Geometry of Space, Time and Other Things

 The Mathematics of Fiber BundlesLinas Vepstas

June 2019

Fiber Bundles

- Central to physics: classical mechanics, electrodynamics, quantum field theory, gravitation, superconductivity.
- It was not always that way!
- Unified (pseudo-)Riemannian Geometry (i.e. Gravitation) with Symplectic Geometry (classical mechanics) with Electrodynamcis with Yang-Mills theory with Superconductivity with Fermions (QFT)
- A single, unified framework for (almost) all of the fundamental theories of physics.
- And that is the topic today.

Zen Koans

- There will will be a lot of equations today
- More than several semesters worth ...
- Notation is KEY: commonplace, widespread notation
- What does those formulas MEAN? Intuitively ??
- Interpretation of poetry, jokes of Zen koans
- Inutition alone is FAULTY. Formulas are PRECISE!
- Equations are tie-breakers for intuitive ideas
- Creativity and imagination are KEY
- It will be dizzying

Before fiber bundles, it was a hot mess:

- Classical mechanics was Hamilton's equations

$$
\dot{p}=-\frac{d H}{d q} \quad \dot{q}=\frac{d H}{d p}
$$

- Electrodynamics was Maxwell's equations

$$
\vec{\nabla} \cdot \vec{E}=4 \pi \rho \quad \vec{\nabla} \times \vec{B}=4 \pi \vec{j} \quad \vec{\nabla} \cdot \vec{B}=0 \quad \vec{\nabla} \times \vec{E}=0
$$

- Gravitation was Einstein's equations

$$
R_{\mu v}-\frac{1}{2} g_{\mu v} R-\wedge g_{\mu v}=8 \pi T_{\mu v}
$$

- Superconductivity was the Ginzberg-Landau equations

$$
\mathscr{L}=\alpha|\phi|^{2}+\beta|\phi|^{4}+\frac{1}{2 m}|(-i \hbar \vec{\nabla}-2 e \vec{A}) \phi|^{2}+\frac{|\vec{B}|^{2}}{2}
$$

- Standard Model $=$ Yang-Mills + Higgs + Fermions

Outline

- Manifold M as gluing of \mathbb{R}^{n} - coordinate charts
- (Integrable) vector fields as hair/fur that can be combed
- Tangent vector space $T_{p} M$
- Back to basics: Vector spaces; notation: e_{n} as basis vector
- A frame field as $e_{n}(p)$ varying from point to point p.
- Frame fields can twist around, rotate, swirl.
- The rotation matrix A. The connection $A_{i}=\Gamma_{i j}{ }^{k}$ aka Christoffel symbol
- Rotations \& rotation matrices in 3D
- Curvature as total rotation after walking a loop.
- Parallel transport
- Geodesics

An atlas is：
－A collection of regions U_{α}
－A collection of charts $\varphi_{\alpha}: U_{\alpha} \rightarrow \mathbb{R}^{n}$
－A collection of＂transition functions＂$\varphi_{\alpha \beta}=\varphi_{\beta} \circ \varphi_{\alpha}^{-1}$

Vector Fields

A vector field is:

- A collection of vectors \vec{v}_{p}
- One for each point $p \in U_{\alpha}$
- Smooth, differentiable, integrable

Tangent vector spaces

The tangent vector space $T_{p} M$ is:

- A point $p \in U_{\alpha}$ (that is, a point in $p \in M$)
- The collection of ALL possible vectors $\vec{v}_{p} \in T_{p} M$

Tangent bundles - Fiber bundles

- The tangent bundle $T M$ is the set of all $T_{p} M$ for all $p \in M$
- The sphere bundle $S M$ is a set of spheres $S_{p} M$, one for each $p \in M$
- The circle bundle is a set of circles, one for one for each $p \in M$
- The fiber bundle E is a set of fibers F, one for one for each $p \in M$

Properties of Fiber bundles

- Locally, they are trivial products $U_{\alpha} \times F$ of a chart U_{α} and a fiber F
- Neighboring fibers need to be glued (soldered) together; the connection!
- Works best when fibers have some natural symmetry
- A group G that moves you up and down a fiber F

Gluing together neighboring fibers allows:

- Movement (horizontally) from fiber to fiber
- While carrying a coordinate frame (parallel transport)
- Closed paths in horizontal (base) space typically DON'T close on the bundle!
- That is, curvature!

