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Abstract

This text provides a broad sketch of how deep-learning/neural-net ap-
proaches are quite similar to symbolic approaches to machine learning,
knowledge representation and AI. Taken from the right viewpoint, they
can be seen to be two variants of the same structure.

To keep the development focused and concrete, the presentation is
limited models of natural language, and thus compares Word2Vec, Skip-
Gram or AdaGram-style vector-space approaches to traditional symbolic
linguistics approaches. To maintain concreteness, Link Grammar is used
as a stand-in for a prototypical dependency grammar. Super�cially, these
systems appear to have nothing in common. On closer examination, it
becomes evident that both employ a vector representation of words-in-
context. The context is an N-gram, skip-gram or adagram, in the neural-
net case, and a dependency linkage disjunct in the symbolic case.

The similarity becomes most apparent when the word+context is viewed
as a bipartite graph, with words on the left side interconnected to contexts
on the right. This bipartite graph can be factored into three parts, with
words sorted into buckets of word-sense-disambiguated synonyms on the
left, buckets of similar grammatical contexts on the right, and a tightly in-
tegrated central factor. Di�erent approaches to factorization are explored,
including low-rank matrix factorization algorithms, information-theoretic
clustering, and, most importantly co-clustering.

Although vector spaces are linear, semantics isn't; not really. Vector
spaces (representing the di�erent grammatical contexts associated with
each word) can be stitched together into a uni�ed whole, using concepts
from sheaf theory. This completes the exposition here.

DRAFT: This is NOT the �nal form of this text; it is an un�nished
WORKING DRAFT. The last 1/4th of this text needs a do-over.

1 Introduction

Deep learning and neural nets are all the rage, today, and have displaced sym-
bolic AI systems in most applications. It's commonly believed that the two
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approaches have nothing to do with each other; that they're just completely dif-
ferent, and that's that. But this is false: there are some profound similarities;
they are not only variants of one-another, but, in a deep way, they have com-
monalities that render them essentially identical. This text attempts to explain
how.

The clearest starting point for seeing this seems to be natural language,
where neural net methods have made great strides, but have not surpassed tradi-
tional (symbolic) linguistic theory. However, once this similarity is understood,
it can be ported over to other domains, including deep-learning strongholds such
as vision. To keep the discussion anchored, and to avoid confusing abstractions,
most of what follows will focus on linguistics; it is up to you, the reader, to
imagine other, more general settings.

The starting point for probabilistic approaches (including deep learning) is
the Bayesian network[1]: a probability P (x1, x2, . . . , xn) of observing n events.
For language, the xk are taken to be words, and n is the length of the sen-
tence, so that P (x1, x2, . . . , xn) is the �probability� of observing the sequence
x1, x2, . . . , xn of words. The technical problem with this viewpoint is the explo-
sively large space: if one limits oneself to a vocabulary of 10 thousand words
(and many people don't) and sentences of 20 words or less, that's (104)20 =
1080 = 2270 probabilities, an absurdly large number even for Jupiter-sized com-
puters. If n is the length of this text, then it really seems impossible. The key,
of course, is to realize that almost all of these probabilities are e�ectively zero;
the goal of machine learning is to �nd a format, a representation for grammar
(and meaning) that e�ortlessly avoids that vast ocean of zero entries.

Traditional linguistics has done exactly that: when one has a theory of
syntax, one has a formulation that clearly states which sentences should be
considered to be grammatically valid, and which ones not. The trick is to
provide a lexis (a lookup table), and some fairly small number of rules that
de�ne how words can be combined; i.e. arranged to the left and right of one-
another. You look up a word in the lexis (the dictionary) to �nd a listing of
what other words are allowed to surround it. Try every possible combination
of rules until you �nd one that works, where all of the words can hook up to
one-another. For the purposes here, the easiest and the best way to visualize
this is with Link Grammar[2, 3, 4], a speci�c kind of dependency grammar.
All theories of grammar will constrain allowed syntax; but Link Grammar is
useful for this comparison because it explicitly identi�es words to the left, and
words to the right. Each lexical entry is like a template, a �ll-in-the-blanks
form, a jigsaw-puzzle piece, telling you exactly what other words are allowed to
the left, and to the right, of the given word. This left-right sequence makes it
directly comparable to what neural-net approaches, such as Word2Vec[5, 6] or
SkipGram[7, 8] do.

What does Word2Vec do? Clearly, the 2270 probabilities in a twenty-word
sentence is overwhelming; one obvious simpli�cation is to look only at N -grams:
that is, to only look at the closest neighboring words, working in a window that
is N words wide. For N = 5, this gives (104)5 = 1020 = 265 which is still huge,
but is bearable. When scanning actual text, almost all of these combinations
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won't be observed; this is just an upper bound. In practice, a table of 5-grams �t
in latter-day computer RAM. The statistical model is to map each N -gram to a
vector, use that vector to de�ne a Boltzmann distribution (P = exp(−→v ·−→w )/Z),
and then use gradient ascent (hill-climbing) to adjust the vector coe�cients, so
as to maximize �nd a maximum of the probability P .

How are Word2Vec and Link Grammar similar? The above description of
Link Grammar should have already planted the idea that each lexical entry is
a lot like an N -gram. Each lexical entry tells you which words can appear to
the right, and which words to the left of a given word. Its a bit less constrained
than an N -gram: there's no particular distance limitation on the dependency
links. It can also skip over words: a lexical entry is more like a skip-gram.
Although there is no distance limitation, lexical entries still have a small-N -like
behavior, not in window size, but in attachment complexity. Determiners have
a valency[9] of 1; nouns a valency of 2 or 3 (a link to a verb, to an adjective,
to a determiner); verbs a valency of 2, 3 or 4 (subject, object, etc.). So lexical
entries are like skip-grams: the window size is e�ectively unbounded, but the
size of the context remains small (N is small).

Are there other similarities? Yes, but �rst, a detour. What happened to the
2270 probabilities? A symbolic theory of grammar, such as Link Grammar, is
saying that nearly all of these are zero; the only ones that are not zero are the
ones that obey the rules of the grammar. Consider the verb �throw� (�Kevin
threw the ball�). A symbolic theory of grammar e�ectively sates that the only
non-vanishing probabilities are those of the form

P (x1, x2, · · · , xk = noun, · · · , xm = throw, · · · , xp = object, · · · , xn)

and that all the others must be zero. Now, since nouns make up maybe 1/2
of all words (the subject and object are both nouns), this constraint eliminates
104× 104/(2× 2) = 224 possibilities (shrinking 2270 to 2270−24 = 2246). Nothing
to sneeze at, given that its just one fairly simple rule. But this is only one rule:
there are others, which say things like �singular count nouns must be preceded
by a determiner� (so, �the ball�). These constraints are multiplicative: if the
determiner is missing, then the probability is exactly zero. There are only a
handful of determiners, so another factor of 104 = 213 is vaporized. And so on.
A relatively small lexis quickly collapses the set of possibilities. Can we make
a back of the envelope estimate? A noun-constraint eliminates half the words
(leaving 5K of 10K possibilities). A determiner constraint removes all but 10
possibilities. Many grammatical classes have only a few hundred members in
them (�throw� is like �hit�, but is not like �smile�). So, realistically, each xk
can have only about 100 possibilities; there are only about 10020 = 1040 = 2130

grammatically valid sentences that are 20 words long, and these can be encoded
fairly accurately with a few thousand lexical entries.

In essence, a symbolic theory of grammar, and more speci�cally, depen-
dency grammars, accomplish the holy grail of Bayesian networks: factorizing
the Bayesian network. The lexical rules state that there is a node in the net-
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work, for example,

P (x1, x2, · · · , xk = noun, · · · , xm = throw, · · · , xp = object, · · · , xn)

and that the entire sentences is a product of such nodes: The probability of
�Kevin threw the ball� is the product

P (x1 = Kevin, x2 = verb, · · · , xn)
P (x1, x2, · · · , xk = noun, · · · , xm = throw, · · · , xp = object, · · · , xn)

P (x1, x2, · · · , xi = the, · · · , xp = noun, · · · , xn)
P (x1, x2, · · · , xn = ball)

Stitch them all together, you've got a sentence, and its probability. (In Link
Grammar, − logP is called the �cost�, and costs are additive, for parse ordering.)
To be explicit: lexical entries are exactly the same thing as the factors of a
factorized Bayesian network. What's more, �guring out which of these factors
come to play in analyzing a speci�c sentence is called �parsing�. One picks
through the lookup table of possible network factors, and wires them up, so
that there are no dangling endpoints. Lexical entries are look like subsets of a
graph: a vertex, and some dangling edges hanging from the vertex. Pick out the
right vertexes (one per word), wire them together so that there are no dangling
unconnected edges, and viola! One has a graph: the graph is the Bayesian
network. Linguists use a di�erent name: they call it a dependency parse.

The Word2Vec/SkipGram model also factorizes, in much the same way!
First, note that the above parse can be written as a product of factors of the
form P (word|context), the product running over all of the words in the sentence.
For a dependency grammar, the context expresses the dependency relations.
The Word2Vec factorization is identical; the context is simpler. In it's most
naive form, its just a bag of the N nearest words, ignoring the word-order. But
the word-order is ignored for practical reasons, not theoretical ones: it reduces
the size of the computational problem; it speeds convergence. Smaller values
of N mean that long-distance dependencies are hard to discover; the skipgram
model partly overcomes this by keeping the bag small, while expanding the size
of the window. If one uses the SkipGram model, with a large window size,
and also keep track of the word-order, and restrict to low valencies, then one
very nearly has a dependency grammar, in the style of Link Grammar. The
only di�erence is that such a model does not force any explicit dependency
constraints; rather, they are implicit, as the words must appear in the context.
Compared to a normal dependency grammar, this might allow some words to
be accidentally double-linked, when they should not have been. Dependency
grammar constraints are sharper than merely asking for the correct context. To
summarize: the notions of context are di�erent, but there's a clear path from
one to the other, with several interesting midway points.

The next obvious di�erence between Link Grammar andWord2Vec/SkipGram
are the mechanisms for obtaining the probabilities. But this is naive: in fact,
they are much more similar than it �rst appears. In both systems, the starting
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point is (conceptually) a matrix, of dimension W ×K, with W the size of the
vocabulary, and K the size of the context. In general, K is much much larger
than W ; for Word2Vec, K could get as large as WN for a window size of N ,
although, in practice, only a tiny fraction of that is observed. Both Link Gram-
mar and Word2Vec perform approximate matrix factorization on this matrix.
The way the approximations are done is di�erent. In the case of Word2Vec, one
picks some much smaller dimension M , typically around M = 200, or maybe
twice as large; this is the number of �neurons� in the middle layer. Then, all
of W is projected down to this M -dimensional space (with a linear projection
matrix). Separately, the K-dimensional context is also projected down. Given
a word, let its projection be the (M -dimensional) vector ~u. Given a context,
let it's projection be the vector ~v. The probability of a word-in-context is given
by a Boltzmann distribution, as exp (~u · ~v) /Z where ~u · ~v is the dot product
and Z is a scale factor (called the �partition function�[10]). The basis elements
in this M -dimensional space have no speci�c meaning; the grand-total vector
space is rotationally invariant (only the dot product matters, and dot products
are scalars).

The primary task for Word2Vec/SkipGram is to discover the two projection
matrices. This can be done by gradient ascent (hill-climbing), looking to maxi-
mize the probability. The primary output of Word2Vec are the two projection
matrices: one that isW ×M -dimensional, the other that isM×K-dimensional.
In general, neither of these matrices are sparse (that is, most entries are non-
zero).

Link Grammar also performs a dimensional reduction, but not quite exactly
by using projection matrices. Rather, a word can be assigned to several di�er-
ent word-categories (there are de facto about 2300 of these in the hand-built
English dictionaries). Associated with each category is a list of dozens to thou-
sands of �disjuncts� (dependency-grammar dependencies), which play the role
analogous to �context�. However, there are far, far fewer disjuncts than there
are contexts. This is because every (multi-word) context is associated with a
handful of disjuncts, in such a way that each disjunct stands for hundreds to as
many as millions of di�erent contexts. E�ectively, the lexis of Link Grammar
is a sparse C × D-dimensional matrix, with C grammatical categories, and D
disjuncts, and most entries in this C ×D dimensional matrix being zero. (The
upper bound on D is LV , where L is the number of link types, and V is the
maximum valency � about 5 or 6. In practice, D is in the tens of thousands.)
The act of parsing selects a single entry from this matrix for each word in the
sentence. The probability associated to that word is exp(−c) where c is the
�cost�, the numerical value stored at this matrix entry.

Thus, both systems perform a rather sharp dimensional reduction, to ob-
tain a much-lower dimensional intermediate form. Word2Vec is explicitly lin-
ear, Link Grammar is not exactly. However (and this is important, but very
abstract) Link Grammar can be described by a (non-symmetric) monoidal cat-
egory. This category is similar to that of the so-called �pregroup grammar�, and
is described in a number of places[11] (some predating both Link Grammar an
pregroup grammar). The curious thing is that linear algebra is also described
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by a monoidal category. One might say that this �explains� why Word2Vec
works well: it is using the same underlying structural framework (monoidal
categories) as traditional symbolic linguistics. The precise details are too com-
plex to sketch here, and must remain cryptic, for now, although they are open
to those versed in category theory. The curious reader is encouraged to ex-
plore category-theoretic approaches to grammar, safe in the understanding that
they provide a foundational understanding, no matter which detailed theory
one works in. At the same time, the category-theoretic approach suggests how
Word2Vec (or any other neural-net or vector-based approach to grammar) can
be improved upon: it shows how syntax can be restored, with the result still
looking like a funny/unusual kind of sparse neural-net. These are not con�ict-
ing approaches; they have far far more in common than meets the eye. A draft
discussion is presented in[12].

A few words about word-senses and semantics are in order. The most com-
mon computational approach to semantics are �vector space models� (VSM).[13]
The Word2Vec model is in many ways a VSM; sharing many common proper-
ties. Perhaps most annoying is that the �semantics� is encoded in some opaque
way. VSMs can distinguish di�erent word-senses, based on context, but exactly
what part of that context �matters� is unclear. Link Grammar disjuncts can also
distinguish word-senses; but now the �reason why� becomes understandable, or
human-auditable. So, in Link Grammar, when a word is used in a speci�c con-
text, the result of parsing selects a single disjunct. That disjunct can be thought
of as a hyper-�ne grammatical category; but these are strongly correlated with
meaning. Synonyms can be discovered in the same way that they are in VSM's:
if two di�erent words all share a lot of the same disjuncts, they are e�ectively
synonymous, and can be used interchangeably in sentences.

Similarly, given two di�erent words in Word2Vec/SkipGram, if they both
project down to approximately the same vector in the intermediate layer, they
can be considered to be synonymous. This illustrates yet another way that Link
Grammar and Word2Vec/SkipGram are similar: the list of all possible disjuncts
associated with a word is also a vector, and, if two words have almost co-linear
disjunct vectors, they are e�ectively synonymous. That is, disjunct-vectors be-
have almost exactly like neuron intermediate-layer vectors. They encode similar
kinds of information into a vector format.

This is also where we have the largest, and the most important di�erence
between Link Grammar and other vector-space models. In the neural net ap-
proach, the intermediate neuron layer is a black box, completely opaque and
unanalyzable, just some meaningless collection of �oating-point numbers. In
Link Grammar, the disjunct vector is clear, overt, and understandable: you can
see exactly what it is encoding, because each disjunct tells you exactly the syn-
tactic relationship between a word, and its neighbors. This is the great power
of symbolic approaches to natural-language: they are human-auditable, human
understandable in a way that other vector-space models are not. (Currently;
I think that what this essay describes is an e�ective sketch for a technique for
prying open the lid of the black box of neural nets. But that's for a di�erent
day.)
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The remainder of this essay is structured as follows: Section 2 provides a very
quick sketch of Link Grammar, emphasizing how dependency grammars have
vector-like aspects to them. Section 3 reviews the based CBOW, SkipGram and
neural net models, setting up some basic notation. Section 4 de�nes a graph
network model of language, emphasizing that statistical physics provides a well-
developed toolset for working with graph networks. Section 5 reviews several
di�erent techniques by which statistical information can be gathered, and the
graphical structure can be infered, given a large ��at� corpus of text. Section
6... is the triumphant section...

Many thanks and appreciation to Hanson Robotics for providing the time
to think and write about such things.

2 Link Grammar as a Model of Language

One of the barriers to understanding the commonality between symbolic and
vector approaches is the notational di�erence. This section provides a highly
abbreviated review of the Link Grammar[3, 4] notation, followed by a simple
modi�cation so that it's vector-like form becomes more apparent.

The �gure below represents a (simpli�ed) parse of the sentence �Kevin threw
the ball�:

 Kevin threw the ball

S

O

D

The labeling is prototypical of a dependency grammar: the arc labeled �S�
denotes a subject-verb dependency; �O� a verb-object dependency, and �D�
links a noun to a determiner. The required lexical entries, in alphabetical
order, are

ball: D- & O-;

Kevin: S+;

the: D+;

threw: S- & O+;

The capital letters, together with a +/- sign, are called �connectors�; a pair of
connectors form a �link�. The +/- sign indicates a left-right directionality: for
example, the S+ connector can only connect to the right; it must mate with an
S- connector to form an S link. A valid parse exists if and only if all available
connectors are paired up. The construction S+ & O- is called a �disjunct�; the
name has a historical basis that is of no particular concern here. During parsing,
all connectors in a disjunct must be satis�ed.1

1Not immediately obvious from this abbreviated sketch is that the Link Grammar formu-
lation of a dependency grammar is su�ciently strong to encode long-range coordination or
enforce the correct usage of set phrases/phrasemes with �holes� in them. It can. There is a
set of e�ects that can be encoded in this way, from phonetic structure to to morphology. The
referenced sources open the doors to understanding how this can be done.
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Each lexical entry is a word-disjunct pair; they are of the general form

word: A- & B+ & C+ & ...;

Because every link connects a pair of words, it can be thought of as the set of all
possible word-pairs allowed by that connector. Thus, in the example above, the
link O is e�ectively equivalent to the singleton set {threw-ball}. The above
dictionary is so simple, that there are no other word-pairs in this set; in general,
this is not the case. Thus, the capital-letter link types are actual types, in the
type-theoretic sense.

At this point, it is notationally convenient to replace each type by the set,
like so:

ball: {the -ball}- & {threw -ball}-;

Kevin: {Kevin -threw }+;

the: {the -ball }+;

threw: {Kevin -threw}- & {threw -ball }+;

Each lexical entry above redundantly repeats one of the words in each word-pair.
To obtain a more compact notation, drop the redundant word, to get

ball: the - & threw -;

Kevin: threw +;

the: ball+;

threw: Kevin - & ball+;

This is encoding represents the exact same dictionary as the �rst one, but now
using the attachment-words as connectors, instead of single letters. The result-
ing sentence parse is exactly the same as before. The link types appear to be
lost; these can be partly restored, as long as some other location records that
{threw-ball} should be replaced by the link O.

