These will anchor a series of midpoints, beginning with m_; = 0. Using
the midpoint m, construct the wavelet

mL my (mo—my) for 0 < x < my
1 o
x) = —1 my (mo—my)
v (x) e e form; <x <my
0 formg<x <1

Note that this is normalized to unit length: [, [y (x)|*dx = 1 and that it is explicitly
orthogonal to the first: fol Y1 (x) Yo (x)dx =0.

Consider Zgy;. As always, it is the sum of two parts. The midpoint of y; is
at m; = (B —1)/2 and this mid-point is mapped to one of two different places. If
m) < 1/2 then it is mapped to my = fBm; else it maps to my = § (m; — 1/2). Thus, if
my < 1/2, define

0 for 0 <x<my
1 (my—my)(mg—my) for mi <x< my
v ()C) _ ) (mp—my) mo—nj =7 =
—1 (ma—my)(mo—ma) oy <x<m
(mo—my) my—m 2 ="
0 formg<x <1
else define
L, [ma(ma—m) for0 <x<my
my my — 7=
x) = -1 my (my—my)
v (x) (mlﬂnz),/ o formy <x <my
0 form; <x<1
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Because each end of the interval on which y; is non-zero lies entirely within one of
the constant arms of W, one has, by construction, that [ w2 (x) w; (x)dx = 0 (and, of
course, fo] v (x) Wo (x)dx=0.)

The rest of the basis can be constructed iteratively, based on these examples. The
midpoints are given by iterating 3 on mg = f8/2, so that m, = Tg (m,_1) = Té’ (mp) is
the p’th iterate of B/2. Let m; be largest midpoint smaller than m,, (and [ < p); let my,
be the smallest midpoint larger than m, (and / < p). Let m_; = 0 initiate the sequence
by providing the smallest-possible “midpoint”; mo = 3 /2 already provides the largest

possible.
Then define
0 for 0 <x<my
( Cf ) form; <x<m,p
v () =14 """ (16)
W for np <X S my,
0 form, <x<1

By construction, this has the property that jol Wpt1 (X) W (x)dx =0forany n < p+ 1.
The normalization constant is

c,— \/(mp —my) (my, —mp)

my, —m

which is determined by requiring that fol |y, (x) |2 dx=1.

4.2 The (Generalized) Golden Ratio

The above wavelet basis seems to be well-behaved, except when § = @ = (1 + \fS) /2

the Golden Ratio. In this situation, one has that mo = ¢@/2 and m; = 1/2. At this
location, further iteration breaks down. That is, my = T} (m1) can either be taken to
be my = 0 or my = my. In the former case, iteration simply stops; in the later case, it
repeats, again, without generating new midpoints that can provide a workable basis.

Working backwards, this issue re-appears whenever the p’th iterate m, = Tlf (mg)
lands at the discontinuity, so that one may take either m, = 0 or m, = my. For p = 3,
there are two trouble spots, which occur when either 83 — B2 — 1 = 0 or when 83 —
B2 — B — 1 =0. These correspond to the values of B = 1.465571231876768--- and
B =1.839286755214161 - -.

Where are the trouble spots located? Consider, for example, my = Tg (myp), and
consider the movement of my as 3 is swept through the range 1 < 8 < 2. This is shown
in figure 16. As made clear in the image, three new trouble spots appear. These are
located at B = 1.380327757--- and B = 1.754877668--- and B = 1.927561978---,
which are the real roots of B* — B3 —1=0and *— B> —B%>—1=0and B* - B> —
B2 — B — 1 = 0 respectively.

Following a similar suggestion by Dajani[3], numbers of this kind may be called
“generalized golden means”. Unfortunately, the term “generalized golden mean” is in
common use, and is applied to a variety of different systems. Not all are relevant; one
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Figure 16: Location of Midpoints

Midpoints as function of p
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This rather busy image illustrates the location of the first five midpoints, mg,my,--- ,mg
as a function of . The locations of the discontinuities are termed “trouble spots”; the
first trouble spot occuring for m; at 8 = ¢. The midpoint m3 has two new trouble spots
at f =1.465--- and B = 1.839---; the trouble spot at § = ¢ being disallowed, as it
already lead to a termination of midpoint iteration. The midpoint m4 has three new
troublespots.
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that is, is given by Hare et al.[1 ] who provide series expansions for the real roots of
p"— Zz;é B* = 0. Stakhov[12] considers B! — B — 1 = 0 in general settings. Some,
but not all of these numbers are known to be Pisot numbers or Salem numbers[5].

How many trouble spots are there? The table below shows the count 7, of the
number of “new” trouble spots, as a function of the midpoint index p.

H
E
S

2 |1
3|2
4 | 3
516
6 | 9
7 |18
8 | 30
9 | 56
10 | 99

This appears to be Sloane’s OEIS A001037 which has a number of known rela-
tionships to roots of unity, Lyndon words, and the number of orbits in the tent map.
The trouble spots are the positive real roots of polynomials of the form B? — B7~! —
byBP~2 —b3BP~3 — ... — 1 =0. There is just one such root for each such polynomial.
These polynomials must clearly be irreducible, as otherwise, the root would have been
seen earlier. Since the digits b; must be zero or one, this implies that the polynomils
can be taken to be the irreducible polynomials over the field Z, which is precisely the
definition of OEIS A001037. (These last few sentences can be taken as a proof).

The coefficients by are not immediately obvious, but a stunningly bad conjecture is
that they form Lyndon words, viz, that O---b3b,1 is a Lyndon word, of length p. This
clearly holds up to p = 4 but surely cannot hold any farther?

Clearly, iteration paths that lead to the trouble points can be formulated as left-right
moves on the infinite binary tree. Is the resulting subtree a subshift? What, precisely,
are it’s self-symmetries? A relationship to OEIS A000002 Oldenburger-Kolakoski se-
quence is observed; that sequence has several fractal self-similarities which presumably
describe the subshift.

There are several ways in which these sequences of troublesome 3 values can be
visualized, and doing so is a worthwhile exercise.

4.3 Islands of Stability as Arnold Tongues

These trouble-spots can be placed in one-to-one accordance with the “islands of sta-
bility” seen in the iterated logistic map. They are, in essence, locations where periodic
orbits “could be pasted”, or where they “naturally would appear”, if the map supported
periodic attractors. That is, the downshift only supports a single attractor, of period-
one at x = 0; there is no “room” for anything more. This is analogous, in a way, to the
phase locked loop, at zero coupling constant. At finite coupling strength, these “trouble
spots” expand out as Arnold tongues, to have a finite size, visible on the Feigenbaum
diagram for the logistic map as regions where period-doubling is occuring.
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The idea here can be illustrated explicitly. Given some “small”, real € > 0, define
the €-generalization of the map 3 as

Bx f0r0§x<%78
o) = B (52) (1) 48 for}—e<r<iore
B(x—1%) forl+e<x<1

This simply connects the two endpoints in the middle of the downshift, “widening”
it so that the has finite, not infinite slope, and converting the iterated function from
a discontinuous to a continuous one. In the limit, one regains the earlier downshift:
limg_so T‘& e = Tﬁ, as the slope of the middle bit becomes infinite. For finite €, however,
one gains a critical point in the region % —e<x< % + €. To arrange for a critical point
at a specifically chosen trouble spot, one need only choose an € small enough, such
that € < |mk - %‘ for each k < p prior to the trouble-spot m,, = my.

To summarize: the “trouble spots” don’t “just” break the ability to create a Hessen-
berg basis at certain values of f3: they are more “fundamental” than that: they indicate
the regions where (“phase-locked”) periodic orbits can be made to appear.

Note to reader: I presume that the above observations are generically “well known”,
and presented in some pop-lit on fractals, but I am not aware of any references dis-
cussing this topic. If you, dear reader, know of such references, please drop me a line
at the posted email address.

Exercise left to the reader: the above arguments should be sufficient to fully demon-
strate that the circle map, which is well-known to exhibit phase locking regions called
Arnold tongues, is topologically conjugate to the fattened downshift 7g .. Or some-
thing like that. In a certain sense, this can be argued to be a “complete” solution, via
topological conjugacy, of the tent map, the logistic map and the circle map. This is a
worthwhile exercise to actually perform, i.e. to give explicit expressions mapping the
various regions, as appropriate. XXX Perhaps I can get around to this, someday, eh?

4.4 Matrix Elements

The above-defined basis provides the Hessenberg representation for the transfer opera-
tor. Defining

(n |.§,”ﬁ|m> = /01 Y (%) [ LB W (x) dx (17
this has the expected Hessenberg form, in that
<n‘$ﬁ|m> =0 forn>m+1
This is just one diagonal short of being actually solvable. A visualization of the matrix

elements is shown in figure 17.