Fiber bundles in Physics

- Circle bundles $-U(1)$ - Electromagnetism
- Frame bundles - GL(n,R) - General Relativity (Reimannian geometry)
- Lie groups - SU(3) - Quarks \& Gluons (strong force)
- Lie groups - SU(2) - Weak force (radioactive decay)
- Tangent bundles - Position and Momenta - Classical Mechanics (Symplectic geometry)
- Spinor bundles - Fermions
- Fischer Information (Kullback-Leibler divergence) Quantum Mechanics

All fiber bundles have

- Horizontal and Vertical subspaces
- A connnection one-form (Christoffel symbols)
- Geodesics (shortest paths)
- Parallel transport (carrying around a coordinate frame)
- Curvature two-form (curvature tensor)

Affine bundles have

- Solder form (canonical one-form)
- Torsion and Contorsion tensors

Metric bundles have

- A metric
- Ricci and scalar curvature

Back to basics

- Groups
- Actions
- Vectors
- Rotations
- Infinitessimal rotations (generators)
- Derivatives

Advanced topics

- Differential forms
- Covariant derviative
- Curvature
- Torsion

Examples of Groups:

- Rotation group
- Translation group
- Permutation group

A Group G is a set where:

- Inverses: for all $g \in G \exists g^{-1} \in G$ s.t. $g g^{-1}=e$
- Identity element: $e \in G$ s.t. $\forall g \in G e \cdot g=g$
- Closure: For all $g, h \in G \exists k \in G$ s.t. $g h=k$

Group Actions

A group G acting on a set X :

- Notation: $G: X \rightarrow X$ with $g: x \mapsto y$ also written as $g \cdot x=y$ or $x \xrightarrow{g} y$
- Identity: $e \cdot x=x$
- Associative: $(g \cdot(h \cdot x))=(g \cdot h) \cdot x$
- Invertable: $\left(g^{-1} \cdot(g \cdot x)\right)=\left(g^{-1} \cdot g\right) \cdot x=e \cdot x=x$ (non-dissipative)

Vectors and Bases

A Vector $\vec{v} \in \mathbb{R}^{n}$ in n-dimensional space is:

- A collection of n real numbers: $\vec{v}=\left(v^{(1)}, v^{(2)}, v^{(3)}, \cdots, v^{(n)}\right)$

A vector space basis for \mathbb{R}^{n} is a collection of n vectors $\left\{\vec{e}_{k}: 1 \leq k \leq n\right\}$:

- Where $e_{1}=(1,0,0, \cdots, 0)$ and $e_{2}=(0,1,0, \cdots, 0)$ and

$$
e_{3}=(0,0,1,0, \cdots, 0) \text { and } \ldots
$$

- A rotation changes the direction of a vector: $\vec{x}^{\prime}=R \vec{x}$
- Body coordinates vs. Space coordinates
- A rotation can be represented by a matrix
- In 2D:

$$
\binom{x^{\prime}}{y^{\prime}}=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\binom{x}{y}
$$

A rotation changes the direction of a vector: $\vec{x}^{\prime}=R \vec{x}$

- In n dimensions :

$$
\left(\begin{array}{c}
x^{(1) \prime} \\
x^{(2) \prime} \\
\vdots \\
x^{(n) \prime}
\end{array}\right)=\left[\begin{array}{ccccccc}
\cos \theta & 0 & \cdots & 0 & -\sin \theta & \cdots & 0 \\
0 & 1 & & & 0 & & 0 \\
\vdots & & \ddots & & \vdots & & \\
0 & & & 1 & 0 & & \vdots \\
\sin \theta & 0 & \cdots & 0 & \cos \theta & & \\
& & & & & 1 & \\
\vdots & & & & & & \ddots
\end{array}\right]=\left(\begin{array}{c}
x^{(1)} \\
x^{(2)} \\
\vdots \\
x^{(n)}
\end{array}\right)
$$

- An infinitessimal rotation:

$$
\vec{x}+\delta \vec{x}=(I+\delta R) \vec{x}=\vec{x}+\delta R \vec{x}=\vec{x}+\left(\left.\frac{d R}{d \theta}\right|_{\theta=0} \delta \theta\right) \vec{x}
$$