The above representation for the dictionary is verbose, and is not very prac-
tical for hand-crafted dictionaries. Link types really are much more convenient.
However, the above representation helps make it brutally clear that disjuncts ef-
fectively resemble adaptive N-gram word-contexts. The pseudo-disjunct, where
the connector types are replaced by instances of individual words, can be used
as a word-in-context. For example, a quick glance at the pseudo-disjunct

ran: girl - & home+;

makes it clear that it might be observed in a sentence such as �the girl ran
home�. Neither the subject nor the object are explicitly labeled; however, one
can maintain statistical observation counts using this method. It provides a
direct bridge from dependency grammars to corpus linguistics. The vectorial
representation arises naturally when accumulating observation counts of di�er-
ent disjuncts. A word-vector is then simply a count of all the di�erent observed
pseudo-disjuncts. For example, one might observe the vector ~vran, which may
be represented as

ran: 3(girl - & home+) + 2(girl - & away +);
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This will naturally arise if the sentence �the girl ran home� was observed three
times, and �the girl ran away� was observed twice.

From this point on, the standard panoply of vector-based techniques become
available. Normalizing vectors to be of unit-length implies that the frequency-
counts can be re-interpreted as frequency-probabilities. Once in possession of
vectors, the standard tricks of vectorially-based semantic similarity apply. For
example, a di�erent vector ~vwalked represented as

walked: 2(girl - & home+) + 3(girl - & away +);

suggests that the cosine-product cos
(
~vran, ~vwalked

)
between the two might be

used to judge word-similarity: �ran� and �walked� can be used in syntactically
similar ways. Syntactic similarity is generally associated with semantic similar-
ity (synonymy). Later in this text, it is strongly argued that cosine-products are
not the correct way to measure similarity (synonymy), and that the information-
theoretic Kullback-Leibler divergence is much more appropriate. A precise for-
mulation will be given then. For now, it is enough to note that the availability
of a vector means that all usual vector tricks can be applied.

However, unlike (adaptive) N-gram techniques, the disjunct approach also
enables a very di�erent kind of vector to be de�ned. Given the above corpus
of �ve sentences, one can formulate a di�erent vector, for the word �home�, as
follows. Unlike the earlier examples, the representation is a bit more awkward:

3(ran: girl - & home+) + 2( walked: girl - & home+)

Note that the counts, here, of 3 and 2, are identical to the counts above: all of
these counts are derived from the same observational dataset. What di�ers is
the choice of the attachment-point for which the vector is to be formed. The
attachment-point or �germ� can be high-lighted by replacing it with a star:

3(ran: girl - & *+) + 2( walked: girl - & *+)

This is a fundamentally di�erent kind of vector than the earlier examples. The
ordinary (adaptive) N-gram vectors do not have this kind of representational
ability; they all collapse down to the same representation.

This di�erence turns out to be important, and has deep repercussions. A
quick sketch can be given. These two di�erent vector types can be distinguished
by employing superscripts D and C: viz. write ~vDran for the disjunct-based
vector, and ~vChome for the connector-based vector. Given any word w, there

will in general always be vectors ~vDw and also ~vCw . Even more: there will be
several forms of ~vCw , with the word occupying di�erent slots in the disjunct,
thus ~vC1

w and ~vC2
w and ~vC3

w and so on. So, since the germ was located in the
second slot, one should write ~vC2

home
instead of ~vChome.

These vectors can be taken together as ~vDw ⊕ ~vC1
w ⊕ ~vC2

w ⊕ · · · which inhabit

orthogonal subspaces of ~V D ⊕ ~V C1 ⊕ ~V C2 ⊕ · · · . The dependency-grammar
constraints embodied in the connectors imply that these vector spaces can be
�glued together�; the dependency-grammar constraints imply that these vector
subspaces can be glued together or stitched together in a highly non-linear
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Figure 1: Rhizome

This image illustrates the general concept of a rhizome. It is meant only to
provide a suggestive inspiration for visualizing a graphical sheaf. Lines corre-
spond to dependency grammar link contraints between tangent vector spaces.
Since any given word in a sentence can have dependency relationships to a num-
ber of other words, each vertex here (a word) has multiple edges attached to
it. Any grammatically valid dependency parse is then a subtree of this image.
This image is at best only suggestive; a true sheaf would have stalks, missing
in this illustration, with stalks corresponding to the vectors (sections) above a
point in the base space (points in the base space being words). (Photograph of
a sculpture at the Copenhagen Art Musem; photo credit Jenny Mackness (2014). License:
Attribution-NonCommercial-ShareAlike 2.0 Generic (CC BY-NC-SA 2.0) (Flickr))
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fashion. The rules for gluing are in fact identical to the gluing axioms of sheaf
theory and algebraic topology. In essence, the algebra of natural language is
the algebra of a sheaf. The disjunct vectors can be understood as a kind-of
germ or stalk, similar to the �tangent vector� of a kind-of �manifold� of natural
language. Unfortunately, algebraic geometry is a somewhat abstract branch of
mathematics, and is normally quite distant from linguistics. This text is not
appropriate for further exploration; see [12] for details.

To simplify these last claims somewhat, they e�ectively say this: the correct
conceptual model for the observational data is that of a large network graph,
with vectors of observation counts attached to each vertex. When the vectors
are consistently glued to one-another, so that only the syntactically-allowed sen-
tences are possible, the network begins to look more like a bramble or rhizome,
with each thread in the rhizome corresponding to a grammatically-correct sen-
tence. The algebraic structure of this rhizome is a sheaf, explicitly in the sense
of sheaf theory. Figure 1 illustrates a rhizome.

3 Statistical Network Models

The task of language learning is commonly taken to be one of estimating the
probability of a text, consisting of a sequence of words. One common model
assumes that the probability of the text can be approximated by the product of
the conditional probabilities of individual words, and speci�cally, of how each
word conditionally depends on all of the previous ones:[6]

P̂
(
wT1
)
=

T∏
t=1

P
(
wt
∣∣wt−11

)
Here, the text is presumed to consist of T words wt occurring in sequential
order. The notation wni is used to denote a sequence of words, that is, wni =

(wi, wi+1, · · · , wn). Thus, the text as a whole is denoted by wT1 , and so P̂
(
wT1
)

is an approximate model for the probability P
(
wT1
)
of observing the text (the

carat over P serving to remind that approximations are being made; that the
model is an approximation for the �true� probability.)

Although this statistical model is commonly taken as gospel, it is, of course,
wrong: we know, a priori, that sentences are mentally constructed nearly whole
before being written or spoken, and so the current word also depends on future
words, ones that follow it in the text. This is the case not just at the sentence-
level, but also at the level of the entire text, as the writer already has a theme
in mind. To estimate the probability of a word at a given location, one must
look at words to both the left and right of the given location.

At any rate, for T greater than a few dozen words, the above becomes
computationally intractable, and so instead one approximates the conditional
probabilities by limiting the word-sequence to a sliding window of length N . It
is convenient, at this point, to also allow words on the left, as well as those on
the right, to determine the conditional probability. Following Mikolov[7], one
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may write the probability

p (wt |wt−c, · · ·wt−1, wt+1, · · ·wt+c )

of observing a word wt, at location t in the text, as being conditioned on a local
context (sliding window) of N = 2c surrounding words, to the left and right, in
the text. The probability of the text is then modeled by

P̂
(
wT1
)
=

T∏
t=1

p (wt |wt−c, · · ·wt−1, wt+1, · · ·wt+c ) (1)

The smaller window does make the computation more tractable. Here, the
window is written in a manifestly symmetric fashion; in general, one might
ponder a window with a di�erent number of words to the left or right.

The above contains another key simpli�cation: the total probability is as-
sumed to factor into the product of single-word probabilities, and each single-
word probability is translationally invariant; that is, the probability has no
explicit dependence on the index t. This is commonly taken to be a reasonable
simpli�cation, but again, it is, of course, �obviously� wrong. At the sentence
level, in English, we commonly do not start sentences with verbs. At the text
level, the words at the end of a text occur with di�erent probabilities than
those at the beginning; for example, in a dramatic story, a new character may
appear mid-way, or the setting may move from indoors to outdoors, so that
furniture-words become uncommon, while nature-words occur more frequently.
The translational invariance only becomes plausible in the limit of N → ∞
where one is considering �all human language�. This too, is preposterous; �rst,
because not everything that can be said has been said; second, because dif-
ferent individuals speak di�erently, and third, because new words are invented
regularly, as others become archaic.

In general, it seems reasonable to assume that the distribution of words,
when taken over sliding windows of di�erent sizes, varies in a scale-free fashion
with the window size. So, consider a long book, and a sliding window of width
N = 1000. The distribution of the words within that window will be Zip�an;
as the window slides from scene to scene, the probability distribution will be
sensitive to that scene (indoors/outdoors, with/without some character...) The
positional non-uniformity persists at all window-sizes N .

In what follows, we are primarily concerned with the grammatical structure
of single sentences, and not the narrative structure of longer texts. E�ectively,
it is enough to work with a value of N that is less than a few dozen. The
fact that sentences typically do not start with verbs can be �explained� by the
rules of syntax; no explicit factorization for single-word probabilities is required.
Thus, the translation-invariant �Bayesian network� factorization of eqn 1 is ap-
propriate and suitable for the current task. As will be seen in later chapters,
this factorization can be improved on, and performed much more cleanly and
elegantly.
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3.1 N-Gram Model

Without any further elaboration, and taken at face value, the above de�nes
what is more-or-less the �classic� N-gram model. The general property is that
there is a sliding window of N words in width, and one is using all of those
words to make a prediction. Because of the combinatorial explosion in the size
of the vocabulary, N is usually kept small: N = 3 (trigrams) or N = 5. That
is, for a vocabulary of W words, there are WN probabilities p that must be
computed (trained) and remembered. For W = 104 and N = 3, this requires
up to WN = 1012 = 240 probabilities to be maintained: even if most 3-word
sequences are never observed, this is still clearly near the edge of what is possible
with present-day computers.

The model can be made computationally tractable in various ways. One
well-discussed variant is to blend together, in varying proportions, the models
for N = 0, N = 1 and N = 2. Such an approach is of no particular interest for
the subsequent development; grammar happens at larger values of N , and the
goal is to create e�ective factorizations that encompass grammar.

3.2 Model Building

The combinatorial explosion can be avoided by proposing models that �guess�,
in an a priori fashion, that some of these probabilities are zero, or that they are
(approximately) equal to one-another, or that they can be grouped or summed
in some other ways. More correctly, one hypothesizes that the vast majority
of the probabilities are either zero or fall into classes where they are equal.
If one can �nd a model that captures that all but one in ten-thousand such
probabilities are zero, then tht model becomes compuitationally tractable again.
An alternate model is to hypothesize that certain linear combinations of the
probabilities are all equal to one-another. The latter approach is exactly that
of the neural net and deep learning approaches: the linear combinations of
equivalent probabilities are the ones represented by various layers in the neural
net.

There is a fairly rich variety of such models. Reviewed immediately below
are two foundational models: the so-called CBOW model, and the SkipGram
model. The general goal of this paper is to demonstrate that Link Grammar,
and thus dependency grammars in general, can be understood to also �t into
this same class of probabilistic models. What di�ers is the mechanism by which
the models are trained; the Link Grammar training algorithm, already sketched
above, is not a hill-climbing/deep-learning technique. A proper comparison of
training algorithms will be made after the initial review of the CBOW and
SkipGram models.

3.3 CBOW

Mikolov, etal[8, 7] propose a model termed as the �continuous bag-of-words�
model. It is presented as a simpli�cation of neural net models that have been
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proposed earlier. As a simpli�cation, it makes sense to present it �rst; neural
net models are reviewed below.

In the CBOWmodel, each (input) word w is represented by an �input� vector
~vw of relatively small dimension. One does the same in an ordinary bag-of-words
model, but with much higher dimension. In an ordinary bag-of-words model,
one considers a vector space of dimension W , with W being the size of the
vocabulary. One then makes frequentist observations, counting how often each
word is observed in some text. The result of this counting is a vector living in a
W -dimensional space. Di�erent texts correspond to di�erent vectors. However,
nothing about the grammar of individual sentences or words is learned in this
process.

In the CBOW model, the dimension of the space in which the vector ~vw
lives is set to a much smaller value D � W . Commonly used values for D are
in the range of 50�300; by contrast, typical vocabulary sizes W range from 104

to 106. The mismatch of dimensions results in the mapping sometimes being
called �dimensional reduction�.

In the CBOW model, the mapping from the space of words to the space of
vectors ~vw is linear; there are no non-linear functions, as there would be in a
neural net. That is, the mapping is given by a matrix π of dimension D ×W .
Maps from higher to lower dimensional spaces are called �projections�. (The
notation of the lower-case Greek letter π for projection is common-place in the
mathematical literature, but uncommon in the machine-learning world. It's
convenient here, as it avoids burning yet another roman letter.) The projection
matrix π is unknown at the outset; the goal of training is to determine it.

The CBOW is a model of the conditional probability

p (wt |wt−c, · · ·wt−1, wt+1, · · ·wt+c )

As already mentioned, it projects each word down to a lower-dimensional space.
To get the output word wt, one has to �unproject� back out, which is convention-
ally done with a di�erent projection matrix π′. To establish some notation: let
êw be a W -dimensional unit vector that is all-zero, except for a single, solitary
1 in the w'th position (this is sometimes called the �one-hot� vector in machine
learning). Then one has that ~vw = πêw is the projection of w � equivalently, it
is the w'th column of the matrix π. For the reverse projection, let ~uw = π′êw.
(Many machine-learning texts write ~v′w for ~uw; we use a di�erent letter here,
instead of a prime, to help maintain distinctness. Almost all machine-learning
texts avoid putting the vector arrow over the letters; here, they serve to remind
the reader where the vector is, so as to avoid confusion in later sections.)

Let I be the set of context (or �input�) word subscript o�sets; to be consistent
with the above, one would have I = {−c,−c+ 1, · · · ,−1,+1, · · · ,+c}. By
abuse of notation, one might also write, for o�set t or for word wt, that

I = {t− c, t− c+ 1, · · · t− 1, t+ 1, · · · , t+ c}

or that
I = wI = {wt−c, wt−c+1, · · · , wt−1, wt+1, · · · , wt+c}
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Exactly which of these sets is intended will hopefully be clear from context.
The CBOW model then uses the Boltzmann distribution obtained from a

certain partition function, sometimes called the �softmax� model. The model is
given by

p (wt |wI ) =
exp

∑
i∈I ~ut · ~vi∑

j∈W exp
∑
i∈I ~uj · ~vi

(2)

The sum in the numerator runs over all words in the input set I; the sum
in the denominator runs over all words in the vocabulary W . The sum in the
denominator explicitly normalizes the probability to be a unit probability. That
is, for �xed wI , one has that 1 =

∑
j p (wj |wI ).

Computation of the matrices π and π′ is done by explicitly expanding them
in the expression above, and then performing hill-climbing, attempting to maxi-
mize the probability. To provide a nicer landscape for hill-climbing, it is usually
done on the �loss function� E = − log p (wt |wI ). One works with the gradient
∇π,π′E and takes small steps uphill. The detailed mechanics for doing this does
not concern this essay; it is widely covered in many other texts[14].

By convention, π and π′ are taken to be two distinct projection matrices. I
do not currently know of any theoretical reason nor experimental result why this
should be done, instead of taking π = π′. Knowledgable readers are encouraged
to correct my misperception.

3.4 SkipGram

The SkipGram model is very similar to the CBOW model, and is commonly
presented as it's opposite. It uses essentially the same Boltzmann distribution
as CBOW, except that it is now looking at the probability p (wI |wt ) of the
context I given the target word wt. Explicitly, the model is given by

p (wI |wt ) =
exp

∑
i∈I ~ut · ~vi∑

I∈WN exp
∑
i∈I ~ut · ~vi

(3)

That is, the word wt is held �xed, and the sum ranges over all possible N -tuples
I in the (now much larger) space WN (as always, N is the width of the sliding
window).

As in the CBOW model, the projection matrices π and π′ are computed
by means of hill-climbing the loss-function. The important contribution of of
Mikolov et al. is not only to describe this model, but also to propose several
algorithmic variations to minimize the RAM footprint, and to improve the speed
of convergence.

Both SkipGram and CBOW are sometimes called �neural net� models, but
this is perhaps slightly misleading, as neither make use of the sigmoid function
that is characteristic of neural nets. Given that the characteristic commonality
is that the probabilities are obtained by hill-climbing, it seems more appropriate
to simply call these �deep learning� models. The distinction is made more clear
in the next section.
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3.5 Perceptrons and Neural Nets

The neural net model proposed by Bengio[6] is worth reviewing, as it places
the CBOW and SkipGram models in context. It builds on the same basic
mechanics, except that it now replaces the dot-product

∑
i∈I ~ut ·~vi by a �hidden�

feed-forward (perceptron) neural layer.
The perceptron consists of another projection, this time called the �weight

matrix� h, and a non-linear sigmoid function σ (x), which is commonly taken to
be σ (x) = tanhx or σ (x) = 1/ (1 + e−x) or similar, according to taste.

The input to the weight matrix is the vector ~vI which is a Cartesian product
of the input vectors ~vi for the i ∈ I. That is,

~vI = ~vt−c × ~vt−c+1 × · · · × ~vt+c

where, for illustration, we've taken the same I as given in the previous sections.
This vector is ND-dimensional, where, as always, N is the cardinality of I and
D is the dimension of the projected space.

The input vector ~vI is then sent through a weight matrix h to a �hidden�
neuron layer consisting of H neurons. That is, the matrix h has dimensions
ND × H. An o�set vector ~d (of dimension H) is used to properly center the
result in the sigmoid. The output of the perceptron is then the H-dimensional
vector

~s = σ
(
h~v + ~d

)
where the sigmoid is understood to act component by component; that is, the
k'th component [~s]k of the vector ~s is given by

[~s]k = σ
([
h~v + ~d

]
k

)
This is then passed through the �anti-�projection matrix π′, as before, except
that here, π′ must be H×W -dimensional. Maintaining the notation from earlier
sections, the perceptron model is then

p (wt |wI ) =
exp ~ut · ~s∑
j∈W exp ~uj · ~s

Just as in the CBOW/SkipGram model, training can be accomplished by hill-
climbing, this time by taking not only π and π′ as free parameters, but also h
and ~d.

Typical choices for the dimension H is in the 500�1000 range, and is thus
comparable to the size of ND, making the weight matrix h approximately
square. That is, the weight matrix h does a minimal amount of, if any at
all, dimensional reduction.

4 Graph Network Models of Language

Super�cially, the graphical approach of a symbolic dependency grammar, such
as Link Grammar, seems to have no resemblance at all to the probabilistic
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approach of neural network models. The previous sections hinted at the presence
of vectors in both systems; but the vectors are super�cially di�erent, and the
role of probability in either remained less than entirely clear. The di�erences are
less than they seem; di�erent notation obscures similarity; di�erent traditions
emphasize di�erent aspects so strongly that even minor hints of similarity are
lost. This section attempts to articulate the commonality.