4.5 Completeness

The Hessenberg basis construction gives a countable set of y;, that is an orthonormal
basis on the unit interval: [01 Wi (x) Wy, (x)dx = 8. Are they complete? Obviously

37



Figure 17: Hessenberg Operator Matrix Elements

Six illustrations of the absolute value of the matrix elements n 92” m for the transfer
operator .Z for (left to right, top to bottom) g =1.1, 1.2, 1.3, 1 6, 1.90, 1.998 and
0 <n,m < 48 in the Hessenberg basis. The red color represents values of 0.66 or larger,
green represents values of 0.33 and blue and darker correspond to 0.16 or less. Almost
all matrix elements are in fact precisely zero; black pixels in these images correspond to
matrix elements that are zero. Note that the almost all of the diagonal matrix elements
are exactly zero: that is <n |$ﬁ|n> = 0 for most n. The bright-red pixels are just
below the diagonal: for most n, one has that <n +1 ‘fﬁ | n> > 0.5 with the occasional
blueish pixel suggesting a smaller value. These two, taken together, suggests that the
eigenvalue spectrum is rapidly decreasing. The first few images suggests a regular
pattern that gets increasingly compressed and chaotic as 3 increases. More-or-less
the sane structure previals if one instead zooms out to look at the 600x600 submatrix;
animating with fine-grained steps in 3 does not result in an interesting animated movie.
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not when f is equal to a “trouble spot”, as discussed above. But the trouble spots,
although dense in the interval 1 < f8 < 2, are countable and so “most” values of 3 are
not problematic. So what about these other values?

Obviously the {y;, } cannot be complete on the unit interval, as they all vanish for
B/2 < x. Perhaps they are complete on the interval [0, 3 /2], where they are already
orothonormal: f(f; /2 Wi (%) Wy, (%) dx = Oy

Clearly, the y;, span some subspace; do they span the Hilbert space L, [0, B/2] of
square-integrable functions on the interval [0,3/2]? To what degree can one legiti-
mately write

5(y—x) = iown@)wn(x)

as aresolution of the identity? A numerical exploration shows that the midpoints m,, are
dense in the interval (0,/2), and so this suggests that the basis should be considered
to be “sufficiently complete” on the interval [0, B /2]. The distribution of the m, follow
exactly the distribution of the invariant measure. Convergence is uniform to the same
degree that the midpoints “eventually” fill in and become dense in some interval.

The question of the completeness of states dogs some “obvious” assumptions one
wants to make. For example, if the set of states is complete, and the resolution of
the identity hiolds, then one expects that the transfer operator resolves to the iterated
function:

o oo

O(y—(Bx modl))= Z Z v (v) <n’$ﬁ‘m> Wi (x)
n=0m=0
It is fun to verify that the world works as one expects it to work: the above can be
verified to hold numerically, for sums limited to a finite cutoff.

4.6 Numerical Eigenvalues

Given the apparent sparsity visible in figure 17, one might think that the eigenvalue
problem is fairly stable, numerically. It is not all that much. Numerical exploration
suggests that the spectrum is a circle lying in the complex plane', of radius [A| = 1/
(ignoring, that is, the leading eigenvalue of 1, which is easily found).

To be clear, this is a numerical exploration of the N x N principle submatrix of
<n ‘fﬁ | m> The eigenvalue problem being posed is to find a vector Vv = (vk)gzo that
solves

N
Y, (n|Lg|m)vm = Av,

m=

for some constant A (with the set of possible A depending on N, of course).

I'This was confirmed with both GSL gsl_eigen_nonsymmv() and Lapack DHSEQR solvers, exploring
the principle sumatrix of various sizes, up to about 2000 x 2000 entries. Both systems agree to at least six
decimal places, if not more. Both show sporadic eigenvalues off the circle, but these are not numerically
stable; ergo, the only valid eigenvalues are thos on the circle. The matrix entries were constructed using the
midpoint aglorithm, described in the last section. To verify that they are accurate, several techiques were
used: numerical integration to confirm orthogonality, and the use of the GnuMP multi-precision library to
push up accuracy.
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There are various pitfalls in extrapolating from this to the N — oo limit. For the next
few paragraphs, consider only some notion of a “minimal” extension from finite N to
the limit. That is, for each finite N, one has a finite set of eigenvalues and eigenvectors.
In the limit, there may be accumulation points: points where the eigenvalues accumu-
late to a limit point, in a standard topological sense. What should that that topological
space be? For finite N, all eigenvectors are explicity summable, and thus can be taken
to belong to any Banach space £,. One may as well take p = 2 the Hilbert space, and
normalize the eigenvectors ¥ so that | =Y~ _ 12

For finite N, it appears that most eigenvalues A are “near” the circle |A| = 1/f,
and that they seem to be very uniformly distributed around this circle. The numerical
results indicate that in hte limit N — oo, that “most” becomes “almost all” in the usual
sense. Similarly, “near” appears to mean that for any given A at finite N , one has
that |[A| —1/B ~ & (1/N). As to uniformity, it seems that the spacing between nearest
neighbors is also ¢'(1/N), and that there are no “premature” accumulation points:
egenvalues never get any closer than ¢ (1/N), either.

Thus, the minimal closure, the minimal extrapolation to limit points strongly sug-
gests that the limit points really do lie, uniformly distributed, on the circle |[A| = 1/p.
Then, writing a given accumulation point as A = 3~ exp27i¢, what the numerics do
not reveal, or, at least, do not easily reveal, is whether the allowed values of ¢ are
always rational, irrational or might assume arbitrary real values. The numerical ex-
ploration does suggest that the eigenvalues are dense on the circle. Certainly it is the
case Hessenberg basis is countable, an so one would expect the eigenvalue spectrum
obtained in this way to be at least countable, as well. Whether it is also uncountable
seems unknownble in this naive sense.

This question is interesting because if only rational ¢ are allowed, then the de-
caying eigenfunctions belong to a cyclic group, and exhibit an exact form of Poincaré
recurrence as they decay. If irrational ¢ are allowed, then the decaying eigenfunctions
are more throughly chaotic.

For B =2, the B-transform is the Bernoulli shift, the transfer operator is solvable,
and the spectrum is exactly known. This has been explored by various authors[ | 3]. I've
written extensively about this spectrum and the eigenvalues in other texts[ 14, 15, 16].
To recap, it takes several forms, depending on the function space that one chooses to
work in. If one restricts oneself to polynomial eigenfunctions, then the spectrum is
real, non-negative (it has an extensive kernel) and has eigenvalues of 27" for all n. The
eigenfunctions are the Bernoulli polynomials. Restricting to square-integrable eigen-
functions, the spectrum continuous, having eigenvalues on the unit disk in the complex
plane. The continuous-spectrum eigenfunctions (for eigenvalues other than 27") can
be understood in several ways: if forced to be differentiable, then they are not bounded
(they diverge) at the endpoints of the interval. If forced to be bounded, then they are
fractal (non-smooth) over the entire interval. The unitary spectrum corresponds to
differentiable-nowhere eigenfunctions (wait, or continuous-nowhere? I forget.)

A pair of plausible, numerically-extracted eigenfunctions are shown in image 18.

Presumably, the spectrum can be related to the lap-counting function, given by
Lagarias[7].
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Figure 18: Decaying Eigenfunction, Period Two

Decaying Eigenfunction, Period Two
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This shows a numerically-computed decaying eigenfunction of period two, for f = 1.6.
It is period two, in that it corresponds to an eigenvalue of A = —1/f = —0.625, so
that after one iteration of £, the sign flips. This can be confirmed, numerically: after
one iteration, the sign really does flip, to within numerical errors. This was computed
by numerically diagonalizing the 861 x 861 matrix given by the lowest terms of eqn
17, and then graphing the eigenvector closes to A = —0.625 (The GnuMP library was
used to provide the required level of precision in the calculations.)

Although this figure is drawn with curves labeled “real” and “imaginary”, this is
a bit fantastic, and is a numeric artifact. For any period-two eigenfunction, the real
and imaginary parts would have no coupling, and would be independent of each other;
either one could be set to zero and one would still have a valid eigenfunction. This
differs from the case of period-three and higher, where the real and imaginary parts
are expected to mix. (Nor are the two components orthogonal, as one might expect.)
The eigenfunction is also fantastic in that only slightly different numerics result in
a completely different eigenfunction being computed. Even the functions resulting
from diagonlizing the 863 x 863 matrix differ fair amount from those arising from the
861 x 861 matrix; there’s only a general resemblance. This is not entirely surprising:
the magnitude of the basis coefficients decays very slowly; even at 861, that are still
on the order of 103, and thus contribute strongly.

