[image: image19.wmf] OMG AR/AP Facility [image: image20.wmf]

Initial Submission
in response to

OMG’s Finance DTF RFP
for an AR/AP Facility

An initial submission from netaccount AS
with the support of SINTEF AS

OMG AR/AP Facility

Revision 1.0

November 22nd, 2001

Acknowledgements

The submitters wish to acknowledge and express their gratitude to the Norwegian Research Council, who has supported this submission through the KOMPASIS project (project #143341).

The following individuals and organisations have contributed to the submission:

Amund Aarsten, netaccount AS

Tor Neple, SINTEF AS

Todd Boyle, International Accounting Services LLC

Arne-Jørgen Berre, SINTEF AS

Morten Jacobsen, netaccount AS

Copyright

Copyright 2001 netaccount AS

Copyright 2001 SINTEF AS

The companies listed above hereby grant a royalty-free license to the Object Management Group, Inc. (OMG) for world-wide distribution of this document or any derivative works thereof, so long as the OMG reproduces the copyright notices and the below paragraphs on all distributed copies. The material in this document is submitted to the OMG for evaluation. Submission of this document does not represent a commitment to implement any portion of this specification in the products of the submitters. WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE THE COMPANIES LISTED ABOVE MAKE NO WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. The companies listed above shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance or use of this material. The information contained in this document is subject to change without notice. This document contains information which is protected by copyright. All Rights Reserved. Except as otherwise provided herein, no part of this work may be reproduced or used in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without the permission of one of the copyright owners. All copies of this document must include the copyright and other information contained on this page. The copyright owners grant member companies of the OMG permission to make a limited number of copies of this document (up to fifty copies) for their internal use as part of the OMG evaluation process. RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions set forth in subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013.

Points of Contact

All questions about this submission should be directed to:

Narve Furnes, CTO

netaccount AS

Christian Kroghsgt. 32

Postboks 4678 Sofienberg

0506 Oslo

Norway

E-mail: narve.furnes@netaccount.com
Tel.: +47 2270 7309

Fax: +44 2270 7301

Other contacts include:

Arne-Jørgen Berre

SINTEF Telecom and Informatics

Forskningsveien 1

Postboks 124, Blindern

0314 Oslo

Norway

E-mail: arne.j.berre@informatics.sintef.no

Tel.: +47 2206 7452

Fax: +47 2206 7350

Table Of Contents

7Section I: AR/AP Facility Overview

AR/AP Facility Description
7
Relation to the OMG General Ledger Facility
7
AR/AP Interface Summary
8
Examples of Interactions with Other Systems
9
Section II: Module FdARAP
12
Module Dependencies
12
AR/AP Facility Invariants
12
AR/AP Facility Environment Contract
12
AR/AP Type Definitions
13
Journal, Transaction, and Entry Types
14
Account and Balance Types
15
Reconciliation Types
16
Exceptions
18
Section III: ArapArbitrator Interface
22
ArapArbitrator Operation: getArapLedgerNames
23
ArapArbitrator Operation: openSession
24
ArapArbitrator Operation: getArapFacilityLifecycle
25
Section IV: ArapFacilityLifecycle Interface
26
ArapFacilityLifecycle Operation: createArapLedger
27
ArapFacilityLifecycle Operation: removeArapLedger
28
Section V: ArapProfile Interface
29
ArapProfile Operation: getArapAccountHistoryRetrieval
30
ArapProfile Operation: getArapAccountLifecycle
31
ArapProfile Operation: getArapAccountRetrieval
32
ArapProfile Operation: getArapBalanceRetrieval
33
ArapProfile Operation: getArapReconciliationLifecycle
34
ArapProfile Operation: getArapReconciliationRetrieval
35
ArapProfile Operation: getArapTransactionLifecycle
36
ArapProfile Operation: getArapTransactionRetrieval
37
ArapProfile Operation: getArapLedgerCurrency
38
ArapProfile Operation: getEntryTypes
39
ArapProfile Operation: closeSession
40
Section VI: ArapTransactionLifecycle Interface
41
ArapTransactionLifecycle Operation: enterJournal
42
ArapTransactionLifecycle Operation: postJournal
43
ArapTransactionLifecycle Operation: postTransactions
44
ArapTransactionLifecycle Operation: removeJournal
45
ArapTransactionLifecycle Operation: removeTransactions
46
Section VII: ArapTransactionRetrieval Interface
47
ArapTransactionRetrieval Operation: getJournal
48
ArapTransactionRetrieval Operation: getUnpostedTransactions
49
ArapTransactionRetrieval Operation: getTransactionsByDates
50
ArapTransactionRetrieval Operation: getTransactionsByPeriods
51
ArapTransactionRetrieval Operation: getUnsettledTransactionsByDueDates
52
ArapTransactionRetrieval Operation: getUnsettledTransactionsByAccount
53
Section VIII: ArapAccountLifecycle Interface
54
ArapAccountLifecycle Operation: createAccount
55
ArapAccountLifecycle Operation: createPartyAccount
56
ArapAccountLifecycle Operation: createProductAccount
57
ArapAccountLifecycle Operation: modifyAccount
58
ArapAccountLifecycle Operation: removeAccount
59
ArapAccountLifecycle Operation: closeAccountingPeriod
60
ArapAccountLifecycle Operation: closeAccountingYear
61
Section IX: ArapAccountRetrieval Interface
62
ArapAccountRetrieval Operation: getAccount
63
ArapAccountRetrieval Operation: getAccountsByType
64
ArapAccountRetrieval Operation: getPartyAccount
65
ArapAccountRetrieval Operation: getPartyAccountByPartyId
66
ArapAccountRetrieval Operation: getPartyAccountByPartyNumber
67
ArapAccountRetrieval Operation: getPartyAccountsByType
68
ArapAccountRetrieval Operation: getProductAccount
69
ArapAccountRetrieval Operation: getProductAccountByProductId
70
ArapAccountRetrieval Operation: getProductAccountByProductNumber
71
ArapAccountRetrieval Operation: getAllProductAccounts
72
ArapAccountRetrieval Operation: getAccountsByXBRLType
73
Section X: ArapBalanceRetrieval Interface
74
ArapBalanceRetrieval Operation: getAccountBalanceByDate
75
ArapBalanceRetrieval Operation: getAccountBalanceByPeriod
76
ArapBalanceRetrieval Operation: getAccountBalanceByTypeAndDate
77
ArapBalanceRetrieval Operation: getAccountBalanceByTypeAndPeriod
78
ArapBalanceRetrieval Operation: getAccountBalanceSumByTypeAndDate
79
ArapBalanceRetrieval Operation: getAccountBalanceSumByTypeAndPeriod
80
ArapBalanceRetrieval Operation: getUnsettledBalances
81
ArapBalanceRetrieval Operation: getAccountBalanceByDatesAndParties
82
ArapBalanceRetrieval Operation: getAccountBalanceByPeriodsAndParties
83
Section XI: ArapAccountHistoryRetrieval Interface
84
ArapAccountHistoryRetrieval Operation: getAccountHistoryByDates
85
ArapAccountHistoryRetrieval Operation: getAccountHistoryByPeriods
86
Section XII: ArapReconciliationLifecycle Interface
87
ArapReconciliationLifecycle Operation: createReconciliation
88
ArapReconciliationLifecycle Operation: modifyReconciliation
89
ArapReconciliationLifecycle Operation: removeReconciliation
90
Section XIII: ArapReconciliationRetrieval Interface
91
ArapReconciliationRetrieval Operation: getReconciliation
92
ArapReconciliationRetrieval Operation: getReconciliationsByEntry
93
Section XIV: ArapPartyStatementVerification Interface
94
ArapPartyStatementVerification Operation: getStatementByAccount
95
ArapPartyStatementVerification Operation: reverseStatement
96
ArapPartyStatementVerification Operation: reverseStatementFromParty
97
ArapPartyStatementVerification Operation: verifyStatementFromParty
98
Appendix A - Requirements Compliance
99
RFP Requirements for the AR/AP Facility
99
Mandatory Requirements
99
Optional Requirements
101
Common Mandatory Requirements
104
Proof of Concept Statement
106
Relationships to Existing OMG Specifications
107
Issues to be Discussed
107
Appendix B – AR/AP Ledger Facility IDL
111
Appendix C - References
124

Section I: AR/AP Facility Overview

AR/AP Facility Description

Most trade between businesses is not settled on the spot, but is based on credit. At the moment of a sale, an invoice is issued by the selling company to the purchasing company, indicating the time granted for the payment, such as 30 days.

The main purpose of an Accounts Receivable and Accounts Payable (AR/AP) facility is to keep track of these credits and the corresponding payments. Accounts Receivable are the amounts of money owed to a business by its customers, for example, the value of the issued invoices or shipments that have not yet been paid. Accounts Receivable are the most important asset for many companies that sell on credit. Similarly, the Accounts Payable are the value in shipments or invoices received that have not been paid, and are likewise an important liability.

In order to keep track of unsettled payments, an AR/AP facility must support

· the registration (posting) of outgoing and incoming invoices, usually originating in separate sales and purchasing systems;

· the registration of outgoing and incoming payments, usually received through a bank or other external settlement agency;

· the matching or reconciliation of the payments against the invoices;

· identification of business differences with customers and suppliers which have lead to discrepancies between debts and payments,

· the registration of adjustments or corrections that arise as a result of resolving differences with customers and suppliers.

In addition, most sales and purchases involve taxes such as sales tax. These taxes are part of the company’s assets and liabilities, and must therefore be tracked by the AR/AP facility.

Besides accepting input from the above mentioned systems, the information from the AR/AP facility must also be integrated into the company’s General Ledger. The integration of an AR/AP facility with the business’ other information systems can therefore be a large and difficult task, especially in the absence of standard interfaces. Most businesses renounce for this reason to a best-of-breed collection of interoperating accounting and financial systems, opting instead for monolithic, single-vendor (and thereby pre-integrated) solutions which provide “good enough” functionality in all functional modules.

The purpose of the OMG AR/AP Facility is to provide a standard set of standard interfaces, along with their semantics, which enables a business to assemble a component-based information system based on interoperable components.