Both the neural network and the symbolic graphical approaches to language
could be termed to two di�erent faces of a common graphical network model of
language. The structure of graph networks are a part of the standard curricu-
lum of physics and statistical mechanics. This section begins with a reiteration
that Link Grammar disjuncts resemble the factors of a factored Bayesian net-
work. Next, the loss functions of the CBOW/SkipGram model can be seen
as a manifestation of standard (statistical mechanics) maximum entropy prin-
ciples. Equiped with this insight, one can proceed along a common track in
physics: derive the statistical models from a partition function. The partition
function encodes �all possible knowledge� of a network graph; speci�c factors
of this graph are called �Feynman diagrams�. With the tools of physics thus
deployed, a dependency parse, when obtained statistically, can be recognized
as a kind of Feynman diagram. The dependency grammars of natural language
are Feynman diagrams of statistical physics.

This section sets the stage for the next, which reviews several di�erent ap-
proaches for obtaining the statistical information needed to correctly factor a
graph network.

4.1 Disjuncts as Context

Consider the probability

p (wt |wt−c, · · ·wt−1, wt+1, · · ·wt+c )

This is meant to indicate the probability of observing the word wt, given c
words that occur before it, and c words that occur after it. Let c = 1 and
let wt = ran, wt−1 = girl and wt+1 = home. This clearly resembles the Link
Grammar disjunct

ran: girl - & home+;

One di�erence is the Link Grammar disjunct notation does not provide any
location at which to attach a probability.2 This can be remedied in a straight-
forward manner: write d for the disjunct, girl- & home+ in this example. One
can then de�ne the probability

p (w|d) = p (w, d)

p (∗, d)
2The Link Grammar software does provide a device, called the �cost�, which is an additive

�oating point number that represents the penalty of using a particular disjunct. It can be
thought of as being the same thing as − log p (w|d). The hand-crafted dictionaries provide
hand-crafted estimates for this cost/log-likelihood.
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where p (w, d) is the probability of observing the pair (w, d), while

p (∗, d) =
W∑
w=1

p (w, d)

is simply the sum over all words in the vocabulary.
The resemblance, at this point, should be obvious: the disjunct d plays

the role of the N -gram context. Abusing the existing notation, one should
understand that

d ≈ wt−c, · · ·wt−1, wt+1, · · ·wt+c
The abuse of notation was partly cured by writing wI for the �input� words of
the CBOW/SkipGram models, so that I was a set of relative indexes into the
text. The disjunct notation does everything that the index notation can do:
it speci�es a �xed order of words, to the left, and to the right of the target
(�output�) word wt. More precisely, the disjunct notation actively skips over
some of the words in the context. Rather than specifying a �xed o�set from the
target word, the disjunct provides a relative squential ordering of the context-
words, left to right, without specifying distance.

This change of notation allows the disjunct to do more than the index set no-
tation: the disjunct e�ectively encodes syntactic information. How this is done
was already detailed in section 2. With this seemingly minor change of notation,
from indexes to sequential lists, one gains access to grammatical information.
Do keep in mind that by working with disjunct notation, nothing is lost: if one
wished, one could take the disjunct as being a sequence of words, with no gaps
allowed between the words. If this is done, then the disjunct d becomes fully
compatible with the index set I and one can legitimately write that d = wI
are just two notations for saying the same thing. The disjunct encodes �more
information�, in the information-theoretic sense of encoding �more bits of info�
than the index notatin can.

4.2 Skip-Grams and Syntatic Structure

The above explicit identi�cation of d = wI suggests that CBOW and SkipGram
models already encode grammatical information, and that �nding it is as sim-
ple as re-interpreting wI as a disjunct. That is, given either form p (wt |wI )
or p (wI |wt ), simply re-interpret wI as specifying left-going and right-going
connectors. The Link Grammar cost is nothing other than the �loss function�
E = − log p (wt |wI ); they are one and the same thing. One could do this imme-
diately, today: given a SkipGram dataset, one can just write an export function,
and dump the contents into a Link Grammar dictionary. All that remains would
be to evaluate the quality of the results.3

3These statements are also perhaps misleading: conventional systems really do use a �bag of
words�, ignoring the word-order. Yet word-order is needed to write a disjunct. Thus, existing
o�-the-shelf software would have to be modi�ed to track word-order, and this modi�cation will
require an order of magnitude more storage, possibly rendering the computation intractably
large or slow. Keeping track of word order is theoretically interesting, but entirely misses the
tractability issue that these models were invented to solve.
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Disjuncts are intended to capture the dependency grammar description of
a language. A dependency grammar naturally �skips� over words, and �adap-
tively� sizes the context to be appropriate. Consider the dependency parse of
�The girl, upset by the taunting, ran home in tears.� There are four words, and
two punctuation symbols separating the word �girl� from the word �ran�. De-
pendency grammars do not have any di�culty in arranging for the attachment
of the words �girl�ran�, skipping over the post-nominal modi�er phrase �upset
by the taunting�, which attaches to the noun, and not the verb: it's the girl who
is upset, not the running.

Such long-distance attachments are problematic for CBOW or Skip-Grams,
in several ways. One is that the window N would have to be quite large to skip
over the post-nominal modi�er. Counting punctuation, one must look at least
seven words to the right, in the above example. If the window is symmetric
about the target word, this calls for N ≥ 14, which is a bit larger than currently
reported results; for example, Mikolov[7] reports results for N = 5. The point
here is that

p (wt = girl |wt−1 = the , wt+1 = ran )

can be trivially re-interpreted as the dictionary entry

girl: the - & ran+;

However, that is not what is needed to parse �The girl, upset by the taunting,
ran home in tears.� What is needed, instead, is the dictionary entry

girl: the - & upset+ & ran+;

which is invisible with an N = 5 window. The punctuation is also important
for the post-nominal modi�er; somewhere one must also �nd

upset: girl - & ,- & by+ & ,+;

which also does not �t in an N = 5 window; it requires at least N = 9. Long-
distance attachments present a problem for the simpler, less sophisticated deep-
learning models.

Another di�culty in a naive correspondance with index notation is that
dependency grammars are naturally �adaptive� by design: verbs tend to have
more attachments that nouns, which have more attachments than determiners or
adjectives. That is, dependency grammars already �know� that the correct size
of the context for determiners and adjectives is one: a determiner can typically
modify only one noun. One expects the entry

the: girl+;

The size of the context for the word �the� is just N = 1; more is not needed. If
the deep-learning model fails to explicitly contain an entry of the form

p (wt = the |wt+1 = girl )
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with no other context words present, then one will have trouble building a
suitable dictionary.4

4.3 Statistical Mechanics and the Partition Function

The CBOW and SkipGram models of language, namely equations 2 and Skip-
Gram 3, are commonly discussed as optimization problems, and the utility
functions are sometimes called �softmax� functions, or �loss functions�. From
the point of view of statistical mechanics, these utility functions can be easily
recognized as Gibbs distributions. This allows all of the traditional intuition and
tools of statistical mechanics to be brought to bear on the language problem.
Speci�cally, the probabilities are obtainable from a partition function.

Given that equations 2 and 3 are conditional probabilities, one can deduce
that the joint probability in these models is given by

p (wt, wI) =
exp

∑
i∈I ~ut · ~vi∑

w∈W
∑
I∈WN exp

∑
i∈I ~uw · ~vi

This can be obtained by applying variational principles to the partition function

Z [J ] =
∑
w∈W

∑
I∈WN

exp

(∑
i∈I

~uw · ~vi + JwI

)
(4)

In physics literature, the Jwt,I are called �sources� or the �current�5, and can be
understood as parameters that are nominally zero. That is, they are set to zero
�in the real world�, but serve as placeholders within the partition function so that
variational principles can be applied. Doing so yields the standard Boltzmann
distribution:

p (wt, wI) =
δ lnZ [J ]

δJwt,I

∣∣∣∣
J=0

In other words, CBOW/SkipGram �t squarely into the standard framework
of maximum entropy principles. This is no accident, of course; the �softmax�
function was used precisely because it gives the maximum entropy distribution.

The last statement can be made even more precise. A language model
is a probability distribution p(w1, w2, · · · ) de�ned over a sequence of words
w1, w2, · · · . The set of all such sequences is termed (in the historical literature
of physics and thermodynamics) an �ensemble�. The entropy of a particular
language model is a sum over the ensemble

S [p] = −
∑

w1,w2,···
p (w1, w2, · · · ) log2 p (w1, w2, · · · )

The principle of maximum entropy states that the above should be solved to
�nd the probability distribution p that maximizes the entropy S [p]. This can

4I assume that Parsey McParseFace overcomes all of these problems ins some way; I have
not studied it.

5Mathematically, they resemble electric charges or currents.
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be solved without the need to provide any addtional statements or constraints.
Standard texts on statistical mechanics exhibit the solution; it is the Boltzmann
distribution, namely

p (w1, w2, · · · ) =
1

Z
exp−E (w1, w2, · · · ) (5)

with the partition function Z being given by

Z =
∑

w1,w2,···
exp−E (w1, w2, · · · )

To make ends meet with eqn 4, one writes Z = Z [J = 0] so that if the current
J is zero, one simply does not write it, as it is just a device handy for algebraic
manipulations, but having no particularly deep signi�cance for the language
model.

Thus, a maximum entropy model of natural language is any model that
provides an energy function E (w1, w2, · · · ) for a sequence of words w1, w2, · · · .
Clearly, CBOW/SkipGram is such a model. There are others.

4.4 Ising Models of Grammar

The vector product
∑
i∈I ~uw · ~vi appearing in the partition function 4, and

indirectly in the CBOW and SkipGram models 2 and 3 is pretty much the grand-
total extent or content of these language models. The statement is e�ectively
that vectors provide a pretty good model of natural language, and the vectors are
able to capture important features of natural language, including semantics and
compositionality (such as the �King� - �man� + �woman� = �Queen� example[8,
7]). This is an interesting e�ect, because the vectors themselves seem to be
some kind of e�ectively structureless black boxes; they capture some kind of
latent structure of language, but how this is captured is entirely opaque. This is
entirely at odds with traditional theories of syntax, as developed by more than
half a century of linguistics research. How can the latent content of the feature
vectors be reconciled with structural theories of syntax?

The notion of the Ising model can be used to bridge this gap. In the original
formulation of the Ising model, the loss function (the Hamiltonian; the energy)
was written as

E (σ) =
∑
i

hiσi +
∑
i,j

Jijσiσj

with the σi being the value of a �spin� at a �lattice position� i, the hi being the
�magnetic �eld� (at lattice position i), and the Jij being the interaction energy
between neighbors (typically, the nearest neighbors, and typically dependent
only on the distance |i− j| between neighbors).6 In the present context, the σi
are to be reinterpreted as wi, the word at position i in a sentence.

6The Jij used here has no relationship whatsoever to the current J of the previous section;
rather, there are not enough letters in the alphabet, and by convention, J is used for both
tasks.
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The Ising model is usually taken to be �translation invariant� or �shift invari-
ant�, dependent only on relative positions between points in the lattice, rather
than their absolute position. For the one-dimensional Ising model, where the
lattice points are in a linear sequence, the shift invariance implies a number of
interesting connections to Markov chains, shift sequences, and �nite state ma-
chines. This, in turn, implies that the Ising model, or a variant thereof, occurs
in many natural models. One example is the distribution of sequences of amino
acids in Zebra�sh antibodies.[15] In that model, each σi can be one of twenty-
one di�erent amino acids, and one is interested in describing the distribution of
a wide variety of di�erent sequences that antibodies employ to �ght o� infection.
Another example is that of protein sequences, speci�cally, of sensor kinase and
response regulator proteins in bacteria[16], where the goal is to identify which
sensor amino-acid sequences directly trigger response proteins, as opposed to
merely being correlated with a response.

The point to be made here is that the Ising model also provides a natural
way to unify the syntactic structure of language with the syntax-free vector
models. The reinterpretation is that lattice position i corresponds to the i'th
word in a linear text. The spin σi is to be reinterpreted as the word instance
wi located there. The correct interpretation of the one-point function hi (the
�magnetic �eld�) is explored in the next section; for now, it can be ignored (taken
to be zero). The part of the model responsible for grammar are the two-point
functions Jij , which need to be generalized into n-point functions that capture
the grammatical relationships between words. Given a sequence of lattice values
σi, σi+1, · · · (that is, a sequence of words wi, wi+1, · · · ) one has an �interaction
energy� Jwi,wi+1,··· that is small when the sequence of words wi, wi+1, · · · is
likely, and is large (or in�nite) when the sequence of words is grammatically
incorrect. In e�ect,

Jwi,wi+1,··· = − log p (wi, wi+1, · · · )

is the loss function. This is just eqn 5 in slightly di�erent form.
The statement that Ising model provides a model of natural language might

super�cially appear to be content-free, an empty and trite statement (there's a
�so what� aspect to it: �show me something I did not already know�, as the Ising
model just seems to be a standard maximum entropy model in faint disguise.)
What makes it not entirely trivial is the claim that the interaction energies
(loss functions) are additive. That is, given a sequence of words wi, wi+1, · · · ,
the �grammatical validity� of that sequence can be described in terms of (statis-
tically) independent, single real-valued numbers Jwi,wi+1,··· which are additive:
they are to be summed (and not combined in some other, more complex way).

The additive model of grammatical structure also exposes the limit of this
language model: we do not speak in a word-salad of grammatically valid sen-
tences; rather, there is always a message conveyed in an utterance. The statis-
tically independent numbers Jwi,wi+1,··· are su�cient to capture the grammar
and syntactic structure of the language, but not (at this level) to capture the
message itself. The n-point functions Jwi,wi+1,··· are to be taken as the coding of
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the language, in the sense of �coding theory� of signal processing; they convert
plaintext to cryptext. The plaintext is a bag-of-concepts; the cryptext is the
word-sequence that encodes the plaintext.

4.5 MST models of Language

The importance of the additive aspect of the Ising model of natural language
is best illustrated by reverting to the simpler two-point model of natural lan-
guage, by restricting the interaction J to occur only between pairs of words.
This e�ectively gives the Maximum Spanning Tree (MST) model of language,
explored by Yuret[17] and by McDonald[18, 19]. Here, the relationship between
words is presumed to be entirely pair-wise; after somehow obtaining pair-wise
word statistics p (wleft, wright), one constructs a maximum-spanning-tree parse
so as to maximize the total entropy.

The use of a maximum spanning tree, such as the supervised training models
of McDonald etal., is a key insight. McDonald states this in terms of a score
s(x, y) that the sentence x is described by parse tree y. The score is taken to
be additive over word pairs:

s (x, y) =
∑

(i,j)∈y

s (i, j)

so that the sum ranges over all words-pairs (i, j) occurring in the parse-tree
y (and the individual words i, j being the words of sentence x). How does
one obtain the score s (i, j)? McDonald etal. propose a supervised training
algorithm, where the score is induced by means of a gradient descent from an a
priori training corpus of parse trees.

It is here that Yuret does one better: he proposes that the score be given by
the mutual information (MI) between word-pairs; that is (aligning the di�erent
notation)

s (i, j) =MI (wi, wj) = log2
p (wi, wj)

p (wi, ∗) p (∗, wj)
(6)

How does this square with the Ising model? Super�cially, it seems to be quite
di�erent: the Ising model suggests that one should have only pair-wise inter-
actions Jij = log p (wi, wj) whereas the mutual information has an additional
funny denominator. This can be reconciled by saying that there is a bulk inter-
action: each individual word-site i also interacts with the �bulk� of all possible
other words that could ever occur in some other speakable, grammatically cor-
rect sentence.

Put di�erently, there are two bulk �magnetic �elds�, or one-point interactions
h (wi, ∗) = − log2 p (wi, ∗) and h (∗, wj) = − log2 p (∗, wj) that enter into the
Ising model Hamiltonian, so that, for sentence x and parse tree y, one has a
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�score� (following McDonald) or �energy� (following statistical physics) of

s (x, y) =
∑
i∈x

hi +
∑

(i,j)∈y

s (i, j)

=
∑
i∈x

[h (wi, ∗) + h (∗, wi)] +
∑

(i,j)∈y

log2 p (wi, wj)

When Yuret chooses to look for the spanning tree that maximizes the sum of
the mutual information between word-pairs, what he is actually doing is looking
for the parse tree that maximizes the entropy within the background context
(the �bulk magnetic �eld�) of the language model. This is an absolutely key,
fundamental insight of the Ising model of language: the relationship between
words matters not so much because of the individual relationships, but because
these relationships have to be taken with regards to the background of the entire
language, in full.

Figure 2 attempts to drive this point home, by explicitly showing the vacuum
contribution (the �bulk magnetic �eld� contribution) of the language model.
By convention, when linguists draw dependency-parse diagrams, they omit the
bottom half of this �gure. This is a reasonable omission: it not only clutters
the diagram, but, from the point of view of linguistics, it almost seems like
tautological nonsense.7 Of course a language model is taken within the context
of the language. However, in order to bridge from a purely linguistic model,
to a statistical model based on probabilities taken from �rst principles from
Boltzmann distributions derived from partition functions, those implicit terms
must be made explicit. The single-point propagators have an explicit numerical
e�ect in the determination of the best parse tree for a given sentence.

4.6 Vacuum Contributions and Exact Solutions

Pair-wise mutual information is not the same thing as the two-point function
Jij ; the MI includes one-point terms in it. For many applications, including
chemistry, the one-point vacuum contributions to the MI are clearly inappropri-
ate. Atoms, amino acids and protiens don't respond to other atoms that �might
have been there, but weren't�. For those applications, MI can only provide a
rough approximation for a starting point for a more acurate solution of the
�true� Ising model, one which contains a two-point function, but no one-point
functions. That is, MI is not a substitute for accurately solving the Ising model,
when a solution of the Ising model is actually needed.

For example, for protein folding and protein mating, the solution to the
Ising model obtained by message passing becomes a very accurate predictor
of the three-dimensional physical structure of the protein, and indicates which
amino acids actually become physically close to one-another. It is considerably

7The word �vacuum� comes from quantum �eld theory, where there was a similar realization
that the tautologically-empty vacuum is not so empty after all, but has explicit contributions to
the probabilities of various physical processes. The vacuum is an implicit context for physical
processes, which on occasion must be made explicit in order to get correct predictions.
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Figure 2: Feynman Diagrams in Language

This �gure illustrates the energy functional for a particular English langauge
sentence, chosen out of the statistical ensemble of all possible English language
sentences. The arcs above the sentence show the standard unlabeled depen-
dency parse of the sentence. It is conventional to consider such a parse as
standing alone, implicitly with some language model that is not diagrammat-
ically represented. When drawn stand-alone, the arcs are presumed to have
some unspeci�ed cost, such that the desired parse tree is preferentially selected.
Here, the arcs are intended to very explicitly correspond to �propagators� or
�Feynman rules� with a value of h = log2 p (wi, wj). The two vacuum bubbles
below the sentence, and the straight lines connecting each word to each vacuum
are used to explicitly represent the language model. The straight lines connect-
ing to the left vacuum are explicitly given by the propagator h = − log2 p (∗, w)
while those going to right vacuum are given by h = − log2 p (w, ∗). The total
action (Hamiltonian, in this case) is given by Htotal =

∑
arcs h with the sum

being over all lines and arcs (with appropriate multiplicity). This summation
makes explicit what is otherwise an implicit langauge model: namely, that

Htotal =
∑
arcs

h =
∑

(wi,wj)∈tree

MI (wi, wj)

where the right-hand side is the sum over mutual information between word-
pairs. That is, the total mutual information in a parse tree is exactly equivalent
to the total entropy of that parse tree, taken within the context of the entire
language model.