Computed eigenfunctions for period-three are not dissimilar, nor are the ones for
other values of . They do seem to start having the general oscillatory character of
sin(1/x) as B — 1, but its not clear if this is a numeric artifact, or something real. The
wildeness of these functions contrast sharply with the seemingly tame A = 1 eigen-
functions shown in figure 1.
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4.7 (Non-)Unitarity

The numerical results suggest a hypothesis that some fragment of Z3 is unitary, as it
is ordinarily the case that when eigenvalues appear on the unit circle, its because the
operator is unitary. That does not seem to be the case here. Specifically, define the
Frobenius-Perron eigenvector p as the one satisfying #gp = p and normalizing it to
unit length, so that ||p|| = 1 in the Hilbert (mean-square) norm. Define the reduced
operator % in terms of the matrix elements

é (n| 5| m) = (n| L5 | m) — (pln) (p|m)

That is, it is just the downshift operator, with the Frobenius-Perron eigenvector re-
moved, so that Zgp = 0 . Its rescaled, so that the remaining eigenvectors of %y lie

on the unit circle. Is this operator unitary in any way? That is, might either %B%g or

%;%ﬁ be the identity? Here, the dagger  is just the transpose, as % is purely real.
Numerical exploration clearly shows that % is neither unitary on the left nor on the
right. Not a surprise, but does leave the understanding of £} in a curious situation.

4.8 Generating Function

Let v, be the Ruelle-Frobenius-Perron eigenvector in the Hessenberg basis. That is, let
v, be the vector that solves

)

Y (|| m)vin = vn (18)
This is readily computed numerically, and it is straightforward to verify the numerics
by confirming that

p(x) = iovmwm ()

is the invariant measure of equations 12,13. The truncated ordinary generating function
associated with this eigenvector is

N
Gn(z) =) vmd"
m=0

with the ordinary generating function being the limit N — oo. A numerical study of
this function indicates that most of the N zeroes of Gy are arranged approximately on a
circle of radius 3. The arrangement appear to be quite uniform, with more-or-less equi-
distant spacing of the zeros. As N increases, it seems that more of the zeroes get closer
to the circle, although the numerical instabilities associated with double-precision math
make this difficult to control; an arbitrary-precision eigenvalue solver would be needed
to confirm this behavior.

If this behavior persists, then the limit N — oo cannot really be taken, and the ordi-
nary generating function doesn’t “really exist”, per-se. The figure 19 depicts the values
of v, as a function of n for selected values of 3. Note that these are all real and positive.
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Figure 19: Frobenius-Perron Eigenvector Coefficients
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The coefficients v, solving eqn 18 as a function of n, for various values of 3. Note
that the coefficeints are all real and positive. When f§ > (1 + \ﬁ) /2 (the Golden
ratio), the general but rather loose trend for the slopes seems to be about log, v, ~
O ((1—B)n). For B less than the Golden ratio, the falloff is sharper. The Golden
ratio seems to appear unexpected and unexplainedly in the proceedings; later sections
give a firmer standing for this. In this figure, the two slopes for f = 1.5 and f§ =
1.7 unexpectedly overlap. Apperently, this is not an accident or a numerical defect.
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4.9 Bergman Space

Given a matrix operator in Hessenberg form, it can be interpreted as a right-shift on
the space of polynomials. That is, given an unreduced Hessenberg matrix with matrix
entries A;;, one can write a recurrance relation that defines a sequence of polynomials

as
n+1

an Z Aknpk (1 9)

with pg (z) = 1. This relation is easily solvable in closed form, as the recurrance relation
terminates in a finite number of steps.

One important property of these polynomials is that the zeros of p, (z) correspond
to the eigenvalues of the n X n principle submatrix of A. Numeric exploration of these
polynomials confirms the previous results on eigenvalues obtained from direct diag-
noalization: the zeros of the p, (z) seems to lie mostly near the circle of radius 1/,
distributed uniformly over all angles.

If all of the subdiagonal entries obey A,;1, > 0, then the polynomials form an
orthonormal basis for Bergman space. That is, there exists a domain in the complex
plane on which the polynomials provide a basis for a Hilbert space of holomorphic
functions on that domain[17, 18, 19]. That is, one has the orthogonality relation

S = /D P (2) pa (2)dia (2)

for some domain D C C of the complex plane, and some (Borel) measure dut on that
domain.

The matrix A can be interpreted as an operator with a continuous spectrum. To do
this, fix a certain, specific value of z = ¢ a constant, and then notice that p = (p, (2)),_,
is a vector having the property that A7 5 = zp. That is, J is a left-eigenvector of A;
equivalently, a right-eigenvector of its transpose A”. Clearly, the spectrum is continu-
ous on the domain D.

The matrix operator A can also be interpreted as a right-shift on Bergman space. To

do this, define
Z Zpk ) AnPn (2)

Then, given some holomorphic function f (z) decomposed in terms of the polynomials,
so that f (z) = Y., anpn (z), one has that

w)= [ (w2)f () du(2)
—ZZPk ) A
:wzanpn w)
ot ()

That is, given a sequence (ag,aj,az,---), the Hessenberg matrix acts as a right-shift,
mapping it to the sequence (0,aq,ay,--).
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This is perhaps a bit silly, as one could instead just perform the same manipulation
without the f (z), by observing that, formally,

o (w,z) = w; i)Pk (W) pn ()

The above treatment is breezy and “formal”, paying no heed to summability, con-
vergence or responding to any questions about what spaces the various vectors may
live in. This is as appropriate, since the task here is to discover which spaces are the
appropriate ones, when the Hessenberg matrix arises from the downshift.

Notice that the word “operator” is a bit mis-used, here, as a vague synonym for
“infinite-dimensional matrix”. Properly, the word “operator” should be reserved for
an infinite-dimensional matrix acting on some given space, having general properties
that are independent of the basis chosen for that space. So far, that might not be the
case here: the infinite-dimensional matrixes here might not be bounded operators; they
might not even be continuous, viz. we have not ruled out the possibility that the space
of interest is some Fréchet space or some more general topological vector space. It
is well known that operators on such spaces can have “unexpected” discontinuities,
unexpcected in that they are not seen in ordinary Banach spaces.

At any rate, if polynomials obtained from the downshift are orthogonal on some
domain D C C that is the support of some measure d, it is not at all clear what this
measure might be. They are certainly not orthogonal on the unit disk, with uniform
measure.

Notice also that the above treatment seems to be a special case of a more general
principle: when an operator has a continuous spectrum, it can sometimes be inter-
preted as a right-shift. That is, given some arbitrary operator .77, then if one has that
Jf = Af and A takes arbitrary values A € D C C, then J# can be taken to be a right-
shift opertator, provided that f = f(A) can be decomposed into a set of orthogonal
polynomials in A.

4.10 Beta Bergman Shift

The primary question for this section is whether the B-transform transfer operator, in
the Hessenberg basis, can be considered to be a Bergman shift.

To obtain the orthogonal polynomial basis, one must satisfy the constraint that
Apg1n > 0 for the matrix elements Ay, = (k|.£3|n) of eqn 17. Numeric exploration
indicates that this is indeed the case, with the subdiagonal entries all positive (none are
zero), and all tend to have the same value, with sporadic exceptions. These are shown

in figure 20.
Can one find a domain on the complex plane that would have such Bergman poly-
nomials? The references[17, 19] provide a technique for doing so, provided that the

matrix is asymptotically Toeplitz. That is, if the diagonals of A;; have nice limits, that
lim,,_ye A, » exists for fixed &, then a Jordan arc bounding a domain on the complex
plane can be found. The figure 20 indicates that this limit does not exist, in the strict
sense: the values bounce away from an obvious limit point indefinitely. Exactly what
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Figure 20: Subdiagonal Entries

Subdiagonal matrix entries for p=1.1 ‘Subdiagonal matrix entries for p=1.6
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n> for the first n < 500.

Representative values of 3 are as labelled; other values behave similarly. The relation
of the supremum to f3 is not clear.

°

this implies is unclear. Perhaps it is possible to extend the results of [17, 19] to ma-
trixes that arewhere the diagonals merely have an accumulation point, as opposed to a
well-defined limit?

Based on numeric exploration, it appears that the domain is the unit disk. That is,
AT p = zpp holds for |z < 1.

TODO: Graph figure20 in the usual gloriously-colored-3D style.

4.11 Bergman Alternative

The Bergman polynomials of eqn 19 define an orthonormal basis for some region of
the complex plane. For the square-integrable norm, this basis is the basis of a Hilbert
space, and specifically, that of a reproducing kernel Hilbert space.

Yet, something funny happens on the unit disk. Let p,, (z) be the polynomials, and
for some sequence of coefficients {a,}, consider a generic function

2) = i arpi (2)
k=0

Consider the case where the {a,} are a right-eigenvector of the Hessenberg operator,
that is, where

Z Akmam = lak

Substituting into the above, one has

<R IR _zf(2)
:k;o%mg kmampk l Z ampm =7

There are two alternatives to solving this; either f(z) =0 or z = A. Since this is a
reproducing kernel Hilbert space, then if z = A is part of the domain of the Bergman
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space, then one must conclude that f (z) = 0 everywhere. That is, right-eigenvalues of
A correspond to functions f (z) that are vanishing. To invent a new name, by analogy
to the Fredholm alternative, perhaps this can be called the Bergman alternative.