- In 2D:

$$
\vec{x}=\binom{x^{\prime}}{y^{\prime}}=R \vec{x}=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\binom{x}{y}
$$

- but:

$$
\left.\frac{d \cos \theta}{d \theta}\right|_{\theta=0}=0 \quad \text { and }\left.\quad \frac{d \sin \theta}{d \theta}\right|_{\theta=0}=1
$$

- so

$$
\delta \vec{x}=\delta R \vec{x}=\left.\frac{d R}{d \theta}\right|_{\theta=0} \delta \theta \vec{x}=\delta \theta\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] \vec{x}=\delta \theta L \vec{x}
$$

- The matrix L is called the "the infinitessimal generator of rotations" AKA "the angular momentum operator".

Given a curve $\gamma(t)$ in a manifold M, such that the curve is is tangent to the vector X at $p \in M$, the Lie derivative of a function f on M is:

$$
\mathscr{L}_{X} f(p)=\left.\frac{f(\gamma(t))-f(\gamma(0))}{t}\right|_{p=\gamma(0)} \text { and } x=\gamma^{\prime}(0)
$$

Notation: the vector (field) X is written as

$$
X=X^{\mu} \frac{\partial}{\partial x^{\mu}}=X^{\mu} \partial_{\mu}=X^{\mu} e_{\mu}
$$

The dual basis: $e^{\mu}\left(e_{v}\right)=e^{\mu} e_{v}=\delta_{v}^{\mu}$
The Kronecker delta: $\delta_{v}^{\mu}= \begin{cases}1 & \text { when } \mu=v \\ 0 & \text { when } \mu \neq v\end{cases}$
Partial deriviatives: $\partial_{\mu}=e_{\mu}$
Differential forms: $d x^{\mu}=e^{\mu}$
They are dual: $d x^{\mu}\left(\partial_{v}\right)=\delta_{v}^{\mu}$
A function that takes a vector and spits out a number ("counting surfaces"):

Examples of differential forms

- The 1-form: $d f$ is like the gradient $\vec{\nabla} f$
- "Counting surfaces" are topographic contours (slices of const height)
- The 2-form: $d x \wedge d y$ is like the curl: $\vec{\nabla} \times \vec{v}$
- The 3-form $d x \wedge d y \wedge d z$ is like the volume determinant
- $\operatorname{det} I=\operatorname{det}\left[e_{1}, e_{2}, e_{3}\right]$

Joins neighboring fibers: $D=d+A$

- Alternate notation: $D^{\mu}=d x^{\mu}+A^{\mu}$ when moving in direction μ
- A is an infinitessimal rotation matrix: $A^{\mu}=\left[A^{\mu}\right]_{i j}=\Gamma_{i j}^{\mu}$
- Connection=Christoffel symbols
- Fiber coordinates: index i, j act on the fiber
- Base space coordinates: μ is a direction in the base space.

Moving (alternately) in two directions:

- Notation: Field strength 2-form: $F=D \wedge D=d A+A \wedge A$
- Notation: Curvature tensor:
$R(X, Y)=\nabla_{X} \nabla_{Y}-\nabla_{Y} \nabla_{X}-[X, Y]$

Fig 1.2

Moving（alternately）in two directions：
－Notation：Torsion form：$\Theta=D \theta=d \theta+A \wedge \theta$
－．．．where θ is the solder form：$\theta=\sum_{i} p_{i} d q_{i}$
－Notation：Torsion tensor：$T(X, Y)=\nabla_{X} Y-\nabla_{Y} X-[X, Y]$
－There is one unique torsionless connection：the Levi－Civita connection

$\mathrm{E} \& \mathrm{M}$ is (just) a circle bundle!