The use of the name of Feynman in this context is not meant to be some
vague, hand-waving abuse of terminology, peacock feathering on the part of the
author. The rules given here are bona �de Feynman rules, in the strict, straight
and narrow sense. They are a set of rules used to give explicit numerical values
to a hand-drawn diagram, making express that the diagram is the same thing
as a speci�c equation. Here, by applying the rules, one can see that the diagram
is an explict representation of the equation that states that Htotal is the total
energy, given as the sum over all arcs in the diagram.
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more accurate than the MI-based estimate.[16] There are several di�erent algo-
rithms for solving the Ising model, including Monte Carlo and message passing
algorithms.[20, 16]

4.7 n-point Functions and Word-Sense Disambiguation

The preceeding two sections potentially sow a point of confusion: Should one
consider a �pure� Ising model of natural language, one which omits the one-
point contributions? Would it be more accurate than an MST-parse? Maybe.
And maybe not. The author is not aware of any pure-Ising models of natural
language that could be compared to the results of MST parsing.

For natural language, most words have valancies of 3, 4 or 5, and so it
seems that they would be better described by 3-point, 4-point or 5-point Ising
interaction energies, as opposed to a bag of 2-point interactions. How true is
this? Consider a transitive verb: it has a subject and an object. If the subject
and object are truly independent of one-another, then two pair-wise interactions
would be enough: a noun-verb link for the subject, and a verb-noun link for
the object. Are subjects and objects independent of one-another? Consider
the verb �throw�, and a sentence of the form �subject throws object�. In this
case, �subject� can only be chosen from the class of animate beings, capable of
throwing things. The object must be chosen from the class of physical objects
that can be thrown. Although these two classes are fairly narrow, they still seem
uncorrelated. This illusion can be broken: further restricing the class of subjects
to humans forces the restriction of objects to the class of physical items weighing
between a few grams and ten kilograms. But there is only one word �throw�,
and not some hypothectical throw1 and throw2 and throw3, where throw2 is
used only with human subjects. The verb subjects and objects are correlated;
when this is the case, a pair of two-point functions is not enough; these require
a three-point function for an accurate description.

Perhaps, after word-sense disambiguation, one can discover multiple word
senses, so that, for example, throw1 applies to metal machines that throw heavy
objects, throw2 pertains to human subjects, and throw3 applies to horses. In this
case, the three-point function might indeed factorize. Written as an algebraic
expression, one might be able to observe the factorization

p (wsubj , throw, wobj) =p (wmachine, throw1) p (throw1, wheavy)

+p (whuman, throw2) p (throw2, wgraspable)

+p (whorse, throw3) p (throw3, wrider)

so that any kind of machine can throw1 any kind of heavy object, in a statisti-
cally uncorrelated sense, whereas any human can throw2 any object that can be
grasped by hand, with there being no statistical correlation between the human
subject and the human-thrown object. The third factorization is likewise: only
horses or other mountable creatures can throw3 thier riders, but there is no
statistical correlation (no three-point function) between the thrower, and the
rider.

26



This kind of factorization into components might even provide a plausible
automated means of performing word-sense disambiguation, given only the un-
di�erentiated, measured 3-point frequency p (wsubj , throw, wobj). Exactly how
far this can be pushed, without grinding into the �oor of statistically noisey data
is unclear: only horses throw cowboys, and only elephants throw maharajis.

4.8 Disjunct Models of Language

Although Yuret's thesis clearly demonstrates that pair-wise word interactions
give a reasonable model of natural language, it also demonstrates that the model
is imperfect. Link Grammar[3, 4] provides a much better model of language,
and it is anchored on top of half a century of tradition in linguistics research
into structure. To place it within the current context, the key leap being taken
is to replace the pair-wise word-interactions Jij = − log p (wi, wj) by disjuncts

Jijk··· = − log p (wi;wleft connected;wright connected)

The notation above is awkward: the idea here is that some word wi can connect
to other words on the left, by means of left-pointing connectors (or links) and
it can connect to words on the right, with right-pointing connectors. These are
distinct sets, or sequences, since the word-order matters.

There are multiple ways of overcoming the notational awkwardness of the
above; these are reviewed in a later section. In particular, the notation above
di�ers sharply from that used in Link Grammar; this is a notational issue, and
not a conceptual issue.

Before proceeding, the remark of �resting on a tradition of linguistics� should
be clari�ed. Link Grammar proposes a dependency-grammar model of language.
Other popular models of language include constituency-tree grammars, such as
Head-Phrase Structure Grammar (HPSG). Grammars such as Categorial Gram-
mar (CG) combine aspects of constituency with aspects of dependency. There
are others. In principle, each of these di�erent grammar frameworks are con-
vertible to one-another by �xed algorithms that terminate in �nite time. That
is, given a lexis in one grammar framework, there is a purely mechanical means
of translating that lexis into the lexis required by a di�erent theoretical frame-
work. This perhaps over-simpli�es the situation: di�erent theories of gram-
mar are often founded on subtle distinctions; for example Dick Hudson's Word
Grammar[21, 22] replaces the no-links-crossing constraint of dependency gram-
mars by a notion of landmark transitivity. We sweep such details under the rug,
for now, wishing to rest on the broader statement that all grammar frameworks
can be converted into one-another, while acknowledging that some frameworks
give better insight into certain aspects of language than others.

The primary point here is that Link Grammar is interesting because it pro-
vides a bridge to both traditional, symbolic structural linguistics (per above) and
while also allowing an interpretation as an Ising model of language. Following
Yuret's ansatz, one includes energy terms of not only Jijk··· in the Hamiltonian,
but also bulk terms, indicating how disjuncts interact in the background. In
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practice, what this means is that one should associate to each word-disjunct
pair a mutual information

MI (w, d) = log2
p (w, d)

p (w, ∗) p (∗, d)
with p (w, d) being the joint probability of observing disjunct d on word w. The
most likely parse of a sentence is one where the sum over mutual information is
maximized.

The term p (w, ∗) looks uneventful, but hides a more complex structure. One
has

p (w, ∗) =
∑
d

p (w, d)

=
∑
c

p (w; c) +
∑
c1,c2

p (w; c1, c2) +
∑

c1,c2,c3

p (w; c1, c2, c3) + · · ·

where the sums over ck are sums over all connectors appearing in some disjunct.
Keep in mind that each connector can connect to the left or to the right: a
connector is a word, plus a direction indicator. To bridge the notation back to
that of the Ising model, one would write for the loss function

Jijk··· = − log2 p (w, d) = − log2 p (w; (wi, xi) , (wj , xj) , (wk, xk) , · · · )

where ck = (wk, xk) is a connector with word wk and direction xk. Clearly,
writing d for a disjunct is much simpler than writing out the mass of connectors;
yet the notation can be deceiving because it hides the complexity of the model.

5 Graph Algorithms vs. Gradient Descent

The previous sections illustrate that the CBOW/SkipGram model is a form of
a maximum-entropy model, and that the disjunct model of natural language is
a natural variant. In one case, the word-context is an N-gram; in the other,
it is a disjunct; but these are not so unlike one-another, they have much in
common. Both language models are faced with a common task: �nding an
energy functional that correctly models the observed probability distribution.

There are several generic classes of algorithms that can be applied to ob-
tain the energy functional. One class comprises Monte Carlo methods, driving
either hill-climbing, gradient descent or �relaxation� algorithms; deep learning
algorithms fall in this class. The other class of algorithms can be loosely called
�graph algorithms�; these attempt to infer generic network relationships, as op-
posed to the dense, highly-symmetric bipartite graph typical of neural networks.
A characteristic approach, elaborated here, is to accumulate frequency counts
on low-arity observed relationships, and use the logarithm of these frequencies
as a surrogate for the energy functional. The low-arity (low connectivity) of a
node in a network graph makes such graphs feel more �sparse�, as as compared
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to the high arity (high connectivity) in a neural-net, where a node in one layer
is connected to every node in another.

Besides connectivity, there are other di�erences: the class of Monte Carlo
methods can be said to be �global�, in that they are trying to navigate an
extremely large energy functional landscape through random sampling. By
contrast, the graph algorithms are manifestly local, and re-assemble the global
landscape explicitly by summing together contributions from di�erent Feynman
diagrams, including vacuum contributions, as illustrated in �gure 2. The graph-
ical algorithms expose the graph network structure immediately; in the above
examples, as maximum spanning trees that can be found using greedy algo-
rithms applied to pair-wise relationships. The Monte Carlo algorithms do not
provide any manifest graphical structure, although perhaps a graph structure
could be discerned post facto, by applying some sort of thresholding to eliminate
weak links. Indeed, thresholding, using sigmoid functions to prune unwanted,
weak weights from a neural net is a characteristic of most deep-learning models.
Even so, the resulting weight vectors and weight matrices tend to be cryptic
amorphous masses: large blocks of uninterpretable numbers whose precise role
and importance seems impossible to discern.

This section attempts to better characterize the general idea of a �graph
algorithm�.

5.1 Graph Algorithms vs. Monte Carlo for Word Pairs

The di�erence between graphical and Monte Carlo methods is perhaps best
illustrated by example. Yuret (implicitly) assumes an Ising model of natural
language, and considers only pair-wise word realtionships. To obtain an energy
functional, it su�ces to count the frequency N (wleft, wright) of word-pairs, and
then to take for granted that the energy functional is accurately estimated by

E (wleft, wright) = − log2

[
N (wleft, wright)

N (∗, ∗)

]
To obtain dependency parses that agree with those deemed acceptable by pro-
fessional linguists, maximum spanning trees are constructed, taking into ac-
count the important role of the left and right marginal frequencies N (∗, w) and
N (w, ∗). The result is an explict dependency graph for every possible sentence.
That the ensemble is an explict Boltzmann distribution is a primary point of
�gure 2.

One could have approached this problem from the Monte Carlo direction as
well, as is done by McDonald[18, 19]: one trains up a model by de�ning a cost
function, and then performs hill climbing or gradient descent on it. The result is
still a pair-wise cost function, and a dependency parse is obtained by searching
for an MST tree, just as before. For McDonald, there is no overt relationship to
the principle of maximum entropy; it is either covert, or perhaps one could say
its �more general� by not constraining to �t the cost function to a probabilistic
framework. The need for this generality does not seem to be well-supported.
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There does not appear to be any data to indicate if some other pair-wise cost
function provides a superior MST-tree, as compared to using the MI. Although
this is an open question, there's no particular hint that this could be a fruitful
direction to take.

5.2 Graph Algorithms vs. Gradient Descent for N-grams

Another strong comparison of the di�erence between graph algorithm and gra-
dient descent approaches is manifest at the disjunct/N-gram level. The goal in
both cases is to obtain a Bayesian-network factorization of language, as in eqn
1, and then to describe each of the factors as compactly as possible. In both
cases, some a priori model of language is proposed, and a search is performed
to obtain the factors in compact form.

The Monte Carlo approach presumes that the a priori model consists of
a high-dimensional space of hidden parameters, and that the space must be
searched to �nd those paramters that best reproduce the observed probabilities.
For example, eqn 2 or eqn 3 can be taken as the model of language; the vectors ~ut
and ~vi are the hidden, unknown parameters, and hill-climbing (as an example
of a Monte Carlo method) is used to �nd them, with the goal of accurately
reproducing the observed probability p (w,wI) of word w surrounded by the
N-gram context wI . This is a reasonable approach to modelling language; the
primary critique here is that the CBOW/SkipGram models are not graphical, at
least, not in the sense of providing an explicit symbolic, syntactic representation
of language.

The can be contrasted with the OpenCog language learning project[23],
which is overtly graphical at each step, and does produce a symbolic, syn-
tactic representation of language at its conclusion. The proceedure replaces
the directly observed probability p (w,wI) with the hidden, indirectly observed
probability p (w, d) of a disjunct d occuring on word w. The previous sections
have already extensively argued that the probability p (w, d) is very much like
the probability p (w,wI), except that p (w, d) can be explicitly understood as
syntax, while p (w,wI) cannot. That is, the p (w, d), with no further modi�ca-
tion, rede�ntion or processing, can be used with a parser to obtain a syntactic
parse. The probabilities p (w, d) are the de facto lexical entries in the Link gram-
mar parser[3, 4]. The existing parser implementation can use the probabilities
p (w, d) directly, to obtain a syntactic parse.

How are the p (w, d) obtained? One way is through direct counting. Given
an observational count N (w, d) of how often the word w is associated with the
disjunct d, one computes a normalized frequency of observations:

p (w, d) =
N (w, d)

N (∗, ∗)
so that the frequency is properly normalized: p (∗, ∗) = 1. The energy functional
is explicitly

E (w, d) = − log2 p (w, d)
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Figure 3: Disjuncts from Dependency Parses

The upper diagram represents an unlabeled dependency parse, such as might be
obtained from MST parsing. The lower-left diagram shows two links being cut;
the lower-right diagram shows one of the resulting disjuncts. In Link Grammar
notation, it would be written

ball: the - & threw -;

indicating both the connectors, and the order in which they must be satis�ed.

No parameter �tting is required to obtain this.
However, the N (w, d) need to be obtained somehow. A number of ways of

doing this are possible. Some of these are sketched in the immediately following
subsection. There is also another, distinct problem: even with p (w, d) in hand,
it is potentially a very large matrix. It's been argued that p (w, d) is a lot like
p (w,wI), and so that if the latter can be reduced to a much smaller model,
then so can the former. In fact, the same set of algorithms can be applied to
simplify either of them; and speci�cally, CBOW/SkipGram can be applied to
p (w, d) just as readily as p (w,wI). Conversely, a completely di�erent set of
algorithms, suitable for p (w, d), might be portable to p (w,wI). Except for the
next section, the remainder of this paper is dedicated to the task of �nding
adequate algorithms for smaller, factored representations of p (w, d).

5.3 Obtaining Disjunct Counts

How should one obtain the countsN (w, d) of word-disjunct pairs? Unlike the N-
gram counts, there is a direct assumption that d encodes syntactic information.
That is, it should be possible to useN (w, d) to obtain partly or mostly-accurate
parses.

Figure 3 shows one possible way of obtaining a disjunct: obtain an unlabeled
dependency parse, in some way, and then cut each link to obtain connector pairs.
The resulting words, with the attached connectors are then (w, d) pairs, which
can be counted to obtain N (w, d). This may seem to put the cart before the
horse, but for two reasons: the dependency parse does not have to be labeled,
and, most importantly, it doesn't have to have a high accuracy. It nees only to
have a accuracy that is better than random chance. The law of large numbers
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Figure 4: Dependency Clique

A dependency clique. All words are joined by edges to all other words.

should allow correct disjunct to accumulate large counts, while the rest wash
out into background noise.

One way to obtain a fairly accurate unlabeled dependency parse is by per-
forming MST parsing (Maximum Spanning Tree parsing), and is described in
[17]. It is a form of a greedy graph algorithm. One begins by considering the
graph clique (shown in �gure 4), wherein every word in the sentence is related
(joined by an edge) to every other word in a sentence. Each edge is associated
with a numerical weight. In canonical MST, this weight is the mutual infor-
mation of the word-pair. Other weights are possible. For example, de Souza
etal.[24] suggest an additional entropy factor, based on the vertex degree in
the �nal chosen dependency graph. Other factors are possible. For example,
natural language tends to be close to the theoretical minimum possible depen-
dency distance,[25, 26, 27] suggesting that weighting should incorporate depen-
dency distance as a factor. Other factors are possible, including �hubbiness�[28]
(although this might be equivalent to a weight based on entropy from vertex
degree).

Given a dependency clique, one wishes to select a subset of the edges, so
as to call that subset the �unlabelled dependency graph�. Several choices are
possible:

• Apply a greedy algorithm, and keep only the edges of the highest quality,
until a spanning tree is found, spanning all words in the sentence.

• Apply a greedy algorithm with additional weighting factors, such as en-
tropy obtained from vertex degree (de Souza etal.)

• Apply thresholding, and discard all edges that have a weak, low quality
connection. The result of thresholding may be a disconnected graph, or a
multiply-connected graph. The threshold may depend on the graph.

• A combination of techniques, allowing both disconnected regions, and cy-
cles.

There does not appear to be any published comprehensive comparison of these
or other techniques.

A few remarks are in order, concerning disconnected trees and dependency
graphs with cycles in them. In traditional theories of grammar, grammatical
relations are always trees, and every word appears in the tree. There are several
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reasons for this: standard formulations of phrase structure grammars are always
presented in terms of production rules; production rules necessarily generate di-
rected, acyclic trees. Most dependency grammars also insist on dependencies
described by trees, and usually, with an additional planarity constraint (pro-
jectivity or no-edges-crossing constraint). Since every word in a sentence is
presumed to have some important role, grammars always connect all words, in
some way.

Practical experience suggests that this outlook is perhaps too strict. Non-
planar dependency graphs have been observed in many languages,[29] although
this is (objectively) rare.[30] (That is, although long sentences tend to have
more crossings, the fraction drops sharply in proportion to the number they
could have had.) When there are crossings, they are �well nested�: a link is
crossed only once, almost never more than once.[29] Dick Hudson has proposed
the concept of �landmark transitivity� as a way of describing the link-crossing
phenomenon.[21, 22] Full connectivity is not always meaningful: writing is �lled
with typographical and grammatical errors that defy strict grammatical analy-
sis; for example, if a word is accidentally repeated twice, this has no particular
signi�cance. Spoken language is almost always less syntactically coherent than
written language. Direct experience with Link Grammar shows that cycles in
graphs are very useful for enforcing additional grammatical constraints, and
disambiguating competing parses. That is, there may be two equally-plausible
competing dependency-tree parses; the ability to add an arc to form a loop can
often be critical to establish the correctness of a parse. Examples include cycles
formed in relative clauses, with one link to the subject of the relative clause,
another link to the head-verb of the relative clause, and, completing the cycle,
a link between the subject and verb of the relative clause. Only when all three
links can be clearly identi�ed, can one be con�dent that the parse is correct.

Neither the acyclic condition, nor the connectivity condition need to be satis-
�ed, when the goal is to obtain statisical counts of disjuncts. The reasons for this
should be clear: the frequency count of spurious, incorrect disjuncts will remain
low, disappearing in the noise. Ungrammatical sentences in the input corpus
require no special treatment. Cycles in dependency graphs are important for
providing constraints. Not all dependencies are planar or projective. Thus, the
mechanism for generating disjuncts, so that they can be statistically counted,
need not be subjected to any particularly strong theory of grammar. A weak,
frequently-correct unlabelled dependency graph should be enough. Weaker sys-
tems might take longer to converge, but should also perhaps introduce less a
priori bias.

5.4 Summary

By observing disjuncts, one is observing an explicit graphical structure. The
disjunct is overt, in the foreground, explicitly demonstrated. It is obtained by
explicitly searching for a graphical structure. Dependency structures are a form
of explicit thresholding: of all of the possible edges in a clique (�gure 4) only
some are selected; the weights of all other edges are expressily zero.
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The alternative, proposed by neural-net approaches, avoids ever explicitly
setting the weight of any edge in the clique to zero. By means of hill-climbing,
relaxation or some other Monte Carlo or deep-learning technique, many edges
eventually become weak. But they are never explicitly forced to zero. The failure
of these techniques to drive an unlikely proposition to complete falsehood (zero
probability) prevents these techniques from having any simple, direct symbolic
representation. In practice, this can also result in a cluttered data-space, where
many small-but-non-zero probabilities and weights require compute storage.