Numerical exploration indicates that, for the matrix elements of eqn, 17, the func-
tion f(z) vanishes inside the unit disk |z| < 1, and is undefined (infinite) outside of
1t.

4.12 Left Factorization

Suppose one is given an (arbitrary) sequence of polynomials (p, (z)),_. such that the
order of py, is n. Then each individial polynomial can be expanded as or 3 > ¢,

n
pn(@) =Y pui*
k=0

This defines an infinite matrix & = [p], provided that the coefficients are extended
so that p,r = 0 whenver k > n. This matrix is manifestly lower-triangular. Writing
vectors Z = (2"),_ and p = (p, (z));,_, as before, the above is just the matrix equation

p=97

Consider now the case where the polynomials were constructed from some irre-
ducible Hessenberg matrix A. The earlier observation that AT is a shift, namely, that
AT p = zp can now be written as

AT D7 = P7=PZ=P K7

In the above, the z without the vector notation is just a scalar, and thus commutes
(trivially) with &2. Its eliminated by explicitly making use of the right-shift (Koopman)
operator, which, in this basis, is

01 0 0 O

00 1 0 O

00 0 1 0
W =

0 0 0 O

0 0 0 O

Since & is lower-triangular, it is invertible on the right, that is, the inverse & —1 exists,
and so one is left with
PN 2=

The irreducibility of A is important, here; non-zero entries on the subdiagonal are re-
quired, else trouble ensues.
Rearranging, this provides an explicit decomposition of A into triangular matrixes:

AT = 2 2!
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Taking the transpose, this gives
A=[2 " T P"

with 227 and [3” _1} " both being upper-trangular, and .#"7 being the left-shift.

This system is solvable. Given some matrix A in Hessenberg form, the matrix
elements of & can be computed resursively, in a finite number of steps (i.e. in closed
form), directly from 19. The explicit expression is

n
A1 nPnil,j = Pnj—1— ZAknpkj
=0

The starting conditions are pgo = 1. To handle the j = 0 case in the above, set p, _1 =0.

Because Z is lower triangular, its inverse 22! = % = [r;,,] can be obtained explic-
itly. Along the digaonal, one has r,,, = 1/p,, while the lower triangular form means
ren = 0 for k < n. For the remaining entries m < n, one has

n
0= Z PnkTkm

k=m

This can be solved in a finite number of iterations on
n—1
Pnntnm = — Z Pnk¥km
k=m

The above avoids questions of convergence, or any notion of the spaces on which
the matrixes or operators might act. The norm to be used for 7 and p is not specified.
This is appropriate at this stage: it is the algebraic manipulations that are interesting,
at this point, rather than the spaces on which the matrixes/operators might act. One
can invent several kinds of norms that might be applicable, but there is no particular
reason to beleive that p might have a finite norm. Likewise, &7 may not have a finite
norm. For the case of the Hessenberg operator originating with the downshift operator,
it does not; the individual matrix elements py,, increase without bound. That is, & is
an infinite matrix, but it is not clear that it is also an operator. If it is, it is certainly not
a compact operator.

Some of the poor behavior can be brought under control by factoring &2 = 2.4
with .4 being unitriangular (all ones on the diagonal) and & a diagonal matrix, with
entries [, = PnnOnk. With this factorization, one may then write

N AT N =909
so that 2.¢ 2" has off-diagonal matrix entries [@L}if@*lhk = Oyt1,kPnn/ Pik- This

is a rescaling of the shift [.#],;, = 6,41 . The scaling factor is exactly the sub-diagonal
of the Hessenberg. That is, pu,/pn+1a+1 = An+1,. The polynomials .47 are monic.
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Figure 21: Polynomial Operator Diagonal Entries

Polynomial Operator Diagonal Entries

1000 T
B=12 ——
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This depicts the ratio p,,/B" of the diagonal matrix entries p,, of the Bergman poly-
nomial matrix operator & for the downshift with value B = 1.2. Other values of 3
are not dissimilar, although the spikes are pushed more closely together. The height of
the spikes seems to be roughly the same, for all §. This is another way of visualizaing
the same information as in figure 20, as the ratio pu,/pu+1.+1 is just given by the
subdiagonal entries A, 1, of the Hessenberg matrix. In particular, the straight edges
correspond to usually-constant values on the subdiagonal.
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4.13 Beta-transform factoids

An assortment of observations follow, for the case of the downshift.

First, the matrix entries of &2 grow in an unbounded fashion. It appears that p,,, ~
O (B"); the ratio p,,/B" is depicted in figure 21.

Experimentation reveals two different regimes of behavior, depending on whether

ornot B < @ = (1 + \ﬁ) /2 the Golden ratio. Exactly why there are two different

regimes is unclear. Earlier sections motivated the reason for the appearance of the
golden mean; why this shows up dramatically, as it does here, is unclear (to me).

One such result is that when 8 < ¢, then the sum over columns of the Bergman
operator vanishes. That is,

Z Pnk = 6n0
k=0

This implies that every polynomial p, (z) has a zero at z =1 (except for pg(z) = 1)
when f < .
TODO: Graph the figure 21 in the usual gloriously-colored-3D style.

4.14 Decaying Eigenfunctions

The matrix mechanics developed in the previous sections can be used to perform
asymptotic expansions that rapidly converge to decaying eigenfunctions. This works
most simply for the case of ¢ < . TODO Write these down. TODO flesh out. Ba-
sically, write a vector w with elements w,, = @" for 1 < |®| so that this is divergent.
Then write the formal vector d = [WT] ~'% which is formally divergent, but can be
trancated in finite dimensions, and renormalized to be of unit length. Doing so provides
an eigenfunction of A. The associated eigenvalue is 1 when B < ¢ but is less than 1
when ¢ < B (and in fact, the eigenvalue is exactly that depicted in figure 22). TODO
graph some of these, explore more thoroughly, adress the issues of formal divergence.

4.15 Moment Matrix

When the Hessenberg matrix is derived from measures on the complex plane, it takes
the form of .4 = ZZ"T with Z = 2!, so that Z is the Cholesky decompostion of
. This matrix is manifestly symmetric: .# = .#". Direct observation shows that it
is almost positive-definite: one finds that [.#];; > 0 for all i, j except for [.#]y, = 0.
This result can be strengthened: when < ¢, then [.#];; > 1 for all i, j except for
(Mo =0 and [A],, = [#],,=1. But, for B > ¢, one finds that [.#],, = 0 and
[ Ao, = [#),o=[-#],, = 1, while all the rest obey 0 < [.#];; < 1.

In the standard literature, .# is usually obtained from some moment matrix, viz, for
the integral [7"Z"du (z) for some measure dii (z). Might that be the case here? Tak-
ing the time to numerically characterize the matrix, one finds that the ratio of successive
rows (or columns as its symmetric) very quickly approaches a limit lim, o [#],,, / [-#]
C (B) for some constant C that depends ony on f but not on m. The limit C () is
graphed in figure 22.

n—1,m —
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Figure 22: Symmetric Matrix Limit Ratio

Symmetric Matrix Limiting Ratio
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This figure shows the limit C (f3) defined in the text. Note that C () = 1 for f < ¢. The
jump is at about Kk = 1.83928676 - - -. Note this is one of the “troublesome midpoints”
for the Hessenberg basis expansion: that T;2 (k/2) = 0 or k/2, that is, kK (k—1) —
k — 1 = 0. The remaining steps presumably correspond to higher iterates p that satisfy

T} (B/2) =0.
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Figure 23: Symmetric Matrix Limit

Symmetric Matrix Limit
2.4 T

22 |

B(B)

This figure shows the limit B(f3) defined in the text. The limit is approched fairly
quickly for the larger values of f, but convergence proves difficult for f < 1.1.
The overall shape is that of a hyperbola, but doesn’t seem to actually be hyper-
bolic for either small or large . The right-most nick in the curve appears to be
at B = 1.465571231876768--- which solves B2 (8 — 1) — 1 = 0; that is, it occurs at
Tﬁ3 (B/2) = 0. The remaining nicks are presumably located at Tﬁp (B/2) = 0 for higher
iterates p.

For B < ¢, it appears that lim,,_,., [.#],,, = B(pB) a constant, independent of m.
This limiting value B (f) is graphed in figure 23.

The asymptotic behavior of the matrix [.#]; j can be obtained as a momement ma-
trix on point sources. A delta function located at z = C for real C has the moments

Con :/Zmz"5 (z—C)dz

:/rmr"S(r—C) rdr/5(9)eii’"ee""6d9

:CM+n+l

Thus, for ¢ < f3, the asymptotic behavior of [.#];; is given by the distribution A ()& (z—C(B)).