Relation to the OMG General Ledger Facility

As is the OMG General Ledger facility, the AR/AP facility is based on common double-entry book-keeping, with a chart of accounts and entries on the accounts which are grouped into balancing transactions.

The AR/AP facility is more focused on a specific function than the General Ledger facility, and adds specific features to support this functionality:

· Most information elements have more fields. For instance, an AR/AP entry includes a due date, which is not included in the OMG General Ledger entry. These information elements are for the most part straightforward extensions of those found in the OMG General Ledger facility.

· The interfaces include operations which use this extended information. For instance, it is possible to retrieve transactions based on their settlement status.

· Additional, specific interfaces support the AR/AP functions of reconciliation and the discovery of differences with respect to trading partners.

The basic organization of the information and the structure of the interfaces remain close to the OMG General Ledger facility.

It is expected that most organizations that have an AR/AP installed will also have a General Ledger facility, into which information from the AR/AP facility will be rolled up. Some organization will simply import the balance of the General Ledger’s control accounts “Accounts Receivable” and “Accounts Payable” by summing the balance of customer and supplier accounts; others will import the full transaction details. The roll-up of transaction details is facilitated by the fact that the relevant AR/AP information elements are extended by aggregation from the corresponding General Ledger elements.

AR/AP Interface Summary

The AR/AP facility defines a set of interfaces using OMG/ISO IDL to support the capabilities discussed above. The following table gives a high level description of these interfaces. Subsequent sections describe the interfaces in more detail.

	Interface
	Purpose
	Primary Client(s)

	ArapArbitrator
	Client session establishment
	All clients

	ArapProfile
	Interface brokerage
	All clients

	ArapTransactionLifecycle
	Data entry
	Data entry clients

	ArapTransactionRetrieval
	Transaction data extraction
	Reporting clients

	ArapAccountLifecycle
	Chart of accounts maintenance
	Administration clients

	ArapAccountRetriveal
	Account data extraction
	Reporting clients

	ArapBalanceRetrieval
	Account balance reporting
	Reporting clients

	ArapAccountHistoryRetrieval
	Entry data extraction
	Reporting clients

	ArapReconciliationLifecycle
	Matching payments againsts debts
	Reconciliation support application

	ArapReconciliationRetrieval
	Access reconciliation audit trail
	Auditing clients

	ArapPartyStatementVerification
	GL lifecycle management
	Year-end closing support application

	ArapFacilityLifecycle
	Ledger maintenance
	Facility administration clients

Table 1‑1 Synopsis of AR/AP Facility Interfaces

Examples of Interactions with Other Systems

This section illustrates how some typical client applications could use the AR/AP facility in some key scenarios. The initial establishment of the client session (ArapArbitrator interface) and interface brokerage (ArapProfile interface) have been omitted.

Sales/Invoicing Application

A sales application, in order to register the sales transaction associated with an invoice will use the ArapAccountRetrieval interface to verify whether accounts already exist for the customer and the products involved, make appropriate calls to ArapAccountLifecycle to create any necessary accounts, and finally the ArapTransactionLifecycle interface to post the sales transaction to the AR/AP ledger.

[image: image1.wmf]Sales

Application

ArapAccountRetrieval

(from Interfaces)

<<Interface>>

ArapAccountLifecycle

(from Interfaces)

<<Interface>>

ArapTransactionLifecycle

(from Interfaces)

<<Interface>>

Figure 1-1: Interfaces used by a sales/invoicing application.

E-banking application

An e-banking application will use the ArapTransactionRetrieval interface to identify payment transactions not already posted, and then the ArapTransactionLifecycle interface to post the new payment transactions.

[image: image2.wmf]E-banking

Application

ArapTransactionRetrieval

(from Interfaces)

<<Interface>>

ArapTransactionLifecycle

(from Interfaces)

<<Interface>>

Figure 2-2: Interfaces used by an e-banking application.

Reconciliation support tool

A reconciliation tool will use ArapTransactionRetrieval to retrieve payment and debt entries, and ArapReconciliationLifecycle as the accountant reconciles the payments with the debts.

[image: image3.wmf]Reconciliation

Tool

ArapTransactionRetrieval

(from Interfaces)

<<Interface>>

ArapReconciliationLifecycle

(from Interfaces)

<<Interface>>

Figure 3-3: Interfaces used by a reconciliation tool.

Auditing

An auditor would use an application that calls ArapTransactionRetrieval and ArapBalanceRetrieval to verify transaction details and the resulting balances, and ArapReconciliationRetrieval to verify the matching of debts against payments.

[image: image4.wmf]Auditing Tool

ArapTransactionRetrieval

(from Interfaces)

<<Interface>>

ArapBalanceRetrieval

(from Interfaces)

<<Interface>>

ArapReconciliationRetrieval

(from Interfaces)

<<Interface>>

Figure 4-4: Interfaces used by an auditing tool.

Year-end closing preparation

An accountant preparing for year-end closing has to identify any discrepancies between the company and its business partners regarding debts and payments. For this purpose, a supporting application will use the ArapPartyStatementVerification interface to extract statements to send to each business partner, and to verify the statements received from the business partners.

[image: image5.wmf]Year-End Closing

Application

ArapPartyStatementVerification

(from Interfaces)

<<Interface>>

Figure 5-5: Interfaces used by a year-end closing tool.

OMG General Ledger

An OMG General Ledger could use the ArapBalanceRetrieval interface in order to update the balance of its control accounts “Accounts Payable” and “Accounts Receivable”.

[image: image6.wmf]General Ledger

Facility

ArapBalanceRetrieval

(from Interfaces)

<<Interface>>

Figure 6-5: Interfaces used by a General Ledger facility.

Section II: Module FdARAP

The IDL code in this specification follows the conventions used by previously adopted OMG FDTF specifications. In the following sections, IDL code is set in courier font. Specification semantics are set in Times New Roman font.

The FdARAP module defines the interfaces of the AR/AP Facility, as well as the structs, exceptions, and typedefs used by those interfaces. The module name uses the financial domain naming standard with the “Fd” prefix.

Module Dependencies

The FdARAP module includes the following OMG/ISO IDL files:

<CBO.idl>: Some of the facility interfaces use the CBO types DTime and DDecimal.

<FdGeneralLedger.idl>: The facility uses several of the types defined in the General Ledger specification.

See Appendix A for further description of Service Dependencies.

AR/AP Facility Invariants

These are the key assumptions regarding the responsibilities of GL Facility implementations.

The AR/AP facility maintains state for each client session. For example, each client session concerns only one known company and the company's established chart of accounts.

There is a one-to-one mapping between each company and each chart of accounts in each AR/AP facility instance. This "single set of books" constraint is conformant with international accounting standards. However, an AR/AP facility is not responsible for enforcing this constraint in federation with other AR/AP facility installations.

Operations performed during each client session are constrained by session-specific policies.

AR/AP Facility Environment Contract

These are the key assumptions provisioned for the environmental objects containing and managing the AR/AP facility.

The AR/AP facility assumes that client authentication for the security policy domain has occurred prior to access to AR/AP interfaces. See Security Service Dependencies, Appendix A.

The AR/AP facility assumes that access controls will be applied according to system domain policies during prior to and during client sessions. For example, the passing of clear-text parameters in operation invocations will be protected from unauthorised access or disclosure.

The only interface provided to AR/AP clients prior to session establishment is the ArapArbitrator interface.

The environment shall not disclose other AR/AP interfaces to clients. For example, only the ArapArbitrator interface shall be advertised in the Trader Service and Name Service. Other AR/AP interfaces are provided by the ArapProfile interface, subsequent to client session establishment.

AR/AP Type Definitions

The FdARAP module defines several types, divided in three categories. One category consists of typedefs used for identifiers, such as product, party, and journal identifiers. These follow the naming convention of <T>Id, where T is the information element being identified by the type.

Information elements themselves are represented by structs. These have names prefixed with “Arap” in order to make them easier to distinguish from definitions with similar names in other modules, especially the FdGeneralLedger module.

Other typedefs are used for sequence types, where we follow the naming convention <T>List where T is the type of the sequence elements.

 typedef wstring JournalId;

Identifies a journal, i.e. a set of transactions which are entered as part of the same registration batch.

 typedef wstring PartyId;

Identifies a Party, i.e. a legal person which can be a customer or a supplier. A PartyId is tied to customer and supplier accounts and is used to look up information in an external Party service.

 typedef wstring ProductId;

Identifies a product, i.e. something which can be sold to a customer or bought from a supplier.

 typedef wstring ReconciliationId;

Each action of reconciling a set of entries is assigned a ReconciliationId so that it can be recalled later.

 typedef wstring GroupId;

 typedef sequence <GroupId> GroupIdList;

Identifies a group of transactions, typically used to identify a sequence of exchanges with a business partner which together make up a complete business process such as a sale.

 struct PeriodRange {

 wstring start_period;

 wstring end_period;

 };

Used as a parameter to information queries for delimiting the accounting periods which will be searched for information. If the start_period field is blank, there is no lower limit on the accounting periods; the search starts at the beginning of time. Conversely, if the end_period field is blank, no upper limit on the accounting periods applies.