6 Model Building and Vector Representations

The key driver behind the deep-learning models is the replacement of intractable
probabilistic models by those that are computationally e�cient. This is accom-
plished in several stages. First, the full-text probability function P (sentence | fulltext )
is replaced by the much simpler probability function P (word | fulltext ). The
former probability function is extremely high-dimensional, whereas the later is
less so. Its still computationally infeasible, so there are two directions one can
go in. The traditional bag-of-words model replaces �fulltext� by �set of words in
the fulltext� AKA the �bag�, and so one computes P (word | bag ) which is com-
putationally feasible. Algorithms such as TF-IDF, and many others accomplish
this. The characteristic idea here is to ignore the (syntactic) structure of the
full-text, completely erasing all indication of word-order.

The bag, however, loses syntactic and semantic structure, and so goes to
far. An alternate route is to start with P (word | fulltext ) and simplify it by
using instead a sliding-window probability function P (word | window ), thus
giving the N-gram model. The characteristic idea here is to explicitly set
P (word | other-words ) = 0 whenever the other-words are not in the window.

The N-gram model is still computationally intractable for N ≥ 3 and so
the deep-learning models propose that yet more entries in P (word | window )
can be ignored or con�ated. Conceptually, the models propose computing
P (word | context ) with the context being a projection to a low-dimensional
space. These ideas can be illustrated more precisely. Let

~vI = ~vt−c × ~vt−c+1 × · · · × ~vt+c

be the context, with ~vw = πêw the projection of the unit vector of the word
down to the low-dimensional �hidden layer� vector space. This projection can
be written as ~vI = [π ⊕ · · · ⊕ π] (êt−c × êt−c+1 × · · · × êt−c) where π ⊕ · · · ⊕ π
is the block-diagonal matrix

π ⊕ · · · ⊕ π =


π 0
0 π

. . .

π 0
0 π


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and so the o�-block-diagonal entries are explicitly assumed to be zero, as an
a priori built-in assumption. Note that the zero entries in this matrix greatly
outnumber the non-zero entries. Almost all entries are zero.

Its useful to keep tabs on these sizes. The matrix π was D×W -dimensional,
withW the number of vocabulary words (as always) and D the �hidden� dimen-
sion. For a window of sizeN , the matrix π⊕· · ·⊕π has dimensionsND×NW . Of
these, only NDW are non-zero, the remaining N (N − 1)DW are zero. That's
a lot of zeros.

One can do one of several things with the vector ~vI . In the SkipGram and
CBOW models, one sums over words; that is, one creates the vector

∑
i∈I ~vi.

Its worth writing this out, matrix style. One has that∑
i∈I

~vi = S ~vI

where the matrix S is a concatenation of identity matrices.

S =


∣∣∣∣∣∣∣∣∣
1 0
0 1

. . .

1

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
1 0
0 1

. . .

1

∣∣∣∣∣∣∣∣∣ · · ·
∣∣∣∣∣∣∣∣∣
1 0
0 1

. . .

1

∣∣∣∣∣∣∣∣∣


The reason for writing it out in this way to understand that there is another
dimensional reduction: again, almost all entries in this matrix are zero. Each
identity matrix was D × D dimensional, and there are N of them, so that S
has dimensions D × ND. Of these, there are only ND non-zero entries; the
remaining ND (D − 1) are all zero. The reduction is huge.

For the perceptron model of Bengio, the matrix S is replaced by a weight
matrix h projecting to the perceptron layer. All of the entries in the matrix h
are, by assumption, non-zero. This perhaps helps make it clear just how much
more complex the perceptron model is. Since h is an approximately square
matrix, this implies a large-number of non-zero entries.

Its worth getting an intuitive feeling for the size of these numbers: following
Mikolov, assume that W = 104 although this sharply underestimates the size of
the vocabulary of English. Assume N = 5 and D = 300. The size of the input
vector space is thus WN = 1020, this is being modeled by a vector space of size
300. The sparsity is thus

log2
1020

300
= 31.3 bits

A truly vast amount of potential information is being discarded by this language
model. Of course, the claim is that the English language never carried this much
information in the �rst place: almost all �ve-word sequences are meaningless
non-sense; only a very small number of these are syntactically valid, and some-
what fewer are semantically meaningful.

This exposes the real question: just how meaningful are the CBOW/Skip-
Gram models, and can one �nd better models that also have �lots of zero entries�,
but distribute them in a more accurate way?
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6.1 Sparsity

The last question can be answered by noting that the Link Grammar disjunct
representation is also a very highly sparse matrix; however, it is sparse in a very
di�erent way, and does NOT have the block-diagonal structure of the deep-
learning systems. The can be explicitly illustrated and numerically quanti�ed.

At the end of one stage of training, one obtains a matrix of observation counts
N (w, d), which are easily normalized to probabilities p (w, d). This is, in fact,
a very sparse matrix. Four datasets can be quoted: for English, the so-called
�en_mtwo� dataset, and the �en_c�ve� dataset; for Mandarin, the �zen� and
�zen_three� datasets. Please refer to the diary[31] for a detailed description of
these datasets. The dimensions and sparsity are summarized in the table below.

name W |d| sparsity

en_mtwo 137K 6.24M 16.60 bits
en_c�ve 445K 23.4M 18.32 bits

zen 60K 602K 15.46 bits
zen_three 85K 4.88M 15.85 bits

Here, as always, W = |w| is the number of observed vocabulary words, |d|
is the number of observed disjuncts, and the sparsity is the log of number of
non-zero pairs (w, d), measured in bits:

sparsity = − log2
|(w, d)|
|w| |d|

Notable in the above report is that the measured sparsity seems to be approxi-
mately language-independent, and dataset-size independent.

Some of the observed sparsity is due to a lack of a su�cient number of
observations of language use. Some of the sparsity is due to the fact that certain
combinations really are forbidden: one really cannot string words in arbitrary
order. What fraction of the sparsity is due to which e�ect is unclear. Curiously,
increasing the number of observations (en_c�ve vs. en_mtwo) increased the
sparsity; but this could also be due to the much larger vocabulary, which is
now even more rarely observed. A signi�cant part of the expanded vocabulary
includes Latin and other foreign-language words, which, of necessity, will be
very infrequent, and when they occur, they will be in set phrases that readers
are expected to recognize. The point here is that one cannot induce a foreign-
language grammar from a small number of set phrases embedded in English
text. A major portion of the expanded vocabulary are geographical place names,
product names and the like, which are also inherently sparse. Unlike the foreign
phrases, this does not mean that they are in�exible in grammatical usage: one
can use the name of a small town in a vast number of sentences, even if the
observed corpus uses it in only a few.

Two more factors compound the confusion. One is that the observed text
will necessarily contain grammatically-incorrect text: the occasional mis-spelled
word, the occasional awkwardly worded phrase; omitted determiners, incorrect
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number, tense agreement. A far more serious issue is that the disjuncts are
constructed by means of MST parsing, which has a reasonably large error rate:
based on reports from Yuret[17] and others, one can expect parses that are 80%
to 90% accurate; the fraction of incorrect disjuncts may range from 5% to 20%.
Incorrect disjuncts decrease the observed sparsity: they make some observations
more frequent than they should be, but only because they're wrong.

Compared to the back-of-the-envelope estimate of sparsity for SkipGrams,
the numbers reported above are much lower. There are several ways to in-
terpret this: the simple disjunct model, as presented above, fails to compress
su�ciently well, or the SkipGram model compresses too much. Its likely that
both situations are the case.

6.1.1 No Large Data Limit

Natural language does not have a large-data limit. More generally, Zipf distribu-
tions cannot have a large-data limit. This is in contrast to normal distributions,
where the large-data limit is a Gaussian.

Ignoring �natural� sparsity due to forbidden grammatical constructions, it
is also the case that the input dataset p (w, d) is both noisy and incomplete. It
is noisy because the sample size is not su�ciently large to adequately approach
a large-sample-size limit. Reaching this limit is fundamentally impossible, from
�rst principles, if one assumes the Zipf distribution (as is the case here). For a
Zipf distribution, half the dataset necessarily consists of hapax legomena. An-
other 15% to 20% are dis and tris legomena. Increasing the number of obser-
vations do not change these ratios: the more one observes, the more singular
phenomena one will �nd. Noise in the dataset is unavoidable. Furthermore,
implicit in this is that the dataset is necessarily incomplete: if half the dataset
consists of events that were observed just once; there are �even more� events,
that were never observed.

Consider, for example, the set of short sentences. One might think that,
if one was able to observe every sentence ever spoken or written, one might
eventually observe ever grammatically valid noun-verb combination. This is
not so. The sentence �green ideas sleep furiously� is quite common, as it is
a stock example sentence in linguistics. However, the similar sentence �blue
concepts wilt skillfully� probably has never been written down before, until just
now. The law of large numbers does not apply to the Zip�an distribution.
The matrix p (w, d) is necessarily noisy and incomplete, no mater how large the
sample size. What is not clear is what fraction of the sparsity is due to the Zipf
distribution, and what fraction is the sparsity is due to forbidden grammatical
constructions.

6.2 Word Classes

In operational practice, dependency grammars work with word-classes, and not
with words. That is, one carves up the set of words into grammatical classes,
such as nouns, verbs, adjectives, etc. and then assign words to each. Each
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grammatical class is associated with a set of disjuncts that indicate how a word
in that class can attach to words in other classes. This can be made notationally
precise.

Given a word w and the disjunct d it was observed with, the goal is to classify
it into some grammatical category g. The probability of this usage is p(w, d, g),
and it should factorize into two distinct parts:

p (w, d, g) = p′ (w|g) p′′ (g, d)

None of the three probabilities above are known, a priori, and not even the
number of grammatical classes are known at the outset. Instead, one has the
observational data, that

p (w, d) = p (w, d, ∗) =
∑
g∈G

p (w, d, g)

where G is the set of all grammatical classes. The goal is then to determine the
set G and to perform the matrix factorization

p (w, d) ≈
∑
g∈G

p′ (w|g) p′′ (g, d) (7)

Ideally, the size of the set G is minimal, in some way, so that the matrices p′(w|g)
and p′′(g, d) are of low rank. In the extreme case of G having only one element,
total, the factorization is the same as the outer product, or tensor product, of
two vectors.

In the following, the prime-superscripts are dropped, and the joint proba-
bilities are written as p(w, g) and p(g, d). These are two di�erent probabilities;
which in turn are not the same as p (w, d). Which one is which should be
apparent from context. The probability p (w|g) is a conditional probability:
p (w|g) = p (w, g) /p (∗, g). This is used to ensure that the factorization of eqn
7, as well as the factors, all behave correctly as a joint probabilities:

p (∗, d) =
∑
w

p (w, d)

=
∑
w

∑
g

p (w|g) p (g, d)

=
∑
w

∑
g

p (w, g)

p (∗, g)
p (g, d)

=
∑
g

p (g, d)

and all joint probabilites normalize correctly: p (∗, ∗) = 1.
There are two ways of performing the factorization of eqn 7: by applying

graphical methods (such as clustering) or by applying gradient descent methods
(typically associated with neural net algorithms). These two approaches are
explored below.
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6.2.1 Learning Word Senses

The goal of the factorization is to capture semantic information along with
syntactic information. Typically, any given (w, d) pair might belong to only one
grammatical category. So, for example, the pair

g i r l : the−;

would be associated with g = < common− count− nouns >. This captures the
idea that girls, boys, houses and birds fall into the same class, and require the
use of a determiner when being directly referenced. This is distinct from mass
nouns, which do not require determiners. This suggests that, to a large degree,
the factorization might be approximately block-diagonal, at least for the words;
that p (w, g) might usually have only one non-zero entry for a �xed word w.

But this assumption should break down, the larger the size of the set G. Sup-
pose one had classes g = < cutting− actions > and g = < looking− verbs >;
the assignment of

saw : I− & wood+;

would have non-zero probabilities for both g's. For a large number of classes,
one might expect to �nd many distinctions: girls and boys di�er from houses
and birds, and one even might expect to �nd sex di�erences: girls pout, and
boys punch, while houses and birds do neither.

Put di�erently, one expects di�erent classes to not only di�erentiate crud
syntactic structure, but also to indicate intensional properties. Based on prac-
tical experience, we expect that most words would fall into at most ten, almost
always less than twenty di�erent classes: this can be seen by cracking open any
dictionary, and counting the number of word senses for a given word. Like-
wise for intentional properties: birds sing, tweet and �y and a few other verbs.
Houses mostly are, or get something (get built, get destroyed). That is, we
expect p (w, g) to be sparse: there might be thousands (or more!) elements in
G, but no more than a few dozen p (w, g), and often much less, will be non-zero,
for a �xed word w.

6.3 Clustering

A side e�ect of the matrix factorization of eqn 7 is that it is a de facto form of
clustering. Whenever one has p(w, g) > 0, one can e�ectively say �word w has
been assigned to cluster g�. Thus, solving eqn 7 can be seen as an alternative
to deploying a clustering algorithm to assign words to word classes.

6.3.1 Multiple class membership

One important distinction between traditional clustering and matrix factoriza-
tion is that traditional clustering algorithms naively assign a word to only a
single cluster, whereas here, one can have multiple p(w, g) > 0. One can partly
overcome this di�culty with traditional clustering by decomposing the input
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vector into two: a component parallel to the cluster centroid, and a perpen-
dicular component, and assigning the parallel component to the cluster, while
leaving behind the perpendicular component to be assigned to other clusters.
The decomposition need not be strict about parallelism: one might choose to
merge the component that lies within some angle (or distance) of the cluster
centroid. Each such merge then gradually shifts the centroid over. If the left-
over perpendicular component is su�ciently small, it can be discarded as noise,
or treated as an anomaly awaiting additional data.

This splitting of a vector into components, and then placing each component
in a di�erent cluster might perhaps be reminiscent of fuzzy clustering, where one
object may be placed into two clusters. However, what is proposed above is not
fuzzy clustering. The goal is disambiguate a word precisely into the intended
sense, and to assign that sense to a cluster. The goal is not to say �oh, maybe
it is this, and maybe it is that.� A more precise formulation of this statement
is taken up in a later section.

6.3.2 k-means clustering

Clustering, and in particular, k-means clustering, can be shown to be equivalent
to matrix factorization.[32] In particular, the equations that de�ne k-means as
a relaxation problem, of aligning vectors to the closes centroids, can be written
explicitly as matrices. This equivalence is reviewed in the section after the next,
after a su�cient amount of other mathematical devices have been set up. Most
important of these is the choice of an appropriate information metric (instead
of cosine distance) for the clustering norm, together with a justi�cation of why
this is necessary. This needs to be coupled to an appropriate mechanism for
performing multiple class membership.

Once this is done, clustering can be re-interpreted as more of a graphical
method, as opposed to an optimization method.

6.3.3 MST (Agglomerative) Clustering

MST clustering is a form of greedy clustering, attempting to �rst connect all
points in the dataset with a tree that minimizes the the distance between the
points, and then removing some of the longest edges, leaving behind a set of
connected components. MST clustering can be fairly e�cient, as one can �nd
provisionally minimal trees with a fairly small number of distance evaluations,
using a greedy algorithm; the provisional minimal tree can then be adjusted
using local relaxation.

Grygorash et al[33] review multiple variants for deciding which edges to
remove from an MST graph, and describe several particularly e�ective variants.
Standard MST removes the longest edges; but one can instead remove edges
that di�er the most from their neighbors; or one can remove edges that are
outliers from the typical edge-length mean.
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6.3.4 Non-issues

There are a variety of criticisms of di�erent clustering algorithms, pointing at
various drawbacks. Some of these criticisms do not apply to the current problem,
and so are not to be used in selecting a better algorithm.

• Convex clusters. This is a standard criticism leveled against k-means clus-
tering: the clusters can only ever be convex. This is important criticism,
when working with low-dimensional data (2D, 3D data) where perhaps
most practical examples require clusters that are not convex. For the lan-
guage learning problem, the data lives in an extremely high-dimensional
space, with clusters that are almost surely convex.

6.4 Low Rank Matrix Approximation

Factorizations of the form of eqn 7 are not uncommon in machine learning. They
generally go under the name of Low Rank Matrix Approximation (LRMA).
The rank refers to the size of the set G � it is the rank of the matrices in the
factorization. The factorization is only an approximation to the original data;
thus, one says LRMA and not LRMF.

Closely related is the concept of non-negative matrix factorization (NMF
or NNMF),[34] where the focus is on keeping matrix entries positive, as would
be appropriate for probabilities. Furthermore, a matrix of probabilities is not
just non-negative; it also has non-negative rank; viz. every non-negative linear
combination of the rows or columns must also be non-negative.

It is known that the factorization of non-negative matrices with non-negative
rank is an NP-hard problem. Factorization can be seen as generalizing k-means
clustering, which is known to be NP-complete.

A variety of techniques for performing this factorization have been developed.
A lightning review is given below. The point of the review is less to edify
the reader, than it is to point out which techniques, formulas and metrics are
the most appropriate for the present situation, namely, eqn 7 for probabilities,
coupled to the need for fairly crisp word-sense disambiguation.

Of these, perhaps the most important point is that the space of joint prob-
abilities is not the same as Eucliden space. This is a terminological issue that
unintentionally becomes a technical issue. Properly speaking, frequency counts
are multisets or bags; these resemble vectors, and are commonly thought of
and treated as vectors; they are not. The risk of envisioning vectors is that
it leads one to think of dot-products, cosine angles and rotational invariance.
These are all valid concepts for Euclidean space; but probability does not live
in a Euclidean space. The shape of the space

∑
i pi = 1 is a convex polytope;

a rotation applied to a point in this space will typically rotate it out. That
is, bags/multisets are neither rotationally invariant, nor rotationally covariant.
Yet, many matrix factorization frameworks assume rotational invariance. This
creates issues, and so is a point to focus on in what follows.
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6.4.1 Probabilistic Matrix Factorization

Probabilistic matrix factorization (PMF) (alternately, stochastic matrix fac-
torization (SMF)) assumes that the observation counts N (w, d) are normally
distributed (i.e. are Gaussian). The factorization is then obtained by minimiz-
ing the Frobenius norm of the di�erence of the left and right sides. That is, one
de�nes the error matrix (or residual matrix)

E (w, d) =

∣∣∣∣∣∣p (w, d)−
∑
g∈G

p (w|g) p (g, d)

∣∣∣∣∣∣
and from this, the objective function

U =
∑
w,d

|E (w, d)|2

After �xing the dimension |G|, one searches for the matrices p (w|g) and p (g, d)
that minimize the objective function.

The primary drawbacks of probabilistic matrix factorization is that it does
not provide any guarantees or mechanism to keep the factor p (w|g) sparse. It's
not built on information-theoretic infrastructure: it is not leveraging the idea
that the p's are probabilities; it does not consider the information content of the
problem. From �rst principles, it would seem that information maximization
would be a desirable property.