What is A (8)? This is graphed in figure 24.
What about 8 < @? A limiting constant distribution can be obtained from a deriva-
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Figure 24: Point Weight

Point Weight
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This figure shows the value of A () that gives the point weight of the moment matrix.
That is, the asymptotic behavior of .# is given by [.#],,, — [Z"Z"p (z)dz with the
measure given by a point mass p (z) = A(B) 8 (z—C(B)). Clearly, there is a strong
resemblance to figure 22.

tive point mass located at z = 1. That is,
D, :/2"11"5' (z—1)dz

:/rmr"S/(r— 1)rdr/5(6)e7imeei"6d9
=1

so that the asymptotic behavior of [.#];; for B < ¢ is given by the distribution B () 6’ (z— 1).
The prime superscript here means derivative, viz, in collogial language, 6’ (z) =d6 (z) /dz.

4.16 Givens rotations

A Hessenberg matrix can be brought to solvable form by applying a sequence of Givens
rotations. Is the seugnce of angles that appear in these rotations meaningful in any way,
or are they just some form of uninteresting junk?

5 The Jacobi Operator

Given a Borel measure on the real number line, one can find a sequence of polyno-
mials that are orthonormal with respect to that measure. These polynomials p, (x) are
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coubled together by a three-term recurrence equation

XPn (x) = dn+1Pn+1 (x) + bnpn ()C) +anpn—1 ()C)

with po (x) = 1 and p_; (x) = 0. This recurrence relation can be taken to be an opera-
tor, known as the Jacobi operator _¢#, acting on vectors consisting of the polynomials
p(x) = {pa (x)} so that

(7Pl (x) = xp (x)

so that p is an eigenvector of _# with eigenvalue x. The two sequences of coefficients
{a,} and {b, } form three diagonals of the operator, with {a, } running down the center,
and {b, } the two diagonals on either side[20].

Given that the invariant measure for the -transform, given by eqn 12 and visual-
ized in figure 1 is a Borel measure, it seems reasonable to ask: what is the correspond-
ing Jacobi operator? How can the sequence of polynomials be understood?

Szegd polynomials w.r.t. du are a set of orthogonal polynomials on the unit circle.
Applying a Cayley transform gives the Schur functions, obeying a rational recurrence
relation solvable via continued fractions. Hmmm.

And then there is Favard’s theorem...

5.1 Moments

Construction of the polynomial sequences require moments. Since the invariant mea-
sures (and all of the eigenfunctions) are linear combinations of the Hesenberg basis
functions, it suffices to compute the moments for these. Since the basis functions are
piece-wise constant, and have an explicit expression given by eqn 16, the moments can
also be given explicit expression:

C, [my—m} mjy—m}

1
[t s =t _tio
JO

no|\mp—m;  my,—mp

with the midpoint m,, and the lower and upper midpoints m; < m, < m,, defined just as
before. Clearly, the moments rapidly get small as n — oo. Likewise, for fixed n, these
also rapdily get small as p — oo.

6 The Multiplication Operator

The difficulties presented in the previous section suggests that studying the multiplica-
tion operator might be simpler. Multiplication by f3 is given by

Mg (x) = Bx (20)

)

The corresponding transfer operator is

1
1] 0) =51 (
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The multiplication operator, superficially, in itself, is not terribly interesting; it simply
rescales things. It does not generate fractals, at least, not if one confines oneself to
real numbers and the canonical topology on the real-number line. If instead one works
with the product topology on 2%, then the multiplication operator becomes rather com-
plicated and difficult to analyze. In this sense, it is promising: it avoids the overt
complexity of the logistic map, the tent map and the downshift, yet still has a compli-
cated behavior in the product topology. In particular, the multiplication of two numbers
appear to involve chaotic dynamics of the carry bit.

6.1 Downshift, Revisited

The downshift of eqn 3 takes a simple form when reinterpreted on bit-strings: it is
the concatenation of multiplication, followed by a left-shift. Given a bit-string (b,) =
0.bgb1b; - - - denote its left-shift by U given by

U (0.bob1by---)=0.b1by -+

which, for real numbers, corresponds to

2x for0<x< 1
U(x): 1 2
2x—1 for5;<x<1

which is none-other than the Bernoulli shift of eqn 1 with a change of notation. The
downshift is then

Tp (x) = Mp (U (x))
so that the iterated downshift is an alternation between a left-shift and a multiplication.
The act of discarding the most significant bit (the MSB) with each left-shift alters the
dynamics of iterated multiplication.
This suggests that studying multiplication and the multiplication operator might
provide fruitful insight into the downshift.

6.2 Monomial Eigenfunctions

Some properties of the multiplication operator can be guessed at directly. Obviously,
f = const. is a decaying/growing eigenfunction, depending on whether 8 > 1 or not.
That is, one should imagine f = const. as a uniform distribution of dust; with each
iteration, it is spread either farther apart (8 > 1) or bunched closer together (8 < 1).

Clearly, f (x) = x" is an eigenfunction, with eigenvalue 1/B"*!. If one considers
multiplication only to operate on the positive real-number line, then n need not be an
integer. In other words, the multiplication operator has a continuous spectrum in this
situation.

If the domain of the operator is extended to functions on the non-negative real-
number line, then n must be positive, as otherwise f(0) is ill-defined. But if n is
positive, then (for B < 1) the multiplication operator only has eigenvalues greater than
one, which is not, in general, very desirable.
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If the domain of the multiplication operator is extended to the entire real-number
line, then n is forced to be an integer, in order to avoid issues due to multi-valued
functions. Extending the domain to the complex plane leads us astray, and so we will
not go there.

6.3 A Fractal Eigenfunction

The compressor function is also an eigenfunction. It was previously observed in eqn 9

that
X 1
cprg B = 5Cprp (x)

whenever 1 <8 <2and 0 <x < 1 and so, cprg is potentially be an eigenfunction of
Mg with eigenvalue 1/2f3, provided that it is extended to arguments 1 < x. This can be
done as follows. Define the extended function, valid for 0 < x < eoand for 1 < f§ <2
as

cprg (x) ifo<2x<f
o (1) — 2cprg %) if B <2x < B?
Plp )= 4eprg é) if B2 <2x < B3

2 cprg (B‘—,,) if B < 2x < BH!

The extension is performed simply by treating the self-similarity as a recurrence re-
lation, which can be iterated to move the argument into a region where the original
definition was sufficient. In essence, one applies a right-shift operator to reduce the
argument. Since the multiplication operator is odd about x = 0, on can trivially extend
this to negative x by defining ecprg (—x) = —ecprg (x).

Note that the original cprg (x) also had a translation symmetry: the upper half
was equal to the lower half. This translation symmetry has been lost, since after all,
multiplication does not preserve translation.

The ecpr function is not square integrable; it does not have an L,-norm for any p;
and this is no surprise, as its hard to imagine how it could be otherwise, for a function
to be self-similar under scaling.

6.4 A Generic log-periodic Eigenfunction

Inspired by the above, its should be clear how to build a generic eigenfunction. Let
g (x) be some arbitrary function, defined on the interval 1 < x < f (given some fixed
1 < ). Define its extension as

& (x) =w'g (;) if B < x < !

This has, by construction, the self-similarity relation g/, (8x) = wg,, (x) and so is an
eigenfunction with eigenvalue w/f3:

/ w
[%ﬁgw] = ng
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This function is merely log-periodic; its not fractal. Perhaps its silly to illustrate this; it
should be obvious, but just in case its not, the figure below shows such a function, for
B =1.6and w = 0.8. It is an eigenfunction of .#] ¢ with eigenvalue of 1/2.

Log-periodic function
3 T T T

There doesn’t seem to be anything particularly interesting with this particular game.
There’s a simple explanation for this: The multiplication operator is generating a free
monoid in one generator (the iteration itself), whereas fractals require at least two
generators of self-symmetry. The (usually) free interaction of multiple generators is
what forces the fractal to appear.

Note that the cprg function constructed above is a special case of this: It’s self-
similar, but the property that made it interesting, as a fractal, was erased in the con-
struction. As before, note that g/, (x") is an eigenfunction with eigenvalue 1/Bw" (for
integer n).

6.5 Haar Basis Matrix Elements

The Haar basis matrix elements for the downshift proved to be a bit unwieldy and not
terribly useful. The corresponding matrix elements for the multiplication operator have
the same general essence, but are slightly simpler and shorter to write down. In all other
respects, they still have the same tractability issues.

The multiplication operator .7/ has matrix elements in the standard Haar basis:

<mi‘¢///ﬁ’nj> :/:ohmi (x) [Aphnj] (x)dx

(m+n)/2  poo n
:2T/ h(2"x—i)h (2; —j) dx

Instead of confining oneself to the unit interval, here it is convenient to consider the
entire real-number line, and thus that is the range of the integral. Likewise, i and j an
be any integers, positive or negative. As before, matrix elements vanish unless
ii+1 A Bj B(j+1)
om’ m P

B

This holds in three cases: where one of the intervals contains an edge transition (left,
middle or right) of the other interval, without also containing the other two.
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6.6 The Shift and Add algorithm

One can model the multiplication of real numbers with a number of different algo-
rithms applied to bit strings. One of the simplest such algorithms is the shift-and-add
algorithm, described here. Its just elementary-school long-form multiplication, applied
to the binary expansions of the numbers.