- Each group element: $g=e^{i \theta}=$ coordinates on circle
- Vector potential: $A_{\mu}=(\vec{A}, \phi)$
- Choice of gauge $=A_{\mu} \rightarrow A_{\mu}^{\prime}=A_{\mu}+g^{-1} \partial_{\mu} g$
- Curvature $F_{\mu \nu}=\partial_{\mu} A_{v}-\partial_{\nu} A_{\mu}=\left[\begin{array}{cccc}0 & E_{x} & E_{y} & E_{z} \\ -E_{x} & 0 & -B_{z} & B_{y} \\ -E_{y} & B_{z} & 0 & B_{x} \\ -E_{z} & -B_{y} & B_{x} & 0\end{array}\right]$
- ...or $\vec{E}=\vec{\nabla} \phi$ and $\vec{B}=\vec{\nabla} \times \vec{A}$
- Geodesics go "splat" on an electric charge!
- Holonomy is the Bohm-Aharonov effect!

A frame field is:

- A collection of basis vectors $\left\{\vec{e}_{k}(p)\right\}$
- One for each point $p \in U_{\alpha}$

The metric is (just) a product of vierbeins (frames)

$$
g_{\mu \nu}=e_{\mu} \cdot e_{v}=e_{\mu}^{a} \eta_{a b} e_{v}^{b}
$$

where $\eta_{a b}=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1\end{array}\right]$
Gives the length of a vector:
$\|\vec{v}\|=\sqrt{\vec{v} \cdot \vec{v}}=\sqrt{v^{a} v^{b} \eta_{a b}}=\sqrt{\left(v^{(x)}\right)^{2}+\left(v^{(y)}\right)^{2}+\left(v^{(z)}\right)^{2}-\left(v^{(t)}\right)^{2}}$

General Relativity

General Relativity is（just）a frame bundle！
－Each group element：$g \in S O(3,1)$
－Connection：$A_{\mu}=\Gamma_{\mu}^{\rho \sigma}$
－Curvature：$F=d A+A \wedge A$
－．．．that is，curvature $R_{\mu \nu}^{\rho \sigma}=\partial_{\mu} A_{v}^{\rho \sigma}-\partial_{v} A_{\mu}^{\rho \sigma}+\frac{1}{2}\left[A_{\mu}, A_{v}\right]^{\rho \sigma}$
－Choice of gauge $==$ choice of coordinate frame！
－Choice of gauge $=A_{\mu} \rightarrow A_{\mu}^{\prime}=A_{\mu}+g^{-1} \partial_{\mu} g$
－Geodesics go＂splat＂on a black hole singularity！

Unification of Physics

- Fiber bundles unify all of the fundamental physics theories
- So what is there left to unify?
- Well, why/how $U(1) \times S U(2) \times S U(3) \times S O(3,1)$?
- Kaluza-Klein theory (the 5 -sphere)
- Affine Lie groups (string theory)
- Supersymmetry (fermions)

Placeholder

The hardest part with formulas is (1) there are so many (2) there are many different ways of writing down the *same* equations, using wildly different notation.

- Introduce Lie derivative $L_{X} f$
- Introduce covariant derivative $\mathrm{D}=\mathrm{d}+\mathrm{A}$ - Rosetta stone of different notations
- Geodesics as solutions of Hamilton's equations i.e. as linear, first-order diffeq NOT second order!

$$
\dot{p}=-\frac{d H}{d q} \quad \dot{q}=\frac{d H}{d p}
$$

where $H=$ squared-length-of-curve

- exp as the map that moves along geodesics
- Geodesic completeness

Metric Differential Geometry

- Indroduce metric as inner product of frame fields

$$
g_{\mu \nu}=e_{\mu} \cdot e_{v}=e_{\mu}^{a} e_{\nu}^{b} \eta_{a b}
$$

- Metric was NOT needed to define curvature, geodesics, parallel transport
- (metric is almost kind-of useless except that its a standard touch-stone for GR)
- Provide (repeat) Einstein eqns.
- Replace frame field by generic fiber bundle
- e.g. $\mathrm{U}(1)$ for electromagnetism, $\mathrm{SU}(\mathrm{n})$ for yang-mills
- Maxwell's equations are nothing more than Hamilton's eqns on $U(1)+$ Bianchi identites

$$
F=d A \quad d * F=0
$$

- Yang-Mills/Einstein

$$
F=d A+A \wedge A \quad D * F=0
$$

is the same as

Geodesics

- Maxwell's eqn's have singularities called "electric charges" and geodesics go "splat" on an electric charge
- Swarzschild BH's are just like electric charges: geodesics go splat when they get there.