The assumption that the matrix entries are normally distributed are also in
a direct collision course with the known fact that the distribution of the matrix
entries are Zip�an, as argued in section 6.1.1. Although one can compute a
mean or expectation value for the p (w, d), creating a histogram around this
mean value will not reveal a curve in the shape of a Gaussian.

Some words occur with frequencies that are many orders of magnitude larger
than others. The Frobenius norm then becomes very strict for the former, and
very loose for the latter. It leads to a situation where improving the factorization
by 1% for a high frequency word is equivalent to being wrong by factors of 2 or
3 on low-frequency words. This does not seem like a plusible weighting scheme.
The Frobenius norm seems less than ideal for the problem at hand.

6.4.2 Nuclear Norm

Whenever the error matrix E (w, d) can be decomposed into a set {σi} of sin-
gular values, then the trace of the decomposition is t =

∑
i σi. The trace can

be treated as the objective function to be minimized, leading to a valid factor-
ization, di�ering from that obtained by PMF.

The word �nuclear� comes from operator theory, where the de�nition of a
nuclear operator as one that is of trace-class, i.e. having a trace that is invariant
under orthogonal or unitary transformations. In such cases, there is an explicit
assumption that the operator lives in some homogeneous space,[35] where or-
thogonal or unitary transformations can be applied. From an initial, naive point
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of view, this seems appropriate for machine learning. In machine learning, the
spaces are always �nite dimensional, and are usually explicitly assumed to be
real Euclidean space Rn � that is, the spaces behave like actual vector spaces,
so that concepts like Principle Component Analysis (PCA) and Singular Value
Decomposition (SVD) can be applied. SVD is particularly appealing, as it pro-
vides the best possible approximate decomposition of a given rank. Fixing the
rank |G|, the SVD is that decomposition which minimizes the mean square error
for that rank; that is, it minimizes the objective function U .

The subtle point here is that the space in which p (w, d) lives is not Rn
(nor is it R|W |×|D|, if one is a stickler about dimensions). Rather, p (w, d) is
constrained to live inside of a simplex (of dimension |W | × |D|). Sure, one can
blur one's eyes and imagine that this simplex is a subspace of R|W |×|D|, and that
is not entirely wrong. However, the only transformations that can be applied
to points in a simplex, that keep the points inside the simplex, are Markov
matrices. Any other transformations will typically move points into the inside
from the outside, and move inside points to the outside. In particular, rotations
(orthogonal transformations) cannot be applied to a probability, such that the
result is still a probability. Applying the notion of a trace, which is implicitly
de�ned as being invariant under orthogonal transformations, is inappropriate
for the problem at hand.8 What would be appropriate is some sort of trace-like
invariant that transforms as a scalar under Markov transformations.

6.4.3 Non-Negative Matrix Factorization

Non-negative matrix factorization (NMF) is similar to PMF, but with the addi-
tional constraint that the result has a non-negative rank. The non-negative rank
constraint requires that not only do the factor matrices have non-negative values
in them, but also that non-negative linear combinations are also non-negative.
This appears be an appropriate restriction for probabilities.

A reasonable review of NMF is given in[37], which also describes how one can
control the sparsity of the resulting factors. Control over sparsity is one reason
that clustering techniques are interesting; something as fast or faster that o�ers
control over sparsity is appealing.

NMF using the Kullback-Leibler divergence is equivalent to Probabilistic
Latent Semantic Indexing (PLSI), although the two commonly used algorithms
for each are quite di�erent, and each is able to climb out of local minima of the
other.[38]

The error term that needs to be minimized is the matrix-factorized form of
the mutual information, which is just the Kullback-Leibler divergence between

8Perhaps this explains why results based on SVD are often underwhelming as compared to
others. See, for example [36] for precisely such a report: the conception that SVD could have
or should have given a better result, followed by the disappointment of noting that it does
not. Of course, other explanations are also posible: one is that SVD behaves poorly when
some matrix elements are missing or unknown. This shortcoming is one reason why PMF,
above, and LLORMA, below, have been proposed.
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the factored and unfactored matrices:

MIfactor =
∑
w,d

p (w, d) log
p (w, d)∑

g∈G p (w|g) p (g, d)
(8)

In essence, this measures the information loss in moving from the full distribu-
tion p (w, d) to the factorized version; for a good factorization, one wishes to
minimize this information loss.

6.4.4 Projective Probability Amplitudes

The previous sections argue that when vectors are interpreted as probabilities,
then dot-products and invariance under orthogonal transformations are inap-
propriate, because these transform probabilities into things that cannot be in-
terpreted as probabilities. Intuitively, information-theoretic manipulations that
preserve the probability aspects seem wiser. However, there is another possibil-
ity: work with probability amplitudes.

A vector is a probability, if one has that∑
n

pn = 1

That is, a point ~p is constrained to live on the surface of a simplex. One can
apply a simple trick: just write an =

√
pn and then the constraint becomes∑

n

a2n = 1

Clearly, the point ~a is constrained to live on the surface of a sphere. Now,
orthogonal rotations do not violate this constraint.

This implies that nurclear norms, or Frobenius norms might be quite appro-
priate, if, instead of working with ~p, one worked with ~a. To be more speci�c,
de�ne a (w, d) =

√
p (w, d) and then de�ne an error matrix (residual matrix)

E (w, d) =

∣∣∣∣∣∣a (w, d)−
∑
g∈G

a (w; g) a (g; d)

∣∣∣∣∣∣
and then, to assign word w to word-sense cluster g, seek to minimize the objec-
tive function

U =
∑
w,d

|E (w, d)|2

This seems like a plausible objective function, if the a (w, d) are normally dis-
tributed. But, as argued in section 6.1.1, this is a faulty assumption. As noted
before, this error matrix causes high-frequency words to strongly dominate over
low-frequency words in the factorization. Again, this seems like an implausbile
objective function for natural language or any Zip�an distributions.
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6.4.5 Local Low Rank Matrix Factorization

Local Low Rank Matrix Factorization (LLORMA)[39] is a matrix factorization
algorithm exhibiting accuracy and performance at near state-of-the-art levels. It
uses a combination of two techniques: kernel smoothing[40] and local regression
(LOESS)[41] to obtain smooth estimates for the two factors p (w, g) and p (g, d).

These two techniques, combined, prove to be almost ideal, when faced with
incomplete data, and when the data is noisy. Speci�cally, the idea of incom-
pleteness is that some values of the input dataset p (w, d) are zero not because
they fundamentally should be (i.e. are forbidden by the grammar and syntax of
natural language), but are zero simply because they have not yet been observed;
some appropriate sentence does not occur in the sample dataset.

Thus, the use of the smoothing techniques seems highly appropriate, given
that the input dataset p (w, d) is both noisy and incomplete, as discussed in
section 6.1.1. Unfortunately, the use of LLORMA, as strictly described, seems
inappropriate, but only because the use of the Frobenius norm or the nuclear
norm is inappropriate for this dataset. The correct norm must be that of eqn
8. It seems reasonable to beleive that combining kernel smoothing with local
regression and the information-theoretic norm might yeild an excellent algorithm
for factoring joint probabilities. As an algorithm, it belongs to the gradient-
descent class.

6.4.6 Other factorizations

There are other techniques for factorization, including

• NTN (Neural Tensor Network)

• I-RBM (Restricted Boltzmann Machine)

• I-AutoRec

• Neural networks[42]

These are not reviewed here.

6.5 Neural Networks as Matrix Factorization

The need to perform a matrix factorization, of the form of eqn 7 was arrived at
indirectly, by making an explicit appeal to grammatical categories and seman-
tics. To recap: it was argued that N-grams and SkipGrams resemble grammat-
ical disjuncts. Grammatical disjuncts can in turn be understood as extremely
�ne-grained parts-of-speech. That parts of speech are correlated with semantic
meaning dates back to the earliest dictionaries. These arguments, combined
together, motivated the correctness of factorization; they explain why factor-
ization is meaningful and desirable, and why it aligns with natural, intuitive
notions of grammatical category.[43]

One can skip this round-about route, ingoring the philosophical ruminations
and motivations, and skip directly to matrix factorization. Levy and Golberg
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do so, by observing that maximization of the SkipGram objective function is
mathematically equivalent to matrix factorization.[36] More generally, Qui et al.
show that a number of di�erent neural network techniques, used to embed very
large network graphs into low-dimensional vector spaces, are formally equivalent
to low-rank matrix factorizations.[44]

In practice, rather than working with an objective function de�ned directly
from eqn 2 or 3, Mikolov etal.[7] explain that it is more e�ective to work with
a variant invloving a sigmoid function, together with a �negative sampling�
term, designed to suppress word-context pairings that are not observed. The
negative-sampling term helps draw a sharper distinction between word-context
pairings that are infrequently observed, and those that are never observed.9 The
suitablly revised objective function (using the notation from section 3.3) is built
from the observation counts N(wt, wi) of a target word wt and a context word
wi ∈ I, together with the dimensionaly reduced vectors ~ut and ~vi. It is not
reviewed here; the details are readily available in [7] and [36].

The remarkable result of Levy and Golberg[36] is that the maximization
of this objective function is mathematically identical to the factorization of
the word-pair mutual information of eqn 6. The explicit result is that the
dimensionaly reduced vectors ~ut and ~vi are related to the mutial information as

~ut · ~vi =MI (wt, wi)− log k

with k the negative-sampling weighting coe�cient. Just so that importance of
this sinks in, it is worth stating again, with di�erent words: the SkipGram tech-
nique is equivalent to a low-rank matrix factorization of the mutual information
between word-pairs.

This can be used as yet a di�erent vindication of the MST parsing of the
Yuret approach, described in section 4.5. Summations over context words, of
the form ∑

i∈I
~ut · ~vi

appearing in eqn 2 or 3 are nothing more than summations over the mutual
information between a word and it's context. It now becomes readily appar-
ent that perhaps a summation that discards low MI values, while also taking
into account the entire sentence, can perhaps yeild a superior result. The two
approaches butress one-another, and mutually explain one-another. The e�ec-
tiveness of the SkipGram model is explained by it's resemblance to MST parsing
with word-pair MI, which in turn has strong connections to symbolic approaches
to linguistics. Grammatical structure as given in the symbolic approach to lin-
guistics is intellectually overt and comprehensible. It now appears that the
�subsymbolic�, neural network approach, at �rst seemingly opaque and hidden

9Other work[45] suggests that infrequently-observed word-context pairings play an (unex-
pectedly) important role in classi�cation, and that explicit �ltering to remove infrequently
observed pairings causes signi�cant damage to the quality of the results. Thus, rather than
discarding infrequent observations, adding a �negative sampling� to guess at those pairings
that can never happen does indeed seem like a reasonable tactic.
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in a black box of neural net weights, can be seen as a somewhat obfuscated form
of traditional symbolic linguistics.

6.6 Clustering as Matrix Factorization

One may show that k-means clustering is equivalent to a rank-k matrix decom-
position with an extra orthogonality condition enforced; this is developed by
Ding et al.[32] The orthogonality condition can be loosened, as the process of
factorization is driven by a minimization condition that drives towards approx-
imate orthogonality. In e�ect, k-means clustering is a special case of matrix
factorization: its factorization with extra constraints.

Ding et al examine several forms of k-means clustering. The simplest form
of clustering assigns vectors to clusters, and stops there. This is equivalent to
assigning words to word-classes, without making any speci�c statements about
what happened to the disjuncts. Alternately, one could say that the disjuncts
just went along for the ride: they were associated with some word before-hand,
and they are now still associated with that word, thrown into a bucket with the
other disjuncts of similar words.

Bipartite graph clustering (aka �co-clustering�) recognizes that the input data
can be viewed as a bipartite graph (�g 5, left image), and that one can perform
separate, distinct, but simultaneous clustering on the columns, and separately,
the rows. This is closer to the desired factorization model for language, and so
the proof is reviewed here. It is still k-means clustering, just that one performs
two clusterings, not one, on the columns, and on the rows.

The matrix to be factorized is B and the desired factorization is B ≈ LRT .
Comparing this to the factorization of eqn 7, the matrix elements of B are
p (w, d); those of L are p (w|g); those of RT are p (g, d). Key to the proof is
the reinterpretation of L and R as membership matrices, so that each row and
column indicate the membership of a vector to a cluster. That is L consists of

column vectors L =
[
~l1,~l2, · · · ,~lk

]
where each column vector is of the form

~lj = (0, 0, · · · 0, 1, 1, · · · , 1, 0, · · · , 0)T

with the 1's indicating the cluster membership. That is, the matrix elements of
L are

Lij =

{
1 item i belongs to cluster j

0 otherwise

Hard clustering means that any given i belongs to only one j, and so one trivially
has that

∑
j Lij = 1, which is a key property of a Markov matrix. That is, hard

clustering has the Markov property. Equivalently, the factorization for the hard-
clustering of words into single classes is

p (w|g) =

{
1 word w belongs to wordclass g

0 otherwise
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That is, every word belongs to some class, with 100% probability.
The optimization problem is then to �nd the maxima of two objective func-

tions, subject to some constraints:

max
L≥0;LTL∼I

trLTBBTL and max
R≥0;RTR∼I

trRTBTBR

The constraint LTL ∼ I means that not only should LTL be a diagonal matrix,
but that it should be a multiple of the identity matrix I � that is, have equal
values along the diagonal. Here, the tr operator is the matrix trace. The trace
of a matrix is, of course, equal to the sum of the eigenvalues of the matrix; thus,
optimizing the above is equivalent to performing a singular value decomposition
(SVD) of the traced matrix, and then summing the singular values. This is, of
course, just the nuclear norm discussed previously.

With some relatively straightforward algebraic manipulation, the above can
be shown to be equivalent to optimizing

min
∥∥B − LRT∥∥2

subject to the same constraints. The norm ‖·‖2 is the Frobenius norm. In this
sense, hard k-means clustering is identical to matrix factorization. Removing
some of the constraints shows that k-means clustering is a special case of the
more general factorization problem. Ding et al show that if one removes the
orthogonality constraints, the resulting factors are still approximately orthog-
onal, since the Frobenius norm contains terms that drive the factors towards
orthogonality.

Three previously identi�ed issues arise with the above:

• The hard-clustering assignment of a word to only a single word-class pre-
vents words from having multiple meanings, and thus forces word-sense
disambiguation to somehow happen somewhere else.

• The use of the Frobenius norm (or the nuclear norm) implicitly forces as-
sumptions of rotational invariance, in the form of orthogonality constraints
on the membership indicator matrices L, R. As discussed previously, ro-
tational invariance (and thus, orthogonality) is inappropriate when L and
R are interpreted as joint probability distributions.

• There is no room for a central factor matrix M (g, g′) which can cap-
ture the non-sparse complexities of the language. The need; indeed, the
inevitability of such a matrix is developed in the next section.

The proposed �x to these issues is multi-fold:

• Use an information-theoretic similarity, namely, the Kullback-Leibler di-
vergence of the factored solution to the input data.

• Perform greedy clustering, so as to minimize the number of number of
non-zero entries in the left and right factor matrices
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• Decompose vectors into components that align with clusters, so that clus-
ters correspond to word-senses, and word-sense disambiguation (WSD) is
an inherent, inbuilt part of the clustering step.

6.7 Factorization Ambiguity

When considering the factorization of eqn 7, the sum
∑
g∈G can be seen as

a speci�c function, viz, the inner product of two vectors (~w)g = p (w|g) and(
~d
)
g
= p (g, d). Aside from considering just the function f

(
~w, ~d
)
= ~w · ~d, one

might consider other functions f
(
~w, ~d
)
of ~w and ~d. For example, a single-layer

feed-forward linear neural net would consist of a |G| × |G|-dimensional weight
matrix M such that

f
(
~w, ~d
)
= ~wT ·M · ~d

This, in itself, because it is linear, does not accomplish much, because the matrix
M can be re-composed on the left or the right, to re-de�ne the vectors ~w or
~d. That is, one may write ~w′ = MT ~w to get a di�erent product ~w′ · ~d, or,
alternately ~d′ = M~d for a product ~w · ~d′. The dot-product in the factorization
is ambiguous; the point is that the factorization of eqn 7 is not unique.

The low-rank matrix-factorization literature expresses this idea by noting
that a dot-product is invariant under orthogonal rotations, and so one can choose
an arbitrary orthogonal matrix O with OTO = I and write

~w · ~d =
(
~wOT

)
·
(
O~d
)
= ~w′ · ~d′

Since the vectors ~v and ~d are naturally probabilities, the above is exactly what
we do not what to do! As already noted, orthogonal rotations applied to a
probability turn it into something that is not a probability. Instead, we want
to stick to a single (ambiguous) matrix M that is Markovian, so that, when
contracted to the left or to the right, the resulting vectors are still probabilities.

This becomes more clear if written in in components:

p (w, d) =
∑
g

∑
g′

p (w|g)M (g, g′) p (g′, d)

This shows that the factorization is ambiguous; as long as M is Markovian,
preserving the sums of probabilities over rows and columns, it can be contracted
to the left or the right. Indeed: M itself can be factored into an arbitrary
product of Markovian matrices, which can then be merged to the left and right.

Thus, to get a meaningful factorization, one can must introduce additional
constraints. A seemingly natural one, to be developed later, is to choose M
such that p (w, g) and p (g′, d) are both maximally sparse. One would like to
assign a word to at most a handful of di�erent word-classes, corresponding to
the synonym classes for each word-sense attached to that word.
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A quick review of the concept of a Markovian matrix is in order. A matrix
can be Markovian on the left side, the right side, or both. It is Markovian on
the right if

1 =
∑
g

M (g, g′) for all g′

This assures that a transformed joint probability

p′ (g, d) =
∑
g′

M (g, g′) p (g′, d)

is still a valid joint probability distribution; namely, that p′ (∗, ∗) = 1.
If one has such a factorization, so that p (w, g) and p (g′, d) are maximally

sparse, then the matrix M will likely be very highly connected, i.e. will have
many or most of its matrix entries be non-zero. Conceptually, one can visualize
the matrixM as a highly connected graph, while the factors p (w, g) and p (g′, d)
are low-density feeder tree-branches that connect into this tightly-coupled cen-
tral component. This is visualized in �gure 5.