There’s a point worth laboring on: a bit string representing a real number is not the
same thing as the real number. There are more bit-strings than there are real numbers.
Most famously, the two bit strings 0.0111--- and 0.1000- - - are two obviously distinct
bit-strings, but they represent the same real number: one-half. All real numbers of
the form j/2" (the “dyadic rationals”) will always have dual representations; all other
real numbers have a single, unique representation. These correspond to the “gaps” in
the Cantor set, or, equivalently, neighboring infinite branches in the finite binary tree.
Bit-strings are not real numbers. They’re just a usable model of them. The usability
is somewhat limited; its OK for working with individual points, but fails miserably for
the topologies: the canonical topology on the reals is sharply different than the product
topology on 22,

The goal is to compute the product Kx with 0 < K < 1 and 0 < x < 1 so that the
product is 0 < Kx < 1. Both K and x are represented by their binary expansions. Let
the binary expansions be

x=0.bobiby--- =Y b,27""!
n=0
and
K =0.coc1cr++ = Z c, 27!
n=0

where the b, and ¢, are either O or 1, always.
Define 5o = 0 and s, to be the non-negative integer

n
Spt1 = bpco+by_1c1+--- +boc, = Zbkcnfk 21
k=0

Note that 0 < s, < n. It is useful to visualize this in terms of the elementary school
shifted tabular form:

0 C()b() C()bl C0b2 C()b3
C]b() C1b1 Clbz

C2b0 C2b1
+ C3b0
S0 S1 52 53 S4

This makes clear the shift-and-add form. The value of each individual s, can be vi-
sualized as a stack of blocks. For the special case of K = 0.111--- = 1 one has that
Sn1 = Lyp—obx, that is, it is simply the total number of one-bits in the first n locations.
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The final step is to reduce the the sum series s, to a bit-string. This is accomplished
recursively, by performing a carry operation:

d, = s, + V”; ‘ J (22)

where |d] =d mod 1 denotes the floor of d (the integer part of d). The desired bit
sequence is then

a,=d, mod?2 (23)

Equivalently, a, is the remainder, the part of d, that was not propagated to the next
location. Explicitly, is is a, = d, —2|d,/2]. The carry-sum propagation can be imag-
ined as a kind of bulldozer, razing the towers d, until they are one block high, pushing
the razed bits off to the next location. The resulting sequence (ay) is then the bit-string
for the product Kx. That is,

Kx=0.apa1ay--- = Z a2 " !
n=0

The problem with this algorithm is that the relation 22 for the d,, is infinitely re-
cursive, and in general is not guaranteed to terminate. One has to start at n = oo and
move backwards from there. There are two plausible scenarios for computing the a, in
practice. One is to search the # until one finds that spot where |dy41/2| = 0; one can
then obtain the a, for all n < N without issue. The problem here is to find such an N.

The other way to compute is to observe that the iteration is convergent. The re-
cursion 22 only depends on a finite and fixed number of bits “behind it”, roughly
equal to log, n bits that come after this. As noted earlier, 0 < s, < n and likewise,
0 <d, <2n+1. To write down d,, one needs at most C = 1+ |log, (2n+ 1) | bits.
This implies that a given d,, can only perturb at most C — 1 bits downstream of it. That
is, d,—c+1 depends on d,, but d,,_¢ does not. Thus, in order to correctly compute all bits
ay for 0 < k < n—C, it is sufficient to set d,, to some arbitrary value (less than 2n +2)
and then iterate (using the correct values for sy when k < n). At the end, discard all dy
and a; for n — C < k, as they are incorrect.

6.7 Tree-view

Points:
1) adding one bit is like shifting the tree over sideways.
2) multiplying by one bit is like shifting the tree down-left.
3) adding a number to itself is like shifting tree up (since its just 2x)

7 Simplified Models of Multiplication

The shift-and-add algorithm is obviously rather complex; can it be replaced by some-
thing simpler? The particular question to ask is how much of the chaotic dynamics of

59



the downshift is due to the propagation of the carry bit, and how much of it is due to
other parts of the algorithm? Specifically, the addition of two numbers, which requires
a carry bit, can be replaced by a bit-wise XOR of their bit strings: this generates “al-
most” the same results as addition, when the number of 1-bits in the strings are sparse,
but are wrong when 1-bits appear in the same location: the XOR discards the carry bits.
Thus, a simplified model of multiplication would the the shift-and-XOR model: it pro-
ceeds the same way as shift-and-add, but replaces addition with XOR. What does this
look like, and how does the equivalent of the downshift behave under this operation?

7.1 Shift-and-XOR

The shift-and-XOR algorithm must like the shift-and-add algorithm, except that it
drops the carry bits. Starting from the same spot, let 0 < K <1 and 0 <x <1 and
represent both by their binary expansions:

x=0bobiby---=Y b2
n=0
and

K =0.cocicr-+ = Z c2 !
n=0

where the b,, and ¢, are either O or 1.
Define 5o = 0 and s, to be the result of XOR-ing instead of adding the bits.

Spa1 = bnco Dbp_1c1 D - D boc, = @bkcn—k
k=0

Here, the oplus symbol ¢ denotes the XOR operation. Note that each s, is either zero
or one. Reconstructing a real number from this, one defines

K®x=0.s05152-""

where the otimes symbol & is pressed into service to indicate the shift-and-XOR prod-
uct. Note that it is symmetric: K ® x = x ® K and so behaves at least a bit like ordinary
multiplication. Its is not distributive over ordinary addition: (¢ +b) @x #a®x+bRx
but it is distributive over XOR: (a ®b) @ x = (a ®x) @ (b®x). It is illustrated in figure
25.

The range of the shift-and-XOR operation is fundamentally different from multi-
plication. First, because the carry bit is dropped, one has that so = 0 always, and so
that K ® x < 1/2 always, even when both K — 1 and x — 1. Next, for any value of
1/2 < K < 1, the range of K ® x runs over the entire interval [0, 1/2] as x runs over the
interval [0,1]. The measure is not compressed (other than by a factor of 2) , as there is
in ordinary multiplication. That is, if S C [0, 1] is a measurable subset of the unit inter-
val, with measure u (S), then one has p (K ®S) = u (S) /2. There are several ways to
prove this. One formal approach is to consider the correspondence between the natural
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Figure 25: Shift and XOR Algorithm
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This figure shows two functions, (2/3) ® x and (4/5) ® x as a function of x.

measure on the reals, and the measure of cylinder sets on the product topology. That
is, the Cantor space {0,1}“ is endowed with a natural topology, the product topology.
The open sets of this topology are called “cylinder sets”. Their measure is uniformly
distributed over unit interval, precisely because the Bernoulli shift is ergodic: the one
implies the other.

Indeed, the shift-and-XOR algorithm can be best thought of as a formula for shuf-
fling the bit-strings around, without actually altering them: re-ordering them, not chang-
ing them. The intuitive key to this is to observe that subtracting x from 1 just re-orders
the unit interval, top to bottom, and that this is the same as flipping all zero bits to one,
and v.v. Thatis, | —x=x®0.111---.

Another way to see this shuffling is to note that a ® a = 0 and that 0 & x = x. Thus,
for a fixed value of a, the string x and the string a & x are paired together, in a unique
way, so that either can be gotten from the other. The function a &[0, 1] — [0, 1] sending
x — a®x is an exchange of these unique pairings of strings. It is not just a bijection,
it is an involution. If the strings are given their natural lexicographic sort order, the
mapping x — a @ x is just a certain kind of shuffle of the sort order; it neither adds new
strings, nor deletes any, nor changes their number. The function is one-to-one and onto.
The multiply-and-XOR algorithm is just a repeated sequence of XOR’s:

CcoX Cc1X C2X
K®x_( 2 )@( 4 )69( 8 )@"'
and so K ®x is nothing more than a reshuffling of strings (along with a right-shift equal
to the number of leading zero-bits in the binary expansion of K; the right-shift com-
mutes with the measure on the product topology.) Thus, K ® x preserves the measure
on the unit interval (up to a factor of 27" due to the above-mentioned right-shift). That
is, for 1/2 < K < 1, this discussion shows that 4 (K ® S) = u (S) /2.
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7.2 Self-similarity

There are several self-similarity properties of the shift-XOR worth noting. It behaves
very much like a classic dyadic fractal. Thus, one has that

X 1 1

In addition... TODO: illustrate the other symmetry.