Journal, Transaction, and Entry Types

The core information in the ARAP facility is entered and retrieved through journals, transactions and entries. These IDL structures are explained in the following.

 struct ArapJournal {

 JournalId journal_id;

 sequence <ArapTransaction> transactions;

 };

The ArapJournal struct is simply a collection of ArapTransactions grouped together with a journal_id.

 struct ArapTransaction {

 GroupId group_id;

 wstring group_status;

 boolean is_posted;

 wstring initiating_document_type;

 FdGeneralLedger::TransactionInfo transaction_info;

 sequence <ArapEntry> arap_entries;

 wstring user;

 };

 typedef sequence <ArapTransaction> ArapTransactionList;

An ArapTransaction is a logical superset of FdGeneralLedger::Transaction implemented using aggregation. The ArapTransaction represents one double entry accounting posting. In order for the transaction to balance, there has to be two or more ArapEntries in the arap_entries sequence.

 struct DimensionReference {

 wstring dimension_account_reference;

 wstring dimension_name;

 };

 typedef sequence <DimensionReference> DimensionReferenceList;

 struct ArapEntry {

 ProductId product_id;

 PartyId party_id;

 wstring settlement_method;

 FdGeneralLedger::Date due_date;

 FdGeneralLedger::Entry entry;

 wstring their_party_id;

 ReconciliationStatus reconciliation_status;

 wstring their_product_id;

 AccountType account_type;

 DimensionReferenceList dimension_references;

 DimensionReferenceList their_dimension_references;

 wstring orig_unit;

 };

 typedef sequence <ArapEntry> ArapEntryList;

As mentioned any double entry transaction has to contain at least 2 entries in order to balance. The ArapEntry struct represents such an entry in the ARAP Facility. The ArapEntry type is a logical superset of FdGeneralLedger::Entry implemented using aggregation, the GL entry type is held in the entry attribute of the ArapEntry struct.

In addition to a reference to the account the entry is posted toward, the ArapEntry gives the possibility to post an entry toward one or more Accounting dimensions. If this feature is used the dimension_references sequence will hold a list of references to dimensions and accounts within these dimensions.

The ArapEntry struct also has attributes that allow clients to record what product the entry is related to (product_id), what party the entry is for (party_id) and other necessary information such as due date and in what way the entry has been settled (settlement_method).

Some of the attributes have a “sibling” attribute prefixed with their_. This is in order to keep references to entities within the other parties ARAP.

Account and Balance Types

Accounts are also core entities of an ARAP Facility. This submission defines a set of different accounts to be used for different purposes.

 enum AccountType {

 BALANCE_ACCOUNT,

 BANK_SETTLEMENT_ACCOUNT,

 CUSTOMER_ACCOUNT,

 SUPPLIER_ACCOUNT,

 PRODUCT_ACCOUNT,

 TAX_ACCOUNT,

 PROFIT_LOSS_ACCOUNT,

 SALES_ACCOUNT,

 PURCHASE_ACCOUNT,

 INVENTORY_CHANGE_ACCOUNT

 };

The AccountType enumeration defines the different account types to be allowed in the ARAP Facility.

 struct ArapAccount {

 AccountType account_type;

 wstring xbrl_type;

 FdGeneralLedger::AccountInfo account_info;

 };

 typedef sequence <ArapAccount> ArapAccountList;

The ArapAccount struct is a logical superset of the FdGeneralLedger::AccountInfo struct, as this is included in the attribute account_info. The ArapAccount struct is used to represent all of the account types except CUSTOMER_ACCOUNT, SUPPLIER_ACCOUNT and PRODUCT_ACCOUNT. A party is related to the ArapParyAccount through the party_id attribute.

 struct ArapPartyAccount {

 ArapAccount account;

 wstring party_number;

 wstring tax_registration_number;

 PartyId party_id;

 };

 typedef sequence <ArapPartyAccount> ArapPartyAccountList;

The ArapPartyAccount struct is a logical subclass of ArapAccount, used to represent accounts that relate to a party, SUPPLIER_ACCOUNT and CUSTOMER_ACCOUNT.

 struct ArapProductAccount {

 ArapAccount account;

 ProductId product_id;

 wstring product_number;

 };

 typedef sequence <ArapProductAccount> ArapProductAccountList;

The ArapProductAccount struct is a logical subclass of ArapAccount, used to represent products in the ledger, hence covering the PRODUCT_ACCOUNT account type. A product is related to the ArapProductAccount through the product_id attribute.

 struct ArapDateBalance {

 CBO::DDecimal year_to_date;

 CBO::DDecimal this_month;

 FdGeneralLedger::AccountId acc_id;

 };

 typedef sequence <ArapDateBalance> ArapDateBalanceList;

The idea for using an account is that it is to maintain a balance over time. When this balance is to be retrieved from the ARAP Facility it is returned in two different ways depending on how it was asked for. The first way is using the ArapDateBalance struct. All balance queries using dates as parameters have this return type. The field year_to_date gives the accounts change in balance from the start of the current year up until the date given in the query parameter. The field this_month holds the change in the account balance from the start of the current month and up until the date given in the query parameter.

Since ArapDateBalance structs can be returned in a sequence, the account identifier for the account is included in the struct.

 struct ArapPeriodBalance {

 CBO::DDecimal this_period;

 FdGeneralLedger::AccountId acc_id;

 CBO::DDecimal year_to_date;

 };

 typedef sequence <ArapPeriodBalance> ArapPeriodBalanceList;

The ArapPeriodBalance struct has the same function as ArapDateBalance only that it is used when the query parameter is an accounting period or a range of such. The attribute this_period holds the change in balance for the account for the accounting period specified. The year_to_date field holds the change in balance for the account from the start of the current year up until the ???start??? of the accounting period specified.

Reconciliation Types

In order to perform reconciliations of ARAP accounts and entries some information structures are required. These are explained in the following.

 enum ReconciliationStatus {

 NOT_RECONCILED,

 PARTLY_RECONCILED,

 RECONCILED

 };

The ReconciliationStatus struct is used to tell what reconciliation state an ArapEntry is in. Each ArapEntry has an attribute of this type. An entry is either not part of a reconciliation (NOT_RECONCILED), parts of the entry has been reconciled (PARTLY_RECONCILED) or is fully reconciled (RECONCILED).

 struct ArapReconciliationEntry {

 CBO::DDecimal reconciled_amount;

 FdGeneralLedger::EntryId entry_id;

 };

 struct ArapReconciliation {

 wstring user;

 sequence <ArapReconciliationEntry> entries;

 CBO::DTime reconciliation_date;

 wstring comment;

 ReconciliationId reconciliation_id;

 };

 typedef sequence <ArapReconciliation> ArapReconciliationList;

One reconciliation is built gathering different entries, and “using” whole or parts of the entry’s amount to complete the reconciliation. One ArapReconciliationEntry hence contains a reference to an ArapEntry (entry_id) and an amount that tells how much of the entry has been “used” in the reconciliation. A complete ArapReconciliation contains a set of ArapReconciliationEntries in addition to information about who created the reconciliation (user) and when it was created (reconciliation_date).

 struct UnsettledBalanceDateIntervals {

 CBO::DTime due_date;

 sequence<unsigned short> day_intervals;

 boolean include_before_first_date;

 boolean include_after_last_date;

 };

 struct ArapAccountUnsettledBalances {

 FdGeneralLedger::AccountId acc_id;

 sequence<CBO::DDecimal> balances;

 };

 typedef sequence <ArapAccountUnsettledBalances> ArapAccountUnsettledBalancesList;

The UnsettledBalanceDateIntervals struct is used as an input to some query operations. Its purpose is to define a set of intervals of days from the date given in the due_date attribute. The day_intervals sequence contains a list of numbers defining the length of each interval in days. For instance if the due_date is the 1st of January and the day_intervals sequence contains the numbers 31, 28, 31, three interval are defined, one for January, one for February and one for March. If the include_before_first_date flag is set, an interval is included from the beginning of time until the first date, in this case January 1st. If the include_after_last_date flag is set, an interval is defined starting after the end of the last interval in the list and ending at the “end of time”.

 struct ArapStatementSpec {

 GroupIdList include_group_ids;

 FdGeneralLedger::DateRange include_unsettled_transactions_by_due_dates;

 FdGeneralLedger::Date include_balance_by_date;

 FdGeneralLedger::DateRange include_account_history_for_dates;

 };

The ArapStatementSpec struct is used to specifiy which data should be included in a statement sendt to a business partner for the purposes of identifying disagreements between the partners regarding debts and settlements. Such statements are usually exchanged prior to the closing of the accounting year. The statement can include certain groups of transactions (a group is a set of transactions related to a single business exchange), debts which have not been settled, the external balance against the business partner (i.e. the sum of all debt and payment entries on the customer or supplier account), and/or the history of entries on the customer or supplier account.

 struct ArapStatement {

 ArapStatementSpec specification;

 CBO::DDecimal balance;

 ArapTransactionList unsettled_transactions;

 ArapTransactionList group_transactions;

 ArapEntryList account_history;

 };

ArapStatement contains the statement which is sendt to or received from a business partner. It contains the items specified by its specification field.

 enum StatementVerificationResult {

 DIFFERENT_SPEC,

 EQUAL,

 DIFFERENCES_FOUND

 };

Used for the result of automatic comparison of statements sendt between business partners. EQUAL means that the statements are equal item by item; DIFFERENT_SPEC means that no differences were encountered but that the statements did not include exactly the same information, while DIFFERENCES_FOUND means that at least one item different between the statements.

Exceptions

The FdARAP interface specification uses a set of exceptions to communicate errors between the server and clients. The facility reuses exceptions from FdGeneralLedger where this is appropriate, and in addition defines a set of exceptions specific to the ARAP facility.