In the above factorization, matrixM was made explicitly Markovian, so as to
preserve the left and right factors as joint probabilities. However, it seems to be
particularly important to the semantic structure of the language: it captures the
complexity of language, whereas the left and right factors merely funnel spelled-
out word-strings into the actual semantic categories. Thus, it is convenient to
instead write the left and write factors as Markov matrices, while taking the
central factor to be a joint probability. This can be achieved by factoring as

p (w, d) =
∑
g

∑
g′

p (w|g) p (g, g′) p (d|g′) (9)

where the left and right factors are conditional probabilities. That is,

p (w|g) = p (w, g)

p (∗, g)

and likewise for p (d|g′) = p (g′, d) /p (g′, ∗). These are explicitly Markovian, in
that ∑

g

p (w|g) = 1

and likewise
∑
g′ p (d|g′) = 1. This factorization is just a rescaling of the earlier

factorization:
p (g, g′) = p (∗, g)M (g, g′) p (g′, ∗)

and is done so that p (g, g′) can be seen as a joint probability:∑
g,g′

p (g, g′) = 1

The ambiguity of the matrix M is removed, if one assumes hard clustering.
In this case, each w can belong to only one g, and each d to just one g′, and, once
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Figure 5: Factorization

This �gure attempts to illustrate the process of factorization. The left-most im-
age is meant to illustrate p (w, d) as a sparse matrix. Edges indicate those values
where p (w, d) is not zero. Not every w is connected to every d, but there are a
su�cient number of connections that the overall graph is confused and tangled.
The middle image is meant to illustrate the factorization

∑
g p (w, g) p (g, d). In

this factorization, the matrix p (w, g) not only becomes more sparse, but has a
very low out-degree for �xed w: only one or a handful of entries in p (w, g) are
non-zero for �xed w. The rightmost image attempts to illustrate the factoriza-
tion

∑
g,g′ p (w, g)M (g, g′) p (g′, d). Here, the factor p (g′, d) has low in-degree

for any �xed d. All of the tangle and interconnectedness has been factored out
into the matrix M (g, g′) connecting word-classes to disjunct-classes.
In hard-clustering, these low-degree requirements are automatically satis�ed: a
word w can belong to only one word-cluster g, and so there is only one line in
the �gure connecting w to anything. Likewise, a disjunct d can only be assigned
to one cluster g′. Due to the fact that words are combinations of word-senses,
hard-clustering in this fashion is undesirable; by contrast, it seems that word-
senses could be validly hard-clustered.
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the clusters are chosen, there is no confusion about the left and right factors,
and thus, the central factor is �xed.10

A factorization of this sort is known as co-clustering, bi-clustering or some-
times block clustering. An explicit development of this, including an explicit
iterative algorithm guaranteed to converge, is given by Dhillon et al.[46] and
is reviewed in a subsection below. Of course, for natural language, we want to
decompose words into word-senses, and so naive hard-clustering will not work.
It does, however, illuminate the path ahead.

6.7.1 Factorization in Link Grammar

This factorization is de facto observed in the hand-built dictionaries for Link
Grammar. Examination of the 4.0.dict �le in the Link Grammar �le dis-
tribution will clearly show how words are grouped into word-classes. For ex-
ample, words.n.2.s is a list of plural count-nouns. The Link Grammar costs
are very rough approximations for the log probability − log p, and so the con-
tents of words.n.2.s is e�ectively a representation of the matrix p (w, g) for
g = 〈plural-count-nouns〉 and a uniform probability across this class. The
�le 4.0.dict also de�nes a large number of �macros�, with names such as
<noun-main-p>. These macros are stand-ins for lists of disjuncts, often given
equal weight, but also not uncommonly assigned di�erent costs. In essence,
<noun-main-p> should be understood as an example of p (g′, d) for g′ = 〈noun−main−p〉.
It appears multiple times throughout the �le. In one case, it is associated with
the word-list words.n.2.s, which makes sense, as <noun-main-p> is describing
one of the linkage behaviors of plural common nouns. The contents of the �le
4.0.dict should be understood to be a speci�cation of M (g, g′), although it is
not so cleanly organized: it also includes all of the �macros� p (g′, d) and also
includes word-lists when these are small.

A more careful examination of the use of the macros in 4.0.dict shows that
these are often cascaded into one-another. For example, <noun-main-s> is used
in the de�nition of <proper-names>, <entity-entire> and <common-noun>,
each of which service word classes that are similar and yet di�er syntactically and
semantically. This is not just some strange artifact of hand-building a dictionary
encoding grammar. It is prima facie evidence of important substructures inside
ofM (g, g′), essentially pointing at the idea thatM (g, g′) can be further factored
into smaller, tightly-connected blocks; viz., that the graph of M (g, g′) contains
strongly-coupled bipartite cliques.

This explicit co-clustering in Link Grammar is not driven by any sort of
theoretical arguments or foundation. Rather, it is a natural, intuitive outcome
of how the linguists who author the dictionaries wish to tackle the problem. A
good factorization saves time and e�ort for the author, and is easier to debug.
The urge to factorize is not limited to English: a look at any of the dictionaries

10In physics, such an ambiguity of factorization is known as a global gauge symmetry; �xing
a gauge removes the ambiguity. In natural language, the ambiguity is spontaneously broken:
words have only a few senses, and are often sysnonymous, making the left and right factors
sparse. For this reason, the analogy to physics is entertaining but mostly pointless.
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shows this structure clearly. It becomes even more pronounced in dictionaries
with morphology, e.g. in the Russian dictionaries, where word-stems (which
carry most of the meaning) are factored away from the su�xes (which provide
the needed tense, gender, number and person agreement across sentences).

6.7.2 Tensor Product Factorization

The idea thatM (g, g′) contains important substructures is important enough to
point out a second time. Based on explicit experience with Link Grammar, those
substructures are likely to require a tensor product factorization (as opposed to
a matrix product factorization) to make sense of them. Its possible to speculate
that a Tucker factorization may provide a reasonable �rst approximation to this
factorization. Nothing further on this can be said at this point, until a reliable
way to obtain a stable, reproducible and accurate M (g, g′) is in hand.

6.7.3 Rank and Dimension

Based on the example of the actual English lexis in Link Grammar, there is no
need to assume that the number of word classes |G| should somehow be equal
to the number of syntactic usage patterns |G′|. Indeed, the dimension of the
matrix M (g, g′) has to be |G| × |G′|; but these two dimensions are not known
from any a priori principles.

More careful vocabulary is needed here: one can say that |G| is the number
of �word classes�. The number of of syntactic usage patterns |G′| could be called
the number of �grammatical classes�, although historic usage con�ates these two
terms. Thus, the term �syntactic classes� for G′ seems the most appropriate.

The number of word classes |G| must surely be fairly high, as they must cap-
ture not only the predicate-argument structure,[47, 48] but the resulting syntax
constraints must force the selection of the predicate-argument structure.[49]
Roughly speaking, the number of word classes should correspond to the number
of di�erent synonym classes one might expect to �nd. This is confused by the
situation of common nouns: there are vast numbers of these, and while most
are not synonyms, most are syntactically interchangeable, even when forcing
predicate-argument agreement.

The appropriate number of syntactic classes |G′| is presumably a lot lower.
At a minimum, it corresponds to the number of classical head-phrase structure
grammar non-terminals, such as S, NP, VP, PP, D, A, V, N, etc. A more complete
set can be found in the dependency grammar relations subj, obj, iobj, det, amod,

advmod, psubj, pobj, etc. but even this seems too low. There are just over
100 di�erent link types in Link Grammar, growing to the thousands, when one
considers various subtypes (subscripts). However, the number of distinct macros
in the English lexis provides a di�erent lower bound. At any rate, the size of
|G′| cannot be smaller than 100 for a realistic model of the English language,
and an accurate model is likely to require |G′| of at least a few thousand.
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6.7.4 Akaike Information Criterion

How many word classes and syntactic classes should there be? Aside from
making various a priori guesses, one can apply the Akaike information criterion
(AIC). Essentially, the grammatical classes can be taken as the parameters of
the model. The AIC can be used as a guide to determine how many of them are
required. This is easy to say in principle; a computationally e�cient mechanism
is not yet clear.

6.7.5 Removing Ambiguity in Factorization

As noted in the earlier subsection, the ambiguity in the factorization can be
removed by hard clustering. Practical experience with hands-on similarity mea-
sures in language data indicate that there should not be much of a problem:
most words that are similar are obviously-so, using an appropriate pair-wise
similarity function.

Suppose this was not easily the case? To guide the factorization, and to
maximize the sparsity of the left and the right factors, while maximizing the
complexity of the central factor, one can appeal to Tegmark's formulation of
Tononi integrated information as a guide. That is, one wishes to factorize in
such a way that the total amount of integrated information in the left and right
factors are minimized, while the integrated information of the central factor is
maximized.

In essence, factorization is a reorganization of the graph so as to always
maximize the integrated information of an important central core. All edges
where mutual information is weak are to be pruned away.

6.7.6 Information Loss

The goal of the factorization is to minimize the information loss between the
input data and the factorization. The objective function is then The Kullback-
Leibler divergence, a minor variant on the previous eqn 8:

MILoss =
∑
w,d

p (w, d) log2
p (w, d)∑

g∈G
∑
g′∈G′ p (w|g) p (g, g′) p (d|g′)

(10)

By minimizing this divergence, one minimizes the total loss incurred by the
factorization.

The above information loss estimate is identical to that described by Dhillon
et al.[46] in their treatment of hard co-clustering. That reference provides an
extensive and detailed review of the factorization problem being addressed in
this section, with the exception that the current need for word-sense disambigua-
tion violates their hard-clustering assumption. Words cannot be hard-clustered;
word-vectors must be decomposed into word-sense vectors �rst.[50] Nonetheless,
many formulas are still relevant, and the reference gives detailed motivation for
them, and provides multiple articulations and derivations. Various results are
recapped here.
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For the special case of hard clustering, where each word or disjunct is
assigned to only one word class/grammatical class, one has that (eqn (6) of
Dhillon)

p (g, g′) =
∑
w∈g

∑
d∈g′

p (w, d) (11)

From this, it follows that (eqn (4) of Dhillion)

MILoss =MI (W,D)−MI (G,G′)

and so eqn 10 really is the information loss from factorization. For hard clus-
tering, the loss can be written in terms of only the left, or the right clusters, so
that (lemma 4.1 of Dhillon)

MILoss =
∑
g

∑
w∈g

p (w, ∗)
∑
d

p (d|w) log2
p (d|w)
p (d|g)

=
∑
g

∑
w∈g

∑
d

p (w, d) log2
p (w, d)

p (w, ∗)
p (g, ∗)
p (g, d)

This allows an iterative algorithm to be performed, clustering only rows (or only
columns), that is, only words (or only disjuncts).

6.7.7 Biclustering

It is worth reviewing the algorithm that Dhillion etal present. It is an iterative
hill-climbing algorithm, alternating between three steps: the computation of
marginals, and the assignment of new row clusters, and the assignment of new
column clusters. The marginals are recomputed after every reclustering. Dhillon
provides a proof that, for hard clustering, the information loss is monotonically
decreasing; viz, that iteration always moves to a better solution.

Given provisional cluster assignments G and G′, so that every word and ev-
ery disjuncts can be placed into some speci�c cluster, all three factors p (w, g),
M (g, g′) and p (g′, d) are available (are computable) given the cluster assign-
ments. The central factor is given by eqn 11. The left and right factors are
obtained as marginals:

p (w, g) =

{
p (w, ∗) if w ∈ g
0 otherwise

and

p (g′, d) =

{
p (∗, d) if d ∈ g′

0 otherwise

The above are always known and well-de�ned, since, by assumption, the pro-
visional cluster assignments G and G′ are known at each step of the iteration.
The conditional probabilities are as noted before:

p (w|g) = p (w, g)

p (∗, g)
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and likewise

p (d|g′) = p (g′, d)

p (g′, ∗)
where p (∗, g) =

∑
w∈g p (w, g) and p (g

′, ∗) =
∑
d∈g′ p (g

′, d).
The new cluster assignments are obtained by minimizing the information

loss, once for the rows, and once for the columns. In one step, one searches for
cluster assignments w ∈ g such that

MIword loss =
∑
d

p (d|w) log2
p (d|w)

p (d|g′) p (g′|g)

is minimized. After recomputing marginals, one then reclusters the disjuncts,
by searching for the clustering d ∈ g′ that minimizes the loss

MIdisjunct loss =
∑
w

p (w|d) log2
p (w|d)

p (w|g) p (g|g′)

This looks like an entirely reasonable algorithm, concrete and speci�c and im-
plementable, until one refers back to the table in section 6.1. There are in excess
of 105 words to provisionally assign to clusters, and 107 or more disjuncts. Each
provisional clustering requires extensive re-computation of marginal probabili-
ties. Exhaustive search for the best clustering clearly cannot scale to the current
datasets. One might be able to make some forward progress by means of genetic
algorithms, as one is performing hill-climbing on a well-de�ned utility function.
The hard cluster membership can be encoded as a very long bit-string: this is
exactly the scenario for which genetic algorithms were designed to solve: opti-
mizing large bit strings, given a utility function on them.

But never mind: the assumption of hard clustering breaks word-sense dis-
ambiguation. Genetic algorithms are not enough. Back to the drawing board.

6.7.8 Word-Sense Disambiguation

The primary issue with hard clustering is that it fails to correctly disentangle
di�erent word senses. There is an opportunity to do better.

A prototype example is given by the word �saw�. It could be the noun,
referring to the cutting tool; it could be the verb synonymous to cutting; it
could be the past tense of the verb �to see�. The observational data consists
of occurrence counts N ("saw", d). The goal of word-sense disambiguation is to
somehow factor this into three grammatical classes g, so that

N ("saw", d) = N (〈tool〉 , d) +N (〈cutting〉 , d) +N (〈seeing〉 , d)

The general problem of how to accomplish this, and several tactics are discussed
in [50]. That presentation focuses on cosine distances. This section provides an
information-theoretic variant.
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The actual observed frequencies p (w, d) are, by de�nition, sums of word w
used with every di�erent possible word-sense sk that the word could have. That
is, explicitly, one has that

p (w, d) =
∑
k

p (sk, d)

In poetry and in word-play, a word might be used in such a way that multiple
senses are simultaneously applied. The assumption above is that this is not the
case: that the text assigns only a single meaning to each word use. In any given
use, the word �saw� is either a noun, or one of the verbs; it cannot be some
mixture of all of them.

Each word-sense can then be hard-clustered into a single grammatical cat-
egory: �saw�-the-noun belongs to just one grammatical category, the one that
holds synonyms for cutting tools. Thus, the hard-clustering formula applies:

p (s, g) =

{
p (s, ∗) if s ∈ g
0 otherwise

The intent of the sense label s is that it is uniquely associated with just one word,
and no others. The number of word-senses is strictly larger than the vocabulary:
every vocabulary word has at least one sense. That is, p (∗, s) = p (w, s) holds
for all s ∈ w. Thus, the conditional probability is

p (w|s) = p (w, s)

p (∗, s)
=

{
1 if s ∈ w
0 otherwise

The decomposition of words into senses is then (restating the earlier formula in
slightly di�erent notation:

p (w, d) =
∑
s

p (w|s) p (s, d)

=
∑
s∈w

p (s, d)

To be consistent with the central factorization 9, one must have∑
s∈w

p (s, g) = p (w, g)

and ∑
s∈w

p (s|g) = p (w|g)

Since a word-sense is associated with just one word, the notation
∑
s∈w is su-

per�uous: one can unambiguously write
∑
s as all other entries are zero.

The central factorization now has the form

p (w, d) =
∑
s

p (s, d) =
∑
s

∑
g

∑
g′

p (s|g) p (g, g′) p (d|g′)
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Not much has changed: the word-senses can now be legitimately hard-clustered;
but the decomposition of words into word-senses is unknown. The clustering
algorithm reviewed in section 6.7.7 is very nearly una�ected: one replaces the
provisional clustering guesses of w ∈ g by provisional guesses s ∈ w and s ∈ g.
The feasibility of the algorithm is further challenged by the fact that there are
more word-senses than there are words, further increasing the computational
space.

6.8 Graph Algorithms vs. Gradient Descent

In the previous section, the Word2Vec style algorithms were characterized as
�gradient descent algorithms�, and were contrasted with �graph algorithms� that
explicitly and overtly focus on the graphical relationships between items. The
same contrast can be made here: clustering is a form of a graph algorithm,
whereas the matrix factorization algorithms are all driven by a form of gradient
descent.

The di�erence can be highlighted by noticing that cluster assignment is
essentially a form of greedy algorithm: One looks for the best-�tting cluster, and
accepts that �rst, e�ectively ignoring all of the other clusters. The relationship
of word-to-cluster is explicit and overt; by contrast, the matrix factorization is
only implicit: a cluster relationship exists whenever a matrix element is large.

In the current state of the art, the gradient-descent algorithms tend to out-
perform the clustering algorithms, when the size of hidden layers is limited to
a computationally tractable size. This can be interpreted in several ways: for
small hidden layers, the clustering algos just might be �too greedy�, applying
too strong a discrimination. Gradient descent algorithms also organize compute
cycles di�erently, removing certain repeated calculations out of a tight loop.

One advantage of the clustering approach is that, since it makes the graph
structure explicit, it provides a mechanism for controlling the shape of the graph.
Another is that it seems to perhaps be more scalable, when the size of the hidden
layers are not suitably small.

6.8.1 Control of Graphical Structure

The goal of the matrix factorization, illustrated in �gure 5, is to not only obtain
the three factors p (w, g), M (g, g′) and p (g′, d), but to obtain them such that
the �rst and last components contain essentially no bipartite cliques, and all of
the structural complexity is limited to M (g, g′). A naive gradient descent does
not seem to achieve this; it will provide numerical values, but will not go out of
its way to maximally set as many of the p (w, g) values to zero as possible. In
keeping with the general trend: the goal here is to set as many matrix entries
to zero as possible, thereby getting the greatest amount of data compression
as possible. Yet, �delity has to be maintained: just the right entries should be
non-zero.

The point here is that it is the graph structure that is the most important;
the actual numerical values associated with each edge are far less important.
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They are nice, and useful for improving accuracy and parse ranking, but provide
little insight in and of themselves. The graph structure dominates. This is made
clear in section 6.7.1, where a huge amount of progress can be made by means of
manual factorization, and setting all edge weights to essentially just one value:
present or absent.

Greedy clustering essentially provides a mechanism for controlling this struc-
ture: it inherently limits the number of grammatical classes that a word can
belong to. It dis-incentivizes the partitioning of a word into a large number of
grammatical categories.

6.9 TODO

This: PMI stu�.

• Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma, and Andrej Ris-
teski. 2016. A latent variable model approach to pmi-based word embed-
dings. TACL 4 (2016), 385�399.

• Tatsunori B Hashimoto, David Alvarez-Melis, and Tommi S Jaakkola.
2016. Word embeddings as metric recovery in semantic spaces. TACL 4
(2016), 273�286.

Arghhh.

7 Factorizing the language model

The above developments now provide enough background to clearly state the
problem. Inspired by the factorization of eqn 7, one wishes to �nd a collection
of word classes, assigning words to a handful of classes, according to the in-
context word-sense. The proper factorization needs to be of the form of eqn 9,
as illustrated in �gure 5. The appropriate measure of quality is to minimize the
information loss in the factorization, as given by eqn 10.

More precisely, the factorization of the language model appears to require
three important ingredients:

• A way of decomposing word-vectors into sums of word-sense vectors,

• A way of performing biclustering, so as to split the bipartite graph p (w, d)
into left, central and right components, holding the left and right parts to
be sparse,

• Using an information-theoretic similarity metric, to preserve the proba-
bilistic interpretation of the contingency table p (w, d).

Combining all these parts in one go is daunting. Smaller steps towards the
ultimate goal can be taken. One easy �rst step is to perform clustering using an
information metric, instead of the cosine distance. This is done in the section
below.
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A second step is to replace hard clustering by an algorithm that treats word-
vectors as sums of (as yet unknown) distinct word senses. Because this is a
substantial topic in itself, this is handled in a distinct tract; see [50].

7.1 Information-theoretic Clustering

The previous section uses the words �information theoretic� and �clustering� in
close proximity. This is a �thing�, and so a lighting review of the literature is
warranted. Two observations pop out:

• None of the systems described in the literature assume that the input data
can already be interpreted as a probability; rather, the clustering is being
performed on data naturally occurring in some Euclidean space, typically,
some space of low dimension (e.g. two-dimensional image data).