K®(

7.3 Similarity Transformations

The shift-and-XOR algorithm acts as a permutation on bit-strings. As a result, the
XOR-analogs of the downshift and the tent map become uniformly ergodic, behaving
exactly as the Bernoulli shift. The Frobenius-Perron solution to these is just the uniform
distribution, which is featureless. All of the structure visible in figures 2 and 3 is
entirely due to the dynamics of the carry bit. Effectively, the carry-bit algorithm alters
the uniform distribution of the Bernoulli shift (equivalently, the uniform distribution
associated with the natural measure on Cantor space.)
Define the XOR-analog of the downshift as

2B®@x for0<x<3
cp (x) = 1 1
2ﬁ®(x—§) f0r§§x<1

The factor of 2 makes up for the fact that shift-XOR effectively drops the top bit; thus
the goal is to map each half of the unit interval into the entire interval [0, 1].
Given a fixed 3, define Mg : [0,1] — [0, 1] as

Xp (x) =B ®x

As observed previously, Mg is an automorphism of the unit interval, and more: it is a
permutation on Cantor space. Let b(x) be the Bernoulli shift of eqn 1; then one has that
cg = K ob. Taken together, this implies that the ergodic properties of iterating on cg
follow directly from the ergodic properties of the Bernoulli shift; a shuffle, any shuffle
on the Cantor set should not alter these ergodic properties.

TODO: similarity transforms on the transfer operator... and the non-alteration of
the eigenspectrum, even as the eigenfunctions are altered.

7.4 Multiplication on the Cantor Space

The previous set of results indicates that all of the structure in the bifurcation diagrams
of 2 and 3 is entirely due to the dynamics of the propagation of the carry sum. To
explore this, the notation needs to be improved on.

The downshift can be decomposed into multiple distinct stages. First, there is a
conversion from the unit interval to the Cantor space; this was defined at the very start,
but now we need a less awkward notation for it. Let

w29 — [0,1]
0.b0b1b2~~' — X
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be the projection from the Cantor space to the real-number unit interval, given by eqn
2. Note that it is a surjection: dyadic rationals (rationals of the form m/2") correspond
to two distinct bit strings. For example, 1/2 can be represented as both 0.1000- - - and

as 0.0111---. Cantor space covers the unit interval. Write the inverse mapping as
0,1 — 20
X —  0.bob1by---

As a function, it is injective but not surjective. It is usually convenient to ignore this,
and to pretend that both 7 and 7~! are bijections, even though they are not. This
rarely leads to practical difficulties, as long as one stays conceptually tidy. Better yet,
just perform all work on the Cantor space, and project to the unit interval only when
needed.

Next, turn to multiplication. This has three parts. First, the summation of the carry
bits:

S B 20 — N©®
0.b0b1b2~~ — (SQ,Sl,Sz,"~)

where the summation is given by eqn 21. Here, N? is Baire space, the space of all
infinite-length sequences of non-negative integers. In number theory, this would be
called the space of arithmetic functions. The second part of multiplication is the prop-
agation of the carry bits. Denote this as

C:N?® — N®
(S07515527”') = (d07d17d27”')

which is defined in eqn 22. Finally, one extracts the remainder, after propagation:

A:N?® — 20
(dO;dlvdZa"') = (aOaalvaZa"')

which is given by eqn 23. Of the three parts into which we’ve decomposed multiplica-
tion, only the first part is parameterized by K. Thus, multiplication, on Cantor space,
can be written as Mg = AoCoSg. The shift-and-XOR algorithm omits the propagation
of the carry sum. On Cantor space, it is just Xg = Ao Sg: the XOR is just modulo-2 of
the carry sum.

To obtain multiplication on the real-number unit interval, we need merely to re-
project from Cantor space to the reals. Thus, multiplication, given in eqn 20, decom-
poses into

Mﬂ :71:voCoSBon'71

The downshift of eqn 3 is then
Tp zﬂ:voCoSﬁOﬂflob

where b is the Bernoulli shift. To simplify notation, it is convenient to go ahead and
provide a symbol for the shift operator:

B:29 — 20
(bo,b1,b2,-+-) = (b1,ba,--)
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so that b = o Bon~!. The corresponding downshift on the Cantor space is
Bg=AoCoSgoB

which eliminates the pesky projection 7. It should be clear that Sg is an injection, the
propagation operation C and the remainder A are both surjections.

As noted, the shift-and-XOR algorithm can be written as &B =Ao SB; the step
where the carry bits are propagated is dropped. The XOR-version of the downshift is

cp :Xp,oB:AoS[; oB

Thus, in this new notation, it reaffirms that B is the true source of ergodicity, and that
Ao Sg being a permutation does not alter the basic ergodic property of B. All of the
structure in the bifurcation diagrams can be blamed on the propagation operator C.

7.5 Propagation games

Pinning the “blame” of complex dynamical structure on the propagation of the carry
bits seems to be an open invitation to replace the propagation operator C by just about
anything, to see what happens. Figure 26 illustrates some of the things that can happen.

Reviewing the images there makes it clear that although fiddling with the carry bit
fundamentally alters point trajectories, it completely fails to open any doors that would
provide insight into the structure of the transfer operator. The pictures are pretty, but
appear to be meaningless.

8 Sci-fi day-dreaming

This section provides two day-dreams inspired by this material. They are just that:
daydreams. If you don’t like fictional daydreaming, you won’t like the material here.
Sorry about that.

8.1 Limits to computation

There are many limits to computation. One limit is the speed of light. In current gener-
ation CPU chips, clock rates in the vicinity of 3 gigahertz= 3 x 10° cycles per second.
By comparison, the speed of light in a vacuum is about 3 x 10® meters per second.
Dividing, one finds that light can travel about 3 x 108 /3% 10° = 107! meters, or about
four inches: a bit bigger than the actual physical dimensions of a chip (typically around
half-an-inch on a side), but not by much. Of course, the speed of light in a metal con-
ductor is lower — about half the speed in a vacuum. And transistors are small — more
than twenty-thousand times smaller. So, measured in terms of the size of the transistor,
the speed of light is about ten or twenty transistor-widths per clock-cycle. So, OK, its
still fast, at that length scale. But not really all that fast. The point here is that the speed
of light is a potential limit to the speed of computation, and it is not all that far away.
In this setting, one can imagine the situation where the speed of propagating the
carry bit during multiplication becomes a limiting factor. The above work hints at

64



Figure 26: Carry-bit propagation

Two triptychs of different carry-bit behaviors. Define F : N® — N® by F = f x f X
f x--- and then iterate on Ao Co F o Sg o B. For f (n) = n one obtains, of course, the
standard downshift of figure 2. The top-left image shows f(rn) =n mod 2, which is
the same as iterating on the shift-XOR function Cp- Here, B runs from 0 at the bottom,
to 2 at the top; x runs from O to 1, left to right. The uniform red square simply indicates
that the iteration is completely independent of f when 1 < B < 2: it is fully uniform
and ergodic in the same way that the Bernoulli shift is. The top-middle image shows
f(n) =n+1, that is, pretending that there is one carry bit too many. The top-right
shows f (n) = max (0,n — 1), that is, having one carry-bit too few.

The bottom three shows a progression of f(rn) = max(n,1), f(n) = max(n,2) and
f(n) = max (n,3), allowing more and more carry bits to propagate. In the limit, this
becomes figure 2 once again. Except for the top-left image, the rest seem pointlessly
goofy.
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a somewhat boggling idea: can multiplication be effectively parallelized by working
with transfer operators instead? That is, the multiplication of two numbers corresponds
to point-wise particle dynamics: a discrete particle following a chaotic path through
a complex numerical computation. By contrast, the transfer operator describes how
a distribution propagates through a computation: it effectively performs “an infinite
number” of multiplications at the same time, in parallel. That is, rather than asking
how single values propagate, one could, and perhaps should, ask how distributions
propagate — parallelize multiplication (for example) to an “infinite” degree. It is this
rather ridiculous idea that suggests that the above explorations are not purely abstract,
but have a potentially practical application. As I suggested — its a bit of science-fiction
day-dreaming at this point. But it does hint at an alternate model of computation.

Variants of this model have already been explored, for decades. For example,
Crutchfeld defined “geometric state machines” as generalizations of finite state ma-
chines, where, instead of having a finite matrix (a “transition matrix’’) act on a finite
vector (the “state vector”), one instead considers operators acting on homogeneous
spaces — that is, applying a sequence of such operators on homogeneous space. The
most famous and celebrated such space would the CP" — complex projective space,
with the operators that act on it being the the unitary ones: U (n) — such a system defin-
ing the n-qubit quantum state machine. Distributions on CP" are mixed states — and
the idea of quantum computing is to evolve such states through a set of operations.

The point here is that computation, by means of the time-like evolution of distri-
butional densities, is already being explored, but in a rather different context than the
one explored here. Here, it seems like we are bowled over by the complexities of a
seemingly much simpler system.