For clarity the exceptions defined in FdGeneralLedger and used in FdARAP are explained here in addition to the exceptions defined in FdARAP. The exceptions defined in FdGeneralLedger are presented below using their scoped names (FdGeneralLedger::).

exception FdGeneralLedger::PermissionDenied {

 wstring error;};

This exception can be raised by all of the operations in the FdArap Facility. The exception should be raised if the current user is not permitted to perform the chosen operation.

exception FdGeneralLeder::BadAccountId {

 wstring error;

 AccountId bad_value; };

This exception should be raised if an account identifier passed as a parameter in an operation is wrong in any way. The most common usage is that the account identifier is not found.

exception LedgerNameInUse {

 wstring error; };

This exception is thrown if one attempts to create a new ArapLedger with a name that is already in use by an existing ArapLedger.

exception BadAccountType {

 wstring error; };

An AccountType parameter was not valid; for instance are only CUSTOMER_ACCOUNT and SUPPLIER_ACCOUNT valid for accounts associated with parties.

exception FdGeneralLedger::BadChartKind {

 wstring error,

 ChartKind bad_value; };

This exception is thrown if the type of chart passed to the operation that creates a new ledger is not valid.

exception FdGeneralLedger::CannotRemove {

 wstring error; };

The object that has been specified for removal cannot be removed.

exception FdGeneralLedger::UnknownLedger {

 wstring error;

 wstring bad_value; };

The ledger requested is not known within the facility.

exception FdGeneralLedger::BadDate {

 wstring error;

 FdGeneralLedger::Date bad_value; };

The date passed as a parameter or otherwise is not valid.

exception UnknownPeriod {

 wstring error; };

The period passed as a parameter or otherwise could not be found.

exception BadPartyID {

 wstring error;

 PartyId bad_party_id;};

The identifier for the party passed as a party or otherwise was not valid.

exception BadPartyNumber {

 wstring error;

 wstring bad_party_number;};

The number for the party passed as a party or otherwise was not valid.

exception BadProductId {

 wstring error;

 ProductId bad_product_id;};

The identifier for the product passed as a party or otherwise was not valid.

exception BadProductNumber {

 wstring error;

 wstring bad_product_number; };

The number for the product passed as a party or otherwise was not valid.

exception CannotModify {

 wstring error;};

This exception may be raised by the operations that modify information contained in the facility if the information cannot be modified in the specified manner. This may be due to business rules or other factors.

exception FdGeneralLedger::BadAccountName {

 wstring error;

 wstring bad_value; };

The provided account name is not valid.

exception UnkownEntryIdsInList {

sequence<unsigned short> positions;};

Raised if a list of entry identifiers contain an identifier that does not identify an entry that is stored in the facility. The list of numbers in the position parameter indicates at which positions in the list of entry identifiers the unknown identifiers are.

exception UnknownTransactionIdsInList {

 sequence<unsigned short> positions;

};

Raised if a list of transaction identifiers contain an identifier that does not identify a transaction that is stored in the facility. The list of numbers in the position parameter indicates at which positions in the list of transaction identifiers the unknown identifiers are.

exception BadReconciliationId {

 wstring error;
};

The provided reconciliation identifier was not valid.

exception BadEntryId {

 wstring error;};

The provided entry identifier was not valid.

exception BadJournalId {

 wstring error;};

The provided journal identifier was not valid.

exception FdGeneralLedger::BadTransactionsInList {

wstring error;

unsigned long position_in_list; };

One or more of the transactions in the list are not valid. The position_in_list attribute indicates the position of the first invalid transaction within the list.

Section III: ArapArbitrator Interface

[image: image7.wmf]ArapArbitrator

getArapLedgerNames()

openSession()

getArapFacilityLifecycle()

<<Interface>>

The ArapArbitrator is the initial interface used to establish a client session. A client session must be established prior to use of the AR/AP Facility.

ArapArbitrator Operation: getArapLedgerNames

FdGeneralLedger::wstringList getArapLedgerNames();

Description

Allows the clients to retrieve the company names of the available ledgers.

Precondition

This operation can be called prior to logging in to the facility.

Input Parameters

none

Output Parameters

none

Return Value

Returns wstringList with a sequence of all company names available in the AR/AP Facility.

Exceptions

none

Postcondition

none

ArapArbitrator Operation: openSession

ArapProfile openSession (

 in wstring arap_ledger_name,

 in OctetList authentication_info

)

raises (

 FdGeneralLedger::PermissionDenied,

 FdGeneralLedger::UnknownLedger

);

Description

Establishes client session for a General Ledger by company name. system_date is the effective date of the session. This is so any updates to the General Ledger can appear in the correct period.

Precondition

none

Input Parameters

arap_ledger_name: The company name of the ledger to select.

authentication_info: The user’s credentials for authentication.

Output Parameters

none

Return Value

Returns an instance of the ArapProfile interface

Exceptions

PermissionDenied: raised if the user does not have the appropriate rights to log into the facility for this company.

UnknownLedger: raised if a ledger with the name arap_ledger_name is not known to the ARAP Facility.

Postcondition

A client session is established against the ledger identified by company_name. If the client is already logged in, an exception is raised.

ArapArbitrator Operation: getArapFacilityLifecycle

ArapFacilityLifecycle getArapFacilityLifecycle (

 in OctetList authentication_info

)

raises (

 FdGeneralLedger::PermissionDenied

);

Description

Establishes an administrative client session without a current company or ledger, for the use of the ArapFacilityLifecycle administration interface.

Precondition

none

Input Parameters

authentication_info: The user’s credentials for authentication.

Output Parameters

none

Return Value

Returns an instance of the ArapFacilityLifecycle interface

Exceptions

PermissionDenied: raised if the user does not have the appropriate rights to access the ArapFacilityLifecycle interface.

Postcondition

An administrative client session is established.

Section IV: ArapFacilityLifecycle Interface

[image: image8.wmf]ArapFacilityLifecycle

createArapLedger()

removeArapLedger()

<<Interface>>

The ArapFacilityLifecycle operations are used to create ledgers for new companies, and manipulate the information in the Facility which is independent of the individual ledgers. This information include users and their access rights, companies and their chart of accounts, and other information which define the allowed values for some of the fields of the Account and Transaction structs.

ArapFacilityLifecycle Operation: createArapLedger

void createArapLedger (

 in wstring new_ledger_name,

 in FdGeneralLedger::ChartKind chart_of_accounts_schema,

 in wstring copied_ledger_name_for_schema)

raises (

 FdGeneralLedger::PermissionDenied,

 LedgerNameInUse,

 FdGeneralLedger::BadChartKind,

 FdGeneralLedger::UnknownLedger

);
Description

Creates a new ledger, and sets up an initial chart of account based on the schema indicated by chart_of_account_schema, or, if copied_ledger_name_for_schema is non-empty, copies the chart of accounts from that ledger.

Precondition

The client session must have been established with Manager privileges.

Input Parameters

wstring new_ledger_name: the name of the new ledger to be created

FdGeneralLedger::ChartKind chart_of_accounts_schema : Whether the new ledger is to be based on an empty, standard or copied chart of accounts.

Output Parameters

none

Return Value

none

Exceptions

PermissionDenied: The user logged in has not got the right access rights

UnknownLedger: The ledger copied_ledger_name_for_schema does not exist.

BadChartKind: chart_of_account_schema is not a valid ChartKind value.

LedgerNameInUse : The name in new_ledger_name is already in use within the facility

Postcondition

none

ArapFacilityLifecycle Operation: removeArapLedger

void removeArapLedger (

 in wstring ledger_name

)

raises (

 FdGeneralLedger::PermissionDenied,

 FdGeneralLedger::UnknownLedger,

 FdGeneralLedger::CannotRemove

);

Description

Removes a ledger

Precondition

The client session must have been established with Manager privileges.

Input Parameters

ledger_name : the name of the ledger to be removed.
Output Parameters

none

Return Value

none

Exceptions

FdGeneralLedger::PermissionDenied: The user logged in does not have the appropriate access rights.

FdGeneralLedger::UnknownLedger: The ledger indicated by the ledger_name does not exist in the facility.

FdGeneralLedger::CannotRemove: The ledger cannot be removed from the facility.
Postcondition

The chosen ledger is removed from the facility

Section V: ArapProfile Interface

[image: image9.wmf]ArapProfile

getArapAccountHistoryRetrieval()

getArapAccountLifecycle()

getArapAccountRetrieval()

getArapBalanceRetrieval()

getArapReconciliationLifecycle()

getArapReconciliationRetrieval()

getArapTransactionLifecycle()

getArapTransactionRetrieval()

getArapLedgerCurrency()

getEntryTypes()

closeSession()

<<Interface>>

The ArapProfile is the initial interface obtained after establishing a client session with the ArapArbitrator interface. Each client session must use a unique instance of ArapProfile.

In essence ArapProfile provides operations that allow the client to get references to the other interfaces of the ARAP Facility for the right ARAP ledger.

ArapProfile Operation: getArapAccountHistoryRetrieval

ArapAccountHistoryRetrieval getArapAccountHistoryRetrieval ()

raises (FdGeneralLedger::PermissionDenied);
Description

This method retrieves a reference to the ArapAccountHistoryRetrieval interface for the current ledger.

Precondition

A client session must have been established using ArapArbitrator::openSession

Input parameters

none

Output parameters

none

Return value

Returns a reference to an instance of the ArapAccountHistoryRetrieval interface

Exceptions

FdGeneralLedger::PermissionDenied : The user currently logged in has not got the permission to perform this action

Postcondition

none

ArapProfile Operation: getArapAccountLifecycle

ArapAccountLifecycle getArapAccountLifecycle ()

raises (FdGeneralLedger::PermissionDenied);
Description

This method retrieves a reference to the ArapAccountLifecycle interface for the current ledger.

Precondition

A client session must have been established using ArapArbitrator::openSession

Input Parameters

none

Output Parameters

none

Return Value

Returns a reference to an instance of the ArapAccountLifecycle interface.

Exceptions

FdGeneralLedger::PermissionDenied : The user currently logged in has not got the permission to perform this action

Postcondition

none

ArapProfile Operation: getArapAccountRetrieval

ArapAccountRetrieval getArapAccountRetrieval ()

raises (FdGeneralLedger::PermissionDenied);

Description

This method retrieves a reference to the ArapAccountRetrieval interface for the current ledger.

Precondition

A client session must have been established using ArapArbitrator::openSession

Input Parameters

none

Output Parameters

none

Return Value

Returns a reference to an instance of the ArapAccountRetrieval interface

Exceptions

FdGeneralLedger::PermissionDenied : The user currently logged in has not got the permission to perform this action

Postcondition

none

ArapProfile Operation: getArapBalanceRetrieval

ArapBalanceRetrieval getArapBalanceRetrieval ()

raises (FdGeneralLedger::PermissionDenied);
Description

This method retrieves a reference to the ArapBalanceRetrieval interface for the current ledger.

Precondition

A client session must have been established using ArapArbitrator::openSession

Input Parameters

none

Output Parameters

none

Return Value

Returns a reference to an instance of the ArapBalanceRetrieval interface

Exceptions

FdGeneralLedger::PermissionDenied : The user currently logged in has not got the permission to perform this action

Postcondition

none.