• Most approaches to information-theoretic clustering use the mutual in-
formation between members of a cluster and the cluster label. Unfortu-
nately, this has an ambiguity: the information content is conserved by any
Markov matrix that reassigns the cluster labels, so, for example, a per-
mutation matrix that just shu�es the cluster labels. Ver Steeg et al.[51]
propose a solution to this ambiguity: a return to �rst principles, requiring
that information loss due to coarse-graining be minimized.

Several other notable points are discussed below.

7.1.1 Renyi Information Divergence

Gokcay and Principe[52] propose the Renyi entropy as an information diver-
gence. It is essentially minus the logarithm of the cosine metric. Given two
vectors ~u and ~v, the information divergence is de�ned as

DCEF (~u,~v) = − log cos (~u,~v) = − log û · v̂ = − log
~u · ~v
‖~u‖ ‖~v‖

where ‖·‖ is the l2-norm. Although this is widely cited in the literature pertain-
ing to information-theoretic clustering, there is no particular reason to believe
that it o�ers any advantage at all over the ordinary cosine metric, when applied
to the task of clustering grammatical categories. In particular, it su�ers from
the same defects previously identi�ed: it contains an inbuilt assumption that
the data presents in a Euclidean, rotationally symmetric space, which is very
much not the case for the language data. The vectors of in the contingency
table that the language data is organized in are not Euclidean vectors: they are
joint probabilities. They transform not under orthogonal rotations, but under
Markov matrices.

There are also some practical, language-related reasons to lose interest in
the above information divergence: When examining actual language data, as is
done in [45], it becomes quite clear that there is a practical, common-sense cuto�
for similarlity. If two words w1 and w2 have a similarity of cos (w1, w2) . 0.5,
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they are very nearly unrelated; for a similarity of cos (w1, w2) . 0.1, they are
fantastically unrelated. It would be crazy to assign anything with such low
similarities to a common cluster. Extending the notion of similarity to truly
wee values, as the logarithm enables, is meaningless. For cosine values greater
than 1/2, the logarithm is essentially linear: − log cos x ≈ 1 − cos x in the
region of interest. The appearance of the logarithm does nothing to advance
the situation.

7.1.2 Consistency Under Coarse-graining

To deal with the problem of factorization ambiguity, Ver Steeg et al[51] re-
vert to �rst principles, and propose that the information divergence should be
approximately invariant under the coarse-graining of the input data.

There is some appeal in this idea for the language problem: a large cluster
of approximate synonyms should be factorizable into smaller clusters of more
tightly-related synonyms. Conversely, one should be able to consolidate small
blocks into bigger ones, with a minimum of information loss. However, based
on the explorations in [45], this does not appear to be a problem that needs to
be externally forced onto the system. Pair-wise word similarities seem to be of
high quality; it would take some work to have this wrecked by the clustering
algorithm. Still ... additional consideration might be warranted.

7.2 Information-driven Clustering

As shown by Ding et al[32] and reviewed in section 6.6, k-means clustering can
be seen as a special case of matrix factorizing. This section generalizes to an
information metric, as opposed to the usual cosine metric. The �rst subsection
reviews the simpler single-sided form of clustering, as it would be applied to
just words, instead of the bipartite clustering. The second subsection presents
the information metric.

7.2.1 Cosine clustering

The usual metric for judging similarity is the cosine metric:

cos (~u,~v) = û · v̂ =
~u · ~v
‖~u‖ ‖~v‖

where ‖·‖ is the l2-norm. If the input data is taken as a collection of (row)
vectors, then the input can be viewed as a matrix X = [~v1, ~v2, · · · , ~vn]. The
product matrix S = XXT then has matrix entries Sij = ~vi · ~vj . If the vectors
are already normalized, then the matrix entries Sij are just the cosine distances
between i and j. This is used to accomplish k-means clustering by �nding a
n× k matrix membership indicator matrix F such that the objective function

U = trFTSF
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is minimized. Some basic algebra (again, see [32]) shows that this is equivalent
to minimizing the Frobenius norm

U =
∥∥X − FFT∥∥2

which in turn is identical to minimizing the distance between cluster centroids
~mi and each member j ∈ Ci of the i'th cluster.

U =

k∑
i=1

∑
j∈Ci

‖~vj − ~mi‖2

The centroid ~mi is the arithmetic mean of all of the vectors in the i'th cluster:

~mi =
1

|Ci|
∑
j∈Ci

~vj

where |Ci| is the number of members in the i'th cluster.

7.2.2 Pair-wise Information Divergence

The cosine was built from the dot product ~u·~v normalized by the vector lengths.
For information-based clustering, the normalization is changed, so as to use the
Kullback-Leibler divergence between the vector-pair, and the individual vectors:

MI (~u,~v) = log2

~u · ~v
(∑n

i=1

∑n
j=1 ~vi · ~vj

)
(
∑n
i=1 ~u · ~vi)

(∑n
j=1 ~vj · ~v

)
This unusual-looking expression can be made more recognizable by changing
notation back to the joint probabilities p (w, d) of observing word w with disjunct
d (of course, this would also work if the disjunct d was replaced by the N -gram
context of w). Write for Sij = ~vi · ~vj in the equivalent form

S (w1, w2) =
∑
d

p (w1, d) p (w2, d)

The information divergence MI (~u,~v) is then

MI (w1, w2) = log2
S (w1, w2)S (∗, ∗)
S (w1, ∗)S (∗, w2)

where, as always, the stars ∗ denote the wild-card sums:

S (w1, ∗) =
∑
w2

S (w1, w2)

By normalizing, one gets an expression that looks just like a joint probability:

Q (w1, w2) =
S (w1, w2)

S (∗, ∗)
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with

MI (w1, w2) = log2
Q (w1, w2)

Q (w1, ∗)Q (∗, w2)
(12)

Intuitively. this can be thought of the information gain of bringing two vectors
together, as compared to the entire dataset of all other vectors.

This global aspect makes this function very di�erent from the cosine distance.
The cosine distance is de�ned independently of all other vectors in the system; it
is independent of the number of other vectors, and the directions in which they
are pointing. On could have a system with 42 vectors, or with 23 thousand of
them: the cosine metric doesn't care. One could have a system with two vectors
pointing one way, and another six hundred pointing in the opposite direction:
cosine doesn't care. The pair-wise MI above compares two vectors, within the
context of what all of the other vectors in the system.

A di�erent way to think of the pair-wise MI is that, by incorporating all
other vectors into its value, it is e�ectively attempting to spread all of the (other)
vectors into as uniform distribution as possible, magnifying and expanding those
regions where cosine would say there are lots of densely packed vectors, while
shrinking those regions where there is low density.

One way the above can be visualized is to consider two vectors, roughly
collinear, and another six hundred, also all roughly collinear, but almost or-
thogonal to the �rst two. Consider then the MI values for di�erent pairs chosen
from this collection. Two vectors which might have the same cosine angle will
have very di�erent MI values, in this kind of dataset.

7.2.3 Scale invariance

The information divergence MI (w1, w2) is scale invariant: replacing p (w, d)
by kp (w, d) for some constant k does not alter the divergence. In particular,
replacing the joint probability p (w, d) by the conditional probability p (d|w) =
p (w, d) /p (w, ∗) does not alter the information divergence.

7.2.4 Arithmetic and Geometric Means

For vectors obtained from natural language, there is good reason to believe that
the natural clusters are convex, rather than being oddly shaped. Therefore, it
is meaningful to ask about and talk about the centroid of a cluster.

For a Euclidean space, possessing rotational invariance and some notion of
uniform distribution, the arithmetic mean of the vectors in a cluster would
be a natural choice for the centroid. However, as is being repeatedly noted,
vectors taken from a joint probability distribution do not live in a Euclidean,
rotationally symmetric space. The arithmetic mean does not make sense. There
are several candidates that are more suitable.

One is the geometric mean. The centroid for word-cluster g might be ex-
pressed by

m (g, d) = 1
|g|

√∏
w∈g

p (w, d)
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This has the peculiar property that, if for any word w in the cluster, p (w, d) = 0,
then m (g, d) = 0. The support for the vector m (g, d) is the intersection of the
supports for the vectors p (w, d). In itself, this is not terribly objectionable or
bad, but for one thing: The p (w, d) are observational frequencies, and are not
theoretical distributions. Thus, one might have that p (w, d) = 0 simply be-
cause it has not been observed, and not because it is grammatically forbidden.
This was already noted in section 6.1: contingency tables fundamentally can-
not distinguish between rare linguistic phenomena and grammatically forbidden
phenomena. The Zip�an distribution prohibits this.

One can imagine several work-arounds. One would be to apply some form
of kernel smoothing, or to apply some sort of local regression. How this might
work is unclear. Consider instead the logarithm of the geometric mean:

log2m (g, d) =
1

|g|
∑
w∈g

log2 p (w, d) (13)

To be consistent with the previous expression, if p (w, d) has not been observed,
one should take log2 p (w, d) = −∞. From the missing-data perspective, it
would actually be better to take log2 p (w, d) = 0 � missing observations con-
tribute nothing. Continuing in this vein of thinking, that infrequently-observed
phenomena are being unfairly punished and are not being given due weight, one
might consider the centroid to be described by

log2mα (g, d) =
1

|g|
∑
w∈g

(log2 p (w, d))
α

for some α ≤ 1, thus e�ectively making rare phenomena seem less rare, while
common phenomena become less common.

An intuitive feel for the geometric mean can be argued: probabilities can
only be added if they are truly independent, and here they are not; but proba-
bilities, taken as discrete events, can always be multiplied. For a a probability
distribution P (X) on a space X, the frequentist interpretation of probability
is founded on individual observations in the sequence space (aka the Cantor
space) Xω = X ×X × · · · that is the Cartesian product of an in�nite number
of copies of X. Frequentist probabilities are sigma-measures on the Borel set of
cylinder sets on the Cantor space. Cylinder sets are the elements of the coarse
topology on the product space. Cylinder sets correspond to the limits of the
pushout diagram �← �→ � that de�nes the Cartesian product.

7.2.5 Agglomerative Clustering

The primary reason to propose a pair-wise information divergence is to enable
agglomerative clustering. The reason for this was made clear earlier: the sheer
scale and quantity of data makes hill-climbing and gradient descent algorithms
untenable. The search space is simply too large.

As a corollary, the results of hill-climbing or gradient-descent algorithms are
insu�ciently sparse; one wishes to approximate the sparsity that hard-clustering
o�ers, with less overhead and complexity in �nding the clusters.
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7.3 Word-Sense Disambiguation

The section 6.7.8 describes the general, global framework for discussing word-
senses in the factorization model. The challenge of agglomerative clustering is
to obtain some estimate of word-sense assignments, given as a starting point
the pairwise information divergence of eqn 12. This is where things start to get
truly interesting.

7.3.1 Mihalcea Algorithm

Rada Mihalcea describes a word-sense disambiguation algorithm[53, 54, 55] that
�ts very naturally with the framework being discussed here. However, it requires
whole-sentence contexts. For each instance wj of the j'th word in a sentence,
one assigns an (unknown) vector of word-senses p (wj , sk) with the set of possible
senses sk given externally, as an a priori set, for example, taken from WordNet.
In addition, one also assumes an externally provided a priori measure of simi-
larity d (sk, sm) of word-senses; again, this can be provided by WordNet. One
then considers the full graph clique of all possible word-senses that might ap-
pear in the sentence, and their relation all other possible word-senses. That is,
one considers the graph M (sk, sm) with the k and m indexes corresponding to
word-positions in the sentence; the matrix entries are just d (sk, sm) normalized
so that M is a Markov matrix (Markov chain). One then solves this chain to
�nd the stationary vector π. This stationary vector can be interpreted as the
desired word-sense assignment p (wj , sk) of the probability that the j'th word
has the k'th sense.

The algorithm readily generalizes to any system that can provide logical in-
ference on concepts: one replaces the similarity-distance d (sk, sm) by the like-
lihood of some particular logical inference performed over the sentence. Taken
over multiple sentences, this can provide anaphora resolution and reference res-
olution.

The primary drawback of this algorithm is that the word senses must be
externally supplied. For this project, this is even a fatal drawback: the goal is
to infer word-senses.

7.3.2 Word-sense Similarity

Assume, for a moment, that distinct word senses can be inferred from raw text,
in an unsupervised fashion. That is, assume that a joint probability p (s, d) can
be inferred from the text data. It is OK if this probability is of low quality, and
generally inaccurate: disappointingly inaccurate, even. If this probability ex-
ceeds pure random chance, then the Mihalcea algorithm can be run �in reverse�,
to infer the joint probabilities p (s, s′) between di�erent senses s and s′. One
does so by assuming that, given the speci�c words in a speci�c sentence, that
the word-senses between them are necessarily highly-related. Given that the
sentence can be parsed into a string of disjuncts d, one can use p (s, d) to assign
a provisional probability s to each word, and then collect observational statis-
tics N (s, s′) on a sentence-by-sentence basis, incrementing N by one for each
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observed pair (s, s′) in a sentence. After observing a large number of sentences,
one has a (sparse) database of sense-pair frequencies p (s, s′).

The goal of doing this is to amplify the signal-to-noise ratio. This is in
more-or-less complete analogy to the case for word-pairs: given a small num-
ber of observations, they are noisy and inaccurate. Increasing the number of
observations causes the noise to cancel out, and for a signal to emerge.

At this point, one can start doing some intriguing things: one can attempt to
perform maximum-spanning-tree parses, to determine how one given word-sense
is related to all other word-senses in a given sentence. That is, one repeats the
process of extracting disjuncts, but this time, the connectors on the disjuncts
are not words, but word-senses.

The reason for extracting sense-disjuncts is that they provide the doorway to
obtaining the �Lexical Functions�[56] of Meaning-Text Theory (MTT).[57, 58]
From there, one can extract theDSyntR structure of a sentence, which provides
the natural input into a reasoning system based on formal logic. That is, one
can now begin to assemble logical proofs by inferring sequences of deductions
applied to sense-disjuncts. Or rather, more importantly, once can now start to
infer the set of valid logical deductions that can be applied, rather than taking
di�erent forms of logical inference as being given a priori. To be more blunt: this
provides the pathway for inferring the rules of Goertzel's PLN, or for inferring
the rules Pei Wang's Non-Axiomatic Logic, rather than taking these rules as
externally imposed.

7.3.3 Word-sense Factoring

Given a pair-wise information divergence, how can one infer word senses? This
is addressed in the companion text.[50]. However, that text is currently written
in terms of the cosine-distance; it needs to be re-expressed using the information
divergence, and, in particular, by the use of eqn 13 for the cluster mean.

So XXX TODO. Un�nished things begin here.

8 Un�nished Thoughts

Everything below here is incoherent and incomplete. Sorry; under construction.

8.0.1 Ising Model

Solving the Ising model by gradient descent can be done; a good way to do
this is by using message passing.[20] This is a particularly quickly-convergent
mean-�eld method. The problem is that it fails to converge when the coupling
is strong � in other words, when the network is glassy (in the sense of �spin
glass�). The question: is language in a spin-glass state? Hypothesis: yes, it is.
Question: how can this be demonstrated?
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8.0.2 Surprisal Analysis

The basic idea is this formula:

− log
P (x)

P0(x)
=
∑
α

λαG (α)

The G's are the constraints. The λ's are the Lagrange multipliers. When there
is only one G, then it is conventionally called �the energy�, and the λ is called
�the (inverse) temperature�.

There is a set of word-classes C = {c} and two projection matrices πW and
πD such that ~ηw = πW êw is a vector that classi�es the word w into one or
more word-classes c. That is, ~ηw is a C-dimensional vector. In many cases,
all but one of the entries in ~ηw will be zero: we expect the word w = the
to belong to only one class, the class of determiners. By contrast, w = saw
has to belong to at least three classes: the past-tense of the verb �to see�, the
noun for the cutting tool, and the verb approximately synonymous to the verb
for cutting. The hand-built dictionary for English Link Grammar has over a
thousand distinct word-classes; one might expect a similar quantity from an
unsupervised algorithm.

The projection matrix πD performs a similar projection for the disjuncts.
That is ~ζd = πD êd, so that each disjunct is associated with a C-dimensional
vector ~ζd. Most of the entries in this vector will likewise be zero. This vector
basically states that any give disjunct is typically associated with just one, or a
few word classes. So, for example, the disjunct

the−

is always associated with (the class of) common nouns. The only non-zero entry

in ~ζthe-. will therefore be

<common−nouns>: the−;

Given these two projection matrices, the probability can then be decomposed
as an inner product:

E (w, d) = ~ηw · ~ζd
The word-classes

Sheaves

The previous section begins by stating that, ideally, one wants to wants to model
the probability P (sentence | fulltext ), but due to the apparent computational
intractability, one beats a tactical retreat to computing P (word | context ) in
the CBOW/SkipGram model, and something analogous in the Link Grammar
model. However, by re-casting the problem in terms of disjuncts, however, one
can do better. Dependency parsing allows one to easily create low-cost, simple
computational models for P (phrase | context ) or even P (sentence | context ).
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This is because disjuncts are compositional: they can be assembled, like jigsaw-
puzzle pieces, into larger assemblages. If this is further enhanced with reference
resolution, one has a direct path towards a computationally tractable model of
P (sentence | fulltext ), with, at the outset, seemed hopelessly intractable.

TODO �esh out this section.
The important parts of the sheaves idea are already covered in the �stitching�

paper.[50] They need to be transcribed here.

Gluing axioms

The language-learning task requires one to infer the structure of language from
a small number of instances and examples. Bengio etal.[6] describe this for
continuous probabilistic models. First, one imagines some continuous, uniform
space. Example sentences form a training corpus are associated with single
points in this space: the probability mass is initially located at a collection of
points. One then imagines that generalization consists of smearing out those
points over an extended volume, thereby assigning non-zero probability weights
to other �nearby� sentences. This suggests that there is a choice as to how
this smearing-out is done: one can spread the probabilities uniformly, in all
�directions�, or one can preferentially spread probabilities only along certain di-
rections. Bengio suggests that higher-quality learning and generalization can be
achieved by �nding and appropriately non-uniform way of smearing the proba-
bility masses from training.

This description seems like a useful and harmless way of guiding one's
thoughts. But it leaves open and vague several unde�ned concepts: that of
the �space�: is this some topological space, perhaps linear, or something else?
That of �nearby sentences�: the presumption (the axiom?) that the space is
endowed with a metric that measures distances. Finally, the concept of �direc-
tion�, or at least, a local tangent manifold at each point of the space. It seems
reasonable to assert that language lives on a manifold, but then, the structure
of that manifold needs to be elucidated and demonstrated. In particular, the
�non-uniform spreading� of probability weights suggests confusion or inconsis-
tency: Perhaps the spreading appears to be non-uniform, because the initial
metric assigned to the space is incorrect? In geometry, one usually works with
normalized tangent vectors, so that when one extends them to geodesics, each
geodesic moves with unit velocity. It seems plausible to spread out probabil-
ity weights the same way: spread them uniformly, and adjust the shape of the
underlying space so that this results in a high-quality language model.
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