8.2 Wave function collapse

There is also a different, bizarrely hypothetical way in which all of this apparatus could
manifest itself. Currently, in order to avoid the rather severe issues associated with the
concept of quantum-mechanical wave-function collapse, the (vast?) majority of prac-
ticing physicists believe in the many-worlds hypothesis. Clearly, this belief is entirely
correct for microscopic systems, isolated from the usual thermodynamic hustle and
bustle (chlorophyll, rhodopsin and the magnetically sensitive cryptochromes notwith-
standing). But it seems to fly in the face of daily experience, where we are aware of
just one reality. One of my favorite hypotheses is that this is the result of the (rapid)
decay of macroscopic quantum states down to a probability of zero. The mechanism is
presumably that of decaying subshift measures. Penrose argues that this has something
to do with gravity; but we can go one better: the natural setting for shift spaces are hy-
perbolic spaces, as that is where there is enough room to “fit everything” in a uniform
way consistent with a metric. Curiously, the world we live in — Minkowski space, is
hyperbolic. This suggests that the Many Worlds interpretation is exactly right, as long
as one truly is in Minkowski space, but that gravitation, which essentially bends or
distorts it, squeezes down the room available for multiple quantum states, effectively
forcing the collapse in this way.

Put another way: the standard treatment for quantum field theory is the Feynman
functional integral; it can be viewed as an integral over all possible paths that a “par-
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ticle” might take. The daydream is to equate a specific path with the idea of point-
dynamics in an iterated function. As long as one considers only points, and there
movement, one can be completely unaware of either the invariant measure, or of the
decaying eigenstates of the shift operator. In a standard QFT textbook, all equations
appear microscopically time-reversible. There’s almost no idea of a measure, except
for the exp —i#iS in the Feynman integral. The incorporation of gravity into this is fa-
mously difficult. The daydream here is that gravity manifests itself as eigenfunctions
that live off of the shell of unitary evolution.

There is some practical hope of bringing this daydream to fruition: the theory of
subshifts has seen dramatic advances over the last few decades, getting increasingly
abstract, and gaining a firm footing in very general settings: viz not just in metric
spaces, but even in more general topological vector spaces, and specifically in stereo-
type spaces, where most of the devices used in analysis can be exercised in reasonably
safe manner. The point here is that most of QFT can be formulated using these more-or-
less conventional tools and notations. The trick is to locate and extract those parts that
renormalize to zero, not unlike some of the formally divergent sums explored above,
which can none-the-less be regulated and made to give reasonable answers. Or at least,
that’s the daydream. Clearly, got far to got before it can be reality.

9 Topological Push-Forward

The transfer operator is most generally and correctly defined as an operator acting on
the topology of a space, and specifically, as the push-forward of the (uniform) measure
by the iterated function. That is, given any open set belonging to the topology, the
transfer operator assigns a different open set of the topology: it is a map of sets to
sets. For iterated maps on the unit interval, it is essentially a map of cylinder sets, the
open sets of the product topology. The shift-XOR experiment shows that the ergodic
properties arise from the Bernoulli shift, and that all other properties, commonly called
“chaotic”, are really the side effect of something else, entirely: the internal structure of
the transfer operator. Fiddling with the carry-bits cannot reveal this structure; instead,
they just define other, pointlessly goofy iterated functions. Point trajectories fail to
reveal the internal structure of the transfer operator, and at best point in a misleading
direction. To understand the transfer operator, it must be tackled for what it is: one
must look at how intervals are mapped to intervals, and what sort of symmetries can be
discovered in this mapping. (I've given one sketch of a proof of the transfer operator as
a push-forward in this reference:[21]. There are must surely be better, more accessible
and more formal and mathematically refined presentations; if you, reader, know osf
such, please drop me a line.)

The action of the transfer operator on the sets belonging to the topology of the reals
reveals several distinct kinds of actions. The topology on the reals can be generated
from a basis consisting of connected sets. The transfer operator will map some con-
nected sets to other connected sets, simply moving them around, shrinking or expand-
ing them. In other cases, a connected set will be split into two disjoint parts. For maps
that are continuous, there must be regions that have fixed-points and period-doubling
routes to chaos: these correspond to the (countable number of) “trouble spots” illus-
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trated in section 4.3.

It seems reasonable to argue that each of these different kinds of moves creates
a distinct group (or monoid) of transformations: in a certain sense, those transforms
that do not change th connectivity, nor do any folding, are all similar to one-another.
It should be possible to write down exactly which sets belong to this type, and then
give explicit transformation properties between them. Likewise, those connected sets
which are split in two are all similar. It seems like there should be a prototype: a generic
split, followed by some re-arrangement of the two parts. How can this classification be
written in an insightful, useful way?

I beleive that there has been a sufficient number of advances in the theory of sub-
shifts so that the above vague sketch can be presented in a fairly concrete way. Un-
fortunately, most of the relevant material remains rather arcane and abstract, lacking
in direct accessibility to casual students. I am not currently aware of any adequate yet
accessible treatment.

10 Conclusion

What, exactly, is the point of mathematics, especially in the computational age? Can’t
one just get a fast computer, iterate on the logistic map, and find out everything there
is to find? Well, of course, yes, and no: these questions can be taken as either silly or
as deeply philosophical, and it is worth the effort to understand them and address them
properly.

First, lets dispose of some obvious mis-perceptions. If one carefully scrutinizes
figure 1, one will find signs of a slight unevenness in the horizontal bars. These are
numerical artifacts due to statistical under-sampling: they smooth out and fade away
with additional sampling of the iterated equations. There is a way to obtain this same
figure, far more rapidly, and without this particular form of numerical noise: one can
instead iterate on equation 13. This suggests one philosophical answer: the goal of
mathematics is to find faster ways of computing things; to discover better algorithms.

A uniting theme between this, and the other text that I have written on fractal issues,
is that they are all explorations of the structure of the Cantor set, the structure of the
space of infinite sequences of symbols, and the structure of the continuum. That is, we
know the continuum in two different ways: one way is by means of the natural topology
on the real number line; the other is the product topology on the space of binary strings.
The former is suggested by the physical universe that we actually live in: a continuum
with spatial extents. The latter is suggested by the notion of time and repetition: the
making of choices naturally leads to a tree structure; tree structures necessarily embed
in hyperbolic spaces; the Minkowski space that we live in is hyperbolic, and this is
why, every day, as time passes on, we get to make new choices precisely because the
amount of room for possibilities is ever-increasing as time flows forward.

What, exactly, do the words “exactly solvable” really mean? So, for example, equa-
tion 15 involves summation and multiplication, which has this aura of comfortable pre-
ciseness that an iterated function somehow does not. Where does this sensation come
from? When performing arbitrary-precision numerical computations, it should be clear
that neither addition nor multiplication are simple or easy: they both require fairly com-
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plex algorithms to implement, and have not-insignificant runtimes. To be more precise:
the algorithms are non-trivial because one is using a binary digit expansion to provide a
model for a real number. Different representations of the real numbers potentially offer
different algorithms and performance profiles: one could represent reals by rationals,
but then one is left with the issue of trying to add or multiply two integers. To accom-
plish this, one has to represent the integers as sequences of bits, which only takes us
back to where we started. There is no computational oracle that automatically knows
the sum or product of integers: it has to be computed. The analysis being done in this
text is a kind of a game, where not only is one algebraic arrangement of symbols is
being compared to another, but also one computational algorithm is being compared
for another. Unfortunately, this latter comparison is very nearly opaque and hidden. If
only it could be made visible in some simple fashion.

The situation here is more easily illustrated in a different domain. The hyperge-
ometric series was presented ad studied by Gauss; Gauss, Kummer, Pfaff and Euler
observed various identities yoking together different series. By the 1950’s, thousands
of relations were known, along with some algorithms that can enumerate infinite series
of relations. The curious situation is that there is no known algorithm that can enu-
merate all such relations; there is no systematic way to classify them. The situation
does seem to make clear that there is an interplay between infinite series and algo-
rithmic relationships between them. Stated a different way: hypergeometric series are
self-similar, and the identities relating them are expressions of that self-similarity.

To further sharpen this idea: the dyadic monoid is the generator of self-symmetry
in many common fractals; this is “well-known”, and I have explored this in other texts.
A more general setting for fractal self-similarities is given by tilings of the hyperbolic
surface: to each tiling, there are corresponding fractals, the self-similarity of which
are given by the tiling. The figures 2, 3 and 4 are clearly self-similar in some obscure
way: it is visually clear, but providing a simple algebraic expression describing the
similarity is difficult; I have not been successful in this. None-the-less, it seems self-
evident that it will be the dyadic monoid that is somehow responsible for, or underlying
the symmetries (unless, of course, there is some other, as yet undiscovered structure).

The meta-question is: what is the correct framework by which one can best un-
derstand the interplay between symmetries, infinite series and algorithms? The current
tool-set seems impoverished: it does not “solve” the systems in this text. Worse, the
current system reifies addition and multiplication into oracular operations that magi-
cally obtain “the right answer”, when it is clear from numerical methods that addition
and multiplication are necessarily algorithmic operations performed on finite trunca-
tions of infinite series. It would be nice to place these operations on equal footings, so
as to expose the true nature of this beast.

11 Bibliography
The references below provide a very minimal bibliography. Its heavy on self-citations.

Search engines exist to help you find the things you don’t know, and want to find out
more about.
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