ArapProfile Operation: getArapReconciliationLifecycle

ArapReconciliationLifecycle getArapReconciliationLifecycle ()

raises (FdGeneralLedger::PermissionDenied);
Description

This method retrieves a reference to the ArapReconciliationLifecycle interface for the current ledger.

Precondition

A client session must have been established using ArapArbitrator::openSession

Input Parameters

none

Output Parameters

none

Return Value

Returns a ArapReconciliationLifecycle interface for use in the current session. Once the session has ended the returned ArapReconciliationLifecycle is no longer a valid object.

Exceptions

FdGeneralLedger::PermissionDenied : The user currently logged in has not got the permission to perform this action

Postcondition

None

ArapProfile Operation: getArapReconciliationRetrieval

ArapReconciliationRetrieval getArapReconciliationRetrieval ()

raises (FdGeneralLedger::PermissionDenied);
Description

This method retrieves a reference to the ArapReconciliationRetrieval interface for the current ledger.

Precondition

A client session must have been established using ArapArbitrator::openSession

Input Parameters

none

Output Parameters

none

Return Value

Returns a ArapReconciliationRetrieval interface for use in the current session. Once the session has ended the returned ArapReconciliationRetrieval interface is no longer a valid object.

Exceptions

FdGeneralLedger::PermissionDenied : The user currently logged in has not got the permission to perform this action

Postcondition

None

ArapProfile Operation: getArapTransactionLifecycle

ArapTransactionLifecycle getArapTransactionLifecycle ()

raises (FdGeneralLedger::PermissionDenied);
Description

This method retrieves a reference to the ArapTransactionLifecycle interface for the current ledger.

Precondition

A client session must have been established using ArapArbitrator::openSession

Input Parameters

none

Output Parameters

none

Return Value

Returns a ArapTransactionLifecycle interface for use in the current session. Once the session has ended the returned ArapTransactionLifecycle interface is no longer a valid object.

Exceptions

FdGeneralLedger::PermissionDenied : The user currently logged in has not got the permission to perform this action

Postcondition

None

ArapProfile Operation: getArapTransactionRetrieval

ArapTransactionRetrieval getArapTransactionRetrieval ()

raises (FdGeneralLedger::PermissionDenied);
Description

This method retrieves a reference to the ArapTransactionRetrieval interface for the current ledger.

Precondition

A client session must have been established using ArapArbitrator::openSession

Input Parameters

none

Output Parameters

none

Return Value

Returns a ArapTransactionRetrieval interface for use in the current session. Once the session has ended the returned ArapTransactionRetrieval interface is no longer a valid object.

Exceptions

FdGeneralLedger::PermissionDenied : The user currently logged in has not got the permission to perform this action

Postcondition

None

ArapProfile Operation: getArapLedgerCurrency

FdGeneralLedger::CurrencyMnemonic getArapLedgerCurrency ()

raises (FdGeneralLedger::PermissionDenied);
Description

This method retrieves the currency set for the ledger that the current session is working on.

Precondition

A client session must have been established using ArapArbitrator::openSession

Input Parameters

none

Output Parameters

none

Return Value

Returns a CurrencyMnemonic containing the ISO currency code for the current ledger.

Exceptions

FdGeneralLedger::PermissionDenied : The user currently logged in has not got the permission to perform this action

Postcondition

none

ArapProfile Operation: getEntryTypes

FdGeneralLedger::EntryTypeInfoList getEntryTypes ()

raises (FdGeneralLedger::PermissionDenied);
Description

This method retrieves the different types of entry that the current ledger supports.

Precondition

A client session must have been established using ArapArbitrator::openSession

Input Parameters

none

Output Parameters

none

Return Value

An EntryTypeInfoList containing all of the EntryTypes that the current ledger supports.

Exceptions

FdGeneralLedger::PermissionDenied : The user currently logged in has not got the permission to perform this action

Postcondition

None

ArapProfile Operation: closeSession

void closeSession ();
Description

Closes the current session that was established with the ArapArbitrator::openSession operation.

Precondition

A client session must have been established using ArapArbitrator::openSession

Input Parameters

none

Output Parameters

none

Return Value

none

Exceptions
none

Postcondition

The current session is terminated, and the instance of ArapProfile is deleted. All other interfaces retrieved through ArapProfile for this session are to be set invalid.

Section VI: ArapTransactionLifecycle Interface

[image: image10.wmf]<<Interface>>

ArapTransactionLifecycle

enterJournal()

postJournal()

postTransactions()

removeJournal()

removeTransactions()

The ArapTransactionLifecycle interface is used for entering transactions into the AR/AP facility. Transactions are entered in batches known as journals; the journals are usually not posted to the books as part of the same operation. Posting the transactions to the ledger is often performed by a different user after verifying the transactions. Transactions which are not yet posted to the ledger can be deleted from the journal entry system.

ArapTransactionLifecycle Operation: enterJournal

JournalId enterJournal (

 in ArapJournal journal

)

raises (

 FdGeneralLedger::PermissionDenied,

 FdGeneralLedger::BadTransactionsInList

);

Description

Records a journal in the facility without making the posting to the ledger accounts.

Precondition

none

Input Parameters

ArapJournal journal: The journal to record.

Output Parameters

none

Return Value

none

Exceptions

FdGeneralLedger::PermissionDenied : The user currently logged in has not got the permission to perform this action

FdGeneralLedger::BadTransactionsInList : One or more of the ArapTransactions in the journal were

Postcondition

The journal is recorded in the ledger, but without performing the actual posting of the transactions in the list.

ArapTransactionLifecycle Operation: postJournal

JournalId postJournal (

 in JournalId journal_id

)

raises(

 FdGeneralLedger::PermissionDenied,

 BadJournalId

);
Description

Posts a stored journal to the ledger.

Precondition

none

Input Parameters

JournalId journal_id. The identifier of the journal that is to be posted to the ledger.

Output Parameters

none

Return Value

none

Exceptions

FdGeneralLedger::PermissionDenied : The user currently logged in has not got the permission to perform this action.

BadJournalId : The provided journal_id is not valid.

Postcondition

The ledger contains the transactions in Journal. If one of the transactions causes an exception to be raised, none of the transactions in the list are written to the ledger. The balances of the accounts referenced by the entries in the transactions are updated.

ArapTransactionLifecycle Operation: postTransactions

FdGeneralLedger::TransactionIdList postTransactions (

 in FdGeneralLedger::TransactionIdList transaction_ids

)

raises (

 FdGeneralLedger::PermissionDenied,

 FdGeneralLedger::BadTransactionsInList

);
Description

Posts a set of transaction to the ledger. Much like the postJorunal operation except this operation takes a list of transaction identifiers as input, in this way enabling to post only parts of an entered journal.

Precondition

none

Input Parameters

TransactionIdList transaction_ids: A list of identifiers of the transactions to post.

Output Parameters

none

Return Value

none

Exceptions

FdGeneralLedger::PermissionDenied : The user currently logged in has not got the permission to perform this action

FdGeneralLedger::BadTransactionsInList : One or more of the transactions in the list were not valid.

Postcondition

The transactions identified by the identifiers in the list are added to the ledger, and the balances of the accounts referenced by the entries are updated.

ArapTransactionLifecycle Operation: removeJournal

void removeJournal (

 in JournalId journal_id

)

raises (

 FdGeneralLedger::PermissionDenied,

 BadJournalId ,FdGeneralLedger::CannotRemove

);
Description

Removes a journal from the ledger. This includes removing all of the transactions contained in the journal.

Precondition

No transactions in the journal must have been posted.

Input Parameters

JournalId journal_id: The identifier of the journal to be removed.

Output Parameters

none

Return Value

none

Exceptions

FdGeneralLedger::PermissionDenied : The user currently logged in has not got the permission to perform this action.

BadJournalId : The provided journal_id is not valid.

FdGeneralLedger::CannotRemove : The chosen journal cannot be removed.

Postcondition

The transactions related to the journal identified by journal_id are removed from the ledger. This operation does not remove transactions that have been posted, just unposted transactions will be removed. If the journal contains posted transactions, no transactions will be removed and the FdGeneralLedger::CannotRemove exception will be raised

ArapTransactionLifecycle Operation: removeTransactions

void removeTransactions (

 in FdGeneralLedger::TransactionIdList transaction_ids

)

raises (

 FdGeneralLedger::PermissionDenied,

 UnknownTransactionIdsInList,

 FdGeneralLedger::CannotRemove

);
Description

Removes a set of transactions from the ledger.

Precondition

The transactions must not have been posted to the ledger.

Input Parameters

TransactionIdList transaction_ids: The list containing the identifiers of the transactions to remove.

Output Parameters

none

Return Value

none

Exceptions

FdGeneralLedger::PermissionDenied : The user currently logged in has not got the permission to perform this action.

UnknownTransactionIdsInList : One or more of the transaction identifiers in the list were invalid.

FdGeneralLedger::CannotRemove : One or more of the chosen transactions could not be removed.

Postcondition

The identified by the transaction identifiers in the list are removed from the ledger. This operation does not remove transactions that have been posted, just unposted transactions will be removed. If the list contains posted transactions, no transactions will be removed and the FdGeneralLedger::CannotRemove exception will be raised

Section VII: ArapTransactionRetrieval Interface

[image: image11.wmf]ArapTransactionRetrieval

getJournal()

getUnpostedTransactions()

getTransactionsByDates()

getTransactionsByPeriods()

getUnsettledTransactionsByDueDates()

getUnsettledTransactionsByAccount()

<<Interface>>

The ArapTransactionRetrieval interface supports the retrieval of posted or unposted transactions, by dates, periods, account, or reconciliation status.

ArapTransactionRetrieval Operation: getJournal

ArapJournal getJournal (in JournalId journal_id
)

raises(FdGeneralLedger::PermissionDenied,

BadJournalId);
Description

Retrieves the Journal object defined by the journal_id parameter.

Precondition

none

Input Parameters

JournalId journal_id : The identifier for the wanted journal object.

Output Parameters

none

Return Value

Returns the ArapJournal object defined by the journal_id paramter.

Exceptions

FdGeneralLedger::PermissionDenied : The user currently logged in has not got the permission to perform this action.

BadJournalId : The journal identifier provided as input parameter was not valid.

Postcondition

none

ArapTransactionRetrieval Operation: getUnpostedTransactions

ArapTransactionList getUnpostedTransactions ()

raises (FdGeneralLedger::PermissionDenied);
Description

Retrieves all transactions that have been entered but that have not been posted.

Precondition

none

Input Parameters

none

Output Parameters

none

Return Value

Returns an ArapTransactionList containing all of the ArapTransactions that have not been posted.

Exceptions

FdGeneralLedger::PermissionDenied : The user currently logged in has not got the permission to perform this action

Postcondition

none

ArapTransactionRetrieval Operation: getTransactionsByDates

ArapTransactionList getTransactionsByDates (

 in FdGeneralLedger::DateRange transaction_date_range

)

raises (

 FdGeneralLedger::PermissionDenied,

 FdGeneralLedger::BadDate

);
Description

Retrieves all transactions posted to a ledger for a given range of dates.

Precondition

none

Input Parameters

FdGeneralLedger::DateRange transaction_date_range : The date range that is to be used for the selection of ArapTransactions.

Output Parameters

none

Return Value

Returns an ArapTransactionList containing the set of all transactions that meet the date range criteria.

Exceptions

FdGeneralLedger::PermissionDenied : The user currently logged in has not got the permission to perform this action

FdGeneralLedger::BadDate : One or more of the dates in the transaction_date_range parameter were invalid.

Postcondition

none

ArapTransactionRetrieval Operation: getTransactionsByPeriods

ArapTransactionList getTransactionsByPeriods (

 in PeriodRange period_range

)

raises (

 FdGeneralLedger::PermissionDenied,

 UnknownPeriod

);
Description

Retrieves all ArapTransaction objects posted to the periods in the period range provided as input parameter.

Precondition

none

Input Parameters

PeriodRange period_range : The range spanning from a period to a period. An empty value in the from_period field means from the “beginning of time” and an empty value in the to_period field means to the “end of time”.

Output Parameters

None

Return Value

Returns an ArapTransactionList containing the ArapTransaction objects that meet the criteria in the period range.

Exceptions

FdGeneralLedger::PermissionDenied : The user currently logged in has not got the permission to perform this action

UnknownPeriod : One or more of the period identifiers in the period_range parameter were unknown to this ledger.

Postcondition

none

ArapTransactionRetrieval Operation: getUnsettledTransactionsByDueDates

ArapTransactionList getUnsettledTransactionsByDueDates (

in FdGeneralLedger::DateRange due_date_range)

raises(FdGeneralLedger::PermissionDenied,

FdGeneralLedger::BadDate);
Description

Retrieves all transactions that have not been settled that have a due date within a given date interval.

Precondition

none

Input Parameters

FdGeneralLedger::DateRange due_date_range : The range of dates that the ArapTransaction has to have a due date in to match the search criteria.

Output Parameters

none

Return Value

Returns an ArapTransactionList containing all ArapTransaction objects that have a due date within the date range provided as an input parameter.

Exceptions

FdGeneralLedger::PermissionDenied : The user currently logged in has not got the permission to perform this action

FdGeneralLedger::BadDate : One or more of the dates in the due_date_range parameter were invalid.

Postcondition

none

ArapTransactionRetrieval Operation: getUnsettledTransactionsByAccount

ArapTransactionList getUnsettledTransactionsByAccount (

in FdGeneralLedger::AccountId acc_id,

in FdGeneralLedger::DateRange due_date_range)

raises(FdGeneralLedger::PermissionDenied,

FdGeneralLedger::BadAccountId,FdGeneralLedger::BadDate);
Description

Retrieves all transactions related to an account that are unsettled and that have a due date within the date range provided as the second input parameter.

Precondition

none

Input parameters
FdGeneralLedger::AccountId account_id : The identifier for the account that the ArapTransactionObjects are to be retrieved for.

FdGeneralLedger::DateRange due_date_range : The range of dates that the ArapTransaction has to have a due date in to match the search criteria.

Output Parameters

none

Return Value

Returns an ArapTransactionList containing all ArapTransaction objects that have a due date within the date range provided as an input parameter and that have one or more entries toward the account identified by the account_id parameter.

Exceptions

FdGeneralLedger::PermissionDenied : The user currently logged in has not got the permission to perform this action.

FdGeneralLedger::BadAccountId : The account identifier provided in the account_id parameter was not valid.

FdGeneralLedger::BadDate : One or more of the dates in the due_date_range parameter were invalid.

Postcondition

none

Section VIII: ArapAccountLifecycle Interface

[image: image12.wmf]ArapAccountLifecycle

createAccount()

createPartyAccount()

createProductAccount()

modifyAccount()

removeAccount()

<<Interface>>

The ArapAccountLifecycle service manages the lifecycle of the accounts in the ledger, facilitating the customization of the chart of account selected when the ledger was created, including the creation, modification, and deletion of accounts for customers, suppliers, and products.

ArapAccountLifecycle Operation: createAccount

FdGeneralLedger::AccountId createAccount (

in ArapAccount account_info)

raises(FdGeneralLedger::PermissionDenied,

FdGeneralLedger::BadAccountId,

FdGeneralLedger::BadAccountName);
Description

Creates a new account. The properties for the account are set in the account_info input parameter.

Precondition

The client session must have been established with Manager privileges.

Input Parameters

ArapAccount account_info : The account_info parameter holds an ArapAccount object that contains the wanted properties of the account to be created.

Output Parameters

none

Return Value

Returns the account identifier for the newly created account.

Exceptions

FdGeneralLedger::PermissionDenied : The user currently logged in has not got the permission to perform this action.

FdGeneralLedger::BadAccountID : The account identifier provided in the account_info object was not valid.

FdGeneralLedger::BadAccountName : The account name provided in the account_info object was not valid.

Postcondition

The new account is added to the ledger, having the properties as defined in the account_info object passed as the input parameter.

ArapAccountLifecycle Operation: createPartyAccount

FdGeneralLedger::AccountId createPartyAccount (

in ArapPartyAccount account_info)

raises (FdGeneralLedger::PermissionDenied, BadPartyID,

BadPartyNumber);
Description

Creates a new party account. The properties for the account are set in the account_info input parameter.

Precondition

The client session must have been established with Manager privileges.

Input Parameters

ArapPartyAccount account_info : The account_info parameter holds an ArapPartyAccount object that contains the wanted properties of the party account to be created.

Output Parameters

none

Return Value

Returns the account identifier for the newly created party account.

Exceptions

FdGeneralLedger::PermissionDenied : The user currently logged in has not got the permission to perform this action.

BadPartyId : The party account identifier provided in the account_info object was not valid.

BadPartyNumber : The party number provided in the account_info object was not valid.

Postcondition

The new party account is added to the ledger, having the properties as defined in the account_info object passed as the input parameter. The account type of the party account has to be either SUPPLIER_ACCOUNT or CUSTOMER_ACCOUNT.

ArapAccountLifecycle Operation: createProductAccount

FdGeneralLedger::AccountId createProductAccount (

in ArapProductAccount account_info)

raises(FdGeneralLedger::PermissionDenied, BadProductId,

BadProductNumber);
Description

Creates a new product account. The properties for the account are set in the account_info input parameter.

Precondition

The client session must have been established with Manager privileges.

Input Parameters

ArapProductAccount account_info : The account_info parameter holds an ArapProductAccount object that contains the wanted properties of the product account to be created.

Output Parameters

none

Return Value

Returns the account identifier for the newly created product account.

Exceptions

FdGeneralLedger::PermissionDenied : The user currently logged in has not got the permission to perform this action.

BadProductId : The product account identifier provided in the account_info object was not valid.

BadProductNumber : The product number provided in the account_info object was not valid.

Postcondition

The new product account is added to the ledger, having the properties as defined in the account_info object passed as the input parameter. The account type of the product account has to be PRODUCT_ACCOUNT.

ArapAccountLifecycle Operation: modifyAccount

void modifyAccount (

in FdGeneralLedger::AccountId acc_id,

in wstring new_acc_description)

raises(FdGeneralLedger::PermissionDenied,

FdGeneralLedger::BadAccountId, CannotModify);
Description

Modifies the description associated with the account identified by acc_id.

Precondition

The client session must have been established with Manager privileges.

Input Parameters

FdGeneralLedger::AccountId acc_id: identifies the account to be modified.

wstring new_acc_description: new description for the account.

Output Parameters

none

Return Value

none

Exceptions

FdGeneralLedger::PermissionDenied : The user currently logged in has not got the permission to perform this action.

FdGeneralLedger::BadAccountId : The account identifier given as the acc_id parameter was not valid.

CannotModify : The account could not be modified.

Postcondition

The description field for the chosen account is updated to the value of that in the new_acc_description parameter.

ArapAccountLifecycle Operation: removeAccount

void removeAccount (in FdGeneralLedger::AccountId acc_id)

raises(FdGeneralLedger::PermissionDenied,

FdGeneralLedger::BadAccountId,

FdGeneralLedger::CannotRemove);
Description

Removes the account identified by acc_id from the chart of accounts.

Precondition

The client session must have been established with Manager privileges. The account cannot be in use; accounts which are in use cannot be deleted. An account is in use when there are associated financial transactions in the ledger, or it is a control account referring to a non-empty set of other accounts, or the balance of the account is non-zero.

Input Parameters

FdGeneralLedger::AccountID acc_id: unique identifier for the account that is to be removed.

Output Parameters

none

Return Value

none

Exceptions

FdGeneralLedger::PermissionDenied : The user currently logged in has not got the permission to perform this action.

FdGeneralLedger::BadAccountId : The account identifier given as the acc_id parameter was not valid.

FdGeneralLedgerCannotRemove : The account could not be removed.

Postcondition

The account identified by acc_id is removed from the ledgers chart of accounts.

ArapAccountLifecycle Operation: closeAccountingPeriod

void closeAccountingPeriod (in wstring period_id)

raises (FdGeneralLedger::PermissionDenied,UnknownPeriod);

Description

Closes the accounting period identified by period_id. No more transactions can be posted to the ledger for a closed period.

Precondition

The client session must have been established with Manager privileges.

The period must be open. A period in an accounting year cannot be closed if the previous accounting year has not been closed with close_accounting_year. All preceding accounting periods must be closed.

Input Parameters

wstring period_id: indicate the account period to be closed.

Output Parameters

none

Return Value

none.

Exceptions

FdGeneralLedger::PermissionDenied : The user currently logged in has not got the permission to perform this action.

UnknownPeriod: raised if period_id does not exist or the period is already closed.

Postcondition

The accounting period identified by period_id is closed for further posting.

ArapAccountLifecycle Operation: closeAccountingYear

void closeAccountingYear (

 in wstring last_period_in_accounting_year

)

raises (

 FdGeneralLedger::PermissionDenied,

 UnknownPeriod

);
Description

Marks the accounting year whose last period is last_period_in_accounting_year as closed. Note that year-end closing can be a complex process, and it varies greatly between different implementations and even users. Therefore, this operation does not perform any specific year-end processing, such as transferring the balances of nominal (e.g. profit and loss) accounts to the appropriate balance sheet accounts. Such operations are intended to be performed by components or applications using any necessary GL interfaces for the purpose.

Precondition

The client session must have been established with Manager privileges.

The period last_period_in_year must be closed.

Input Parameters

wstring last_period_in_accounting_year: Identifies the last period in the year to be closed.

Output Parameters

none

Return Value

none

Exceptions

FdGeneralLedger::PermissionDenied : The user currently logged in has not got the permission to perform this action.

UnknownPeriod: raised if period_id does not exist or the period is already closed.

Postcondition

The accounting year that has the period last_period_in_accounting_year is closed for further postings.

Section IX: ArapAccountRetrieval Interface

[image: image13.wmf]ArapAccountRetrieval

getAccount()

getAccountsByType()

getPartyAccount()

getPartyAccountByPartyId()

getPartyAccountByPartyNumber()

getPartyAccountsByType()

getProductAccount()

getProductAccountByProductId()

getProductAccountByProductNumber()

getAllProductAccounts()

getAccountsByXBRLType()

<<Interface>>

The ArapAccountRetrieval interface supports client reporting functions for the chart of accounts, including customer, supplier, and product accounts, in the ledger for the current company.

ArapAccountRetrieval Operation: getAccount

ArapAccount getAccount (

 in FdGeneralLedger::AccountId acc_id

)

raises (

 FdGeneralLedger::PermissionDenied,

 FdGeneralLedger::BadAccountId

);

Description

Retrieves a single account from the current ledger.

Precondition

none

Input Parameters

acc_id: The identifier of the account to be retrieved.

Output Parameters

none

Return Value

Returns an ArapAccount struct containing the description of the account identified by acc_id.

Exceptions

FdGeneralLedger::PermissionDenied: The client is not authorized to perform this operation.

FdGeneralLedger::BadAccountId: The account ID is not valid.

Postcondition

none

ArapAccountRetrieval Operation: getAccountsByType

ArapAccountList getAccountsByType (

 in AccountType acc_type

)

raises (FdGeneralLedger::PermissionDenied);

Description

Retrieves all the accounts of a specified account type in the ledger for the current company.

Precondition

none

Input Parameters

acc_type: The type of accounts to retrieve.

Output Parameters

none

Return value

Returns an ArapAccountList sequence containing an ArapAccount element for each account of the specified type.

Exceptions

FdGeneralLedger::PermissionDenied: The client is not authorized to perform this operation.

Postcondition

none

ArapAccountRetrieval Operation: getPartyAccount

ArapPartyAccount getPartyAccount (

 in FdGeneralLedger::AccountId acc_id

)

raises (

 FdGeneralLedger::PermissionDenied,

 FdGeneralLedger::BadAccountId

);

Description

Retrieves a party account, i.e. a customer or supplier account, along with the party information stored along with it, from the current ledger.

Precondition

The account identified by the acc_id parameter must be of type CUSTOMER_ACCOUNT or SUPPLIER_ACCOUNT.

Input Parameters

acc_id: The identifier of the account to be retrieved.

Output Parameters

none

Return Value

Returns an ArapPartyAccount struct containing the description of the account identified by acc_id and the associated party information.

Exceptions

FdGeneralLedger::PermissionDenied: The client is not authorized to perform this operation.

FdGeneralLedger::BadAccountId: The account ID is not valid, or identifies an account which is not of type CUSTOMER_ACCOUNT or SUPPLIER_ACCOUNT.

Postcondition

none

ArapAccountRetrieval Operation: getPartyAccountByPartyId

ArapPartyAccount getPartyAccountByPartyId (

 in AccountType acc_type,

 in PartyId party_id

)

raises (

 FdGeneralLedger::PermissionDenied,

 BadAccountType,

 BadPartyID

);

Description

Retrieves the customer or supplier account associated with a party from the current ledger.

Precondition

The party ID must previously have been associated with an account of the desired type through the use of the ArapAccountLifecycle interface.

Input Parameters

acc_type: Either CUSTOMER_ACCOUNT or SUPPLIER_ACCOUNT

party_id: The PartyId associated with the account to be retrieved.

Output Parameters

none

Return Value

Returns an ArapPartyAccount struct containing the description of the account connected to the specified party ID and the associated party information.

Exceptions

FdGeneralLedger::PermissionDenied: The client is not authorized to perform this operation.

BadAccountType: The acc_type parameter is not CUSTOMER_ACCOUNT or SUPPLIER_ACCOUNT.

BadPartyID: The party ID is not associated with any account ot the specified type.

Postcondition

none

ArapAccountRetrieval Operation: getPartyAccountByPartyNumber

ArapPartyAccount getPartyAccountByPartyNumber (

 in AccountType acc_type,

 in wstring party_number

)

raises (

 FdGeneralLedger::PermissionDenied,

 BadAccountType,

 BadPartyNumber

);

Description

Retrieves the customer or supplier account associated with a party from the current ledger.

Precondition

The party number must previously have been associated with an account of the desired type through the use of the ArapAccountLifecycle interface.

Input Parameters

acc_type: Either CUSTOMER_ACCOUNT or SUPPLIER_ACCOUNT

party_number: The party number associated with the account to be retrieved.

Output Parameters

none

Return Value

Returns an ArapPartyAccount struct containing the description of the account connected to the specified party number and the associated party information.

Exceptions

FdGeneralLedger::PermissionDenied: The client is not authorized to perform this operation.

BadAccountType: The acc_type parameter is not CUSTOMER_ACCOUNT or SUPPLIER_ACCOUNT.

BadPartyNumber: The party number is not associated with any account ot the specified type.

Postcondition

none

ArapAccountRetrieval Operation: getPartyAccountsByType

ArapPartyAccountList getPartyAccountsByType (

 in AccountType acc_type

)

raises (

 FdGeneralLedger::PermissionDenied,

 BadAccountType

);

Description

Retrieves all the customer or supplier accounts in the ledger for the current company, along with the associated party information.

Precondition

none

Input Parameters

acc_type: The type of party accounts to retrieve, either CUSTOMER_ACCOUNT or SUPPLIER_ACCOUNT.

Output Parameters

none

Return value

Returns an ArapPartyAccountList sequence containing an ArapPartyAccount element for each account of the specified type.

Exceptions

FdGeneralLedger::PermissionDenied: The client is not authorized to perform this operation.

BadAccountType: The acc_type parameter is not CUSTOMER_ACCOUNT or SUPPLIER_ACCOUNT.

Postcondition

none

ArapAccountRetrieval Operation: getProductAccount

ArapProductAccount getProductAccount (

 in FdGeneralLedger::AccountId acc_id

)

raises (

 FdGeneralLedger::PermissionDenied,

 FdGeneralLedger::BadAccountId

);

Description

Retrieves a single account and associated product information from the current ledger.

Precondition

The account identified by the acc_id parameter must be of the PRODUCT_ACCOUNT type.

Input Parameters

acc_id: The identifier of the product account to be retrieved.

Output Parameters

none

Return Value

Returns an ArapProductAccount struct containing the description of the account identified by acc_id, along with the associated product ID and number.

Exceptions

FdGeneralLedger::PermissionDenied: The client is not authorized to perform this operation.

FdGeneralLedger::BadAccountId: The account ID is not valid, or the account is not of type PRODUCT_ACCOUNT.

Postcondition

none

ArapAccountRetrieval Operation: getProductAccountByProductId

ArapProductAccount getProductAccountByProductId (

 in ProductId product_id

)

raises (

 FdGeneralLedger::PermissionDenied,

 BadProductId

);

Description

Retrieves the account associated with a product ID from the current ledger.

Precondition

The ProductId must previously have been associated with an account of the PRODUCT_ACCOUNT type by a call to the ArapAccountLifecycle interface.

Input Parameters

product_id: The product identifier associated with the account to be retrieved.

Output Parameters

none

Return Value

Returns an ArapProductAccount struct containing the product account associated with the specified ProductId.

Exceptions

FdGeneralLedger::PermissionDenied: The client is not authorized to perform this operation.

FdGeneralLedger::BadProductId: The product ID is not associated with any account in the ledger.

Postcondition

none

ArapAccountRetrieval Operation: getProductAccountByProductNumber

ArapProductAccount getProductAccountByProductNumber (

 in wstring product_number

)

raises (

 FdGeneralLedger::PermissionDenied,

 BadProductNumber

);

Description

Retrieves the account associated with a product number from the current ledger.

Precondition

The product number must previously have been associated with an account of the PRODUCT_ACCOUNT type by a call to the ArapAccountLifecycle interface.

Input Parameters

product_number: The product number associated with the account to be retrieved.

Output Parameters

none

Return Value

Returns an ArapProductAccount struct containing the product account associated with the specified product number.

Exceptions

FdGeneralLedger::PermissionDenied: The client is not authorized to perform this operation.

FdGeneralLedger::BadProductNumber: The product number is not associated with any account in the ledger.

Postcondition

none

ArapAccountRetrieval Operation: getAllProductAccounts

ArapProductAccountList getAllProductAccounts()

raises (

 FdGeneralLedger::PermissionDenied

);

Description

Retrieves all the product accounts from the current ledger.

Precondition

none

Input Parameters

none
Output Parameters

none

Return Value

Returns an ArapProductAccountList sequence containing one ArapProductAccount element for each account of type PRODUCT_ACCOUNT in the ledger.

Exceptions

FdGeneralLedger::PermissionDenied: The client is not authorized to perform this operation.

Postcondition

none

ArapAccountRetrieval Operation: getAccountsByXBRLType

ArapAccountList getAccountsByXBRLType (

 in wstring xbrl_type

)

raises (FdGeneralLedger::PermissionDenied);

Description

Retrieves all the accounts of a specified account type in the ledger whose xbrl_type reporting code attribute is of a certain value.

Precondition

none

Input Parameters

xbrl_type: Accounts whose xbrl_type reporting code matches this parameter will be returned.

Output Parameters

none

Return value

Returns an ArapAccountList sequence containing an ArapAccount element for each account whose xbrl_type has the specified value.

Exceptions

FdGeneralLedger::PermissionDenied: The client is not authorized to perform this operation.

Postcondition

none

Section X: ArapBalanceRetrieval Interface

[image: image14.wmf]ArapBalanceRetrieval

getAccountBalanceByDate()

getAccountBalanceByPeriod()

getAccountBalancesByTypeAndDate()

getAccountBalancesByTypeAndPeriod()

getAccountBalanceSumByTypeAndDate()

getAccountBalanceSumByTypeAndPeriod()

getUnsettledBalances()

getAccountBalanceByDatesAndParties()

getAccountBalanceByPeriodsAndParties()

<<Interface>>

The ArapBalanceRetrieval interface supports the retrieval of the balances associated with the accounts in the ledger for the current company.

ArapBalanceRetrieval Operation: getAccountBalanceByDate

ArapDateBalance getAccountBalanceByDate (

 in FdGeneralLedger::AccountId acc_id,

 in CBO::DTime date

)

raises (

 FdGeneralLedger::PermissionDenied,

 FdGeneralLedger::BadAccountId,

 FdGeneralLedger::BadDate

);

Description

Retrieves the balance of an account in the ledger at a specified date.

Precondition

The account identified by the acc_id parameter must exist.

Input Parameters

acc_id: The ID of the account whose balance is to be retrieved.

date: The date for which to fetch the account balance.

Output Parameters

none

Return value

Returns an ArapDateBalance struct containing the change in the account balance since the start of the month (this_month) and the cumulative account balance at the specified date (year_to_date).

Exceptions

FdGeneralLedger::PermissionDenied: The client is not authorized to perform this operation.

FdGeneralLedger::BadAccountId: The account ID is not valid.

FdGeneralLedger::BadDate: The date parameter was not a valid date.

Postcondition

none

ArapBalanceRetrieval Operation: getAccountBalanceByPeriod

ArapPeriodBalance getAccountBalanceByPeriod (

 in FdGeneralLedger::AccountId acc_id,

 in wstring period_id

)

raises (

 FdGeneralLedger::PermissionDenied,

 FdGeneralLedger::BadAccountId,

 UnknownPeriod

);

Description

Retrieves the balance of an account in the ledger for a specified accounting period.

Precondition

The account identified by the acc_id parameter must exist.

Input Parameters

acc_id: The ID of the account whose balance is to be retrieved.

period_id: The accounting period for which to fetch the account balance.

Output Parameters

none

Return value

Returns an ArapPeriodBalance struct containing the change in the account balance in the accounting period (this_period) and the cumulative account balance up to and including the specified accounting period (year_to_date).

Exceptions

FdGeneralLedger::PermissionDenied: The client is not authorized to perform this operation.

FdGeneralLedger::BadAccountId: The account ID is not valid.

UnknownPeriod: The period_id parameter was not a valid accounting period.

Postcondition

none

ArapBalanceRetrieval Operation: getAccountBalanceByTypeAndDate

ArapPeriodBalanceList getAccountBalancesByTypeAndDate (

 in AccountType acc_type,

 in CBO::Time date

)

raises (

 FdGeneralLedger::PermissionDenied,

 FdGeneralLedger::BadDate

);

Description

Retrieves the balance for all the accounts of a specified account type for a specified date.

Precondition

none

Input Parameters

acc_type: The account type for which to retrieve account balances.

date: The date for which to fetch the account balances.

Output Parameters

none

Return value

Returns an ArapDateBalanceList, a sequence of ArapDateBalance containing an element for each account of the specified type.

Exceptions

FdGeneralLedger::PermissionDenied: The client is not authorized to perform this operation.

FdGeneralLedger::BadDate: The date parameter was not a valid date.

Postcondition

none

ArapBalanceRetrieval Operation: getAccountBalanceByTypeAndPeriod

ArapPeriodBalanceList getAccountBalancesByTypeAndPeriod (

 in AccountType acc_type,

 in wstring period_id

)

raises (

 FdGeneralLedger::PermissionDenied,

 UnknownPeriod

);

Description

Retrieves the balance for all the accounts of a specified account type for a specified accounting period.

Precondition

none

Input Parameters

acc_type: The account type for which to retrieve account balances.

period_id: The accounting period for which to fetch the account balances.

Output Parameters

none

Return value

Returns an ArapPeriodBalanceList, a sequence of ArapPeriodBalance containing an element for each account of the specified type.

Exceptions

FdGeneralLedger::PermissionDenied: The client is not authorized to perform this operation.

UnknownPeriod: The period_id parameter was not a valid accounting period.

Postcondition

none

ArapBalanceRetrieval Operation: getAccountBalanceSumByTypeAndDate

ArapDateBalance getAccountBalanceSumByTypeAndDate (

 in AccountType acc_type,

 in CBO::DTime date

)

raises (

 FdGeneralLedger::PermissionDenied,

 FdGeneralLedger::BadDate

);

Description

Retrieves the sum of the balances of all accounts of a specified account type for a specified date.

Precondition

none

Input Parameters

acc_type: The account type for which to retrieve the account balance sum.

date: The date for which to fetch the account balance sum.

Output Parameters

none

Return value

Returns an ArapDateBalance whose this_month and year_to_date fields contain the sum of the values for each account of the specified type.

Exceptions

FdGeneralLedger::PermissionDenied: The client is not authorized to perform this operation.

FdGeneralLedger::BadDate: The date parameter was not a valid date.

Postcondition

none

ArapBalanceRetrieval Operation: getAccountBalanceSumByTypeAndPeriod

ArapPeriodBalance getAccountBalanceSumByTypeAndPeriod (

 in AccountType acc_type,

 in wstring period_id

)

raises (

 FdGeneralLedger::PermissionDenied,

 UnknownPeriod

);

Description

Retrieves the sum of the balances of all accounts of a specified account type for a specified accounting period.

Precondition

none

Input Parameters

acc_type: The account type for which to retrieve the account balance sum.

period_id: The accounting period for which to fetch the account balance sum.

Output Parameters

none

Return value

Returns an ArapPeriodBalance whose this_period and year_to_date fields contain the sum of the values for each account of the specified type.

Exceptions

FdGeneralLedger::PermissionDenied: The client is not authorized to perform this operation.

UnknownPeriod: The period_id parameter was not a valid accounting period.

Postcondition

none

ArapBalanceRetrieval Operation: getUnsettledBalances

ArapAccountUnsettledBalancesList getUnsettledBalances (

 in AccountType acc_type,

 in UnsettledBalanceDateIntervals date_intervals

)

raises (

 FdGeneralLedger::PermissionDenied,

 FdGeneralLedger::BadDate

);

Description

Retrieves the non-reconciled balance, i.e. the sum of the non-reconciled amount on each entry, for all the accounts of a specified account type for a range of due dates.

Precondition

none

Input Parameters

acc_type: The account type for which to retrieve non-reconciled account balances.

date_intervals: An UnsettledBalanceDateIntervals struct whose due_date contains the start of the due date intervals, and whose day_intervals member contains the specified intervals in days into which the unsettled balances are grouped.

Output Parameters

none

Return value

Returns an ArapAccountUnsettledBalancesList, a sequence of ArapAccountUnsettledBalances containing an element for each account of the specified type.

Each element contains the sum of non-reconciled amounts for each of the due date intervals specified in the date_intervals parameter.

Exceptions

FdGeneralLedger::PermissionDenied: The client is not authorized to perform this operation.

FdGeneralLedger::BadDate: The due_date field of the date_intervals parameter was not a valid date.

Postcondition

none

ArapBalanceRetrieval Operation: getAccountBalanceByDatesAndParties

ArapDateBalance getAccountBalanceByDatesAndParties (

 in FdGeneralLedger::AccountId acc_id,

 in FdGeneralLedger::DateRange date_range,

 in wstring from_party_number,

 in wstring to_party_number

)

raises (

 FdGeneralLedger::PermissionDenied,

 FdGeneralLedger::BadAccountId,

 FdGeneralLedger::BadDate

);

Description

Retrieves the sum of the entries on an account filtered by a date interval and a range of party numbers.

Precondition

The account identified by the acc_id parameter must exist.

Input Parameters

acc_id: The ID of the account whose filtered balance is to be retrieved.

date_range: The range of dates of the entries to include in the sum. If the start_date.is_set field is false, there is no lower limit on the entry dates; if the end_date.is_set field is false, there is no upper limit on the entry dates.

from_party_number: The lower bound for inclusion of entries based on the number of the party associated with the entry. If an empty string is sendt, there is no lower limit on the party numbers to include.

to_party_number: The upper bound for inclusion of entries based on the number of the party associated with the entry. If an empty string is sendt, there is no upper limit on the party numbers to include.

Output Parameters

none

Return value

Returns an ArapDateBalance struct containing the sum of the entries which fall into the selection criteria in the this_month field. The year_to_date field is not set in the return value.

Exceptions

FdGeneralLedger::PermissionDenied: The client is not authorized to perform this operation.

FdGeneralLedger::BadAccountId: The account ID is not valid.

FdGeneralLedger::BadDate: One of the fields in the specified date range was not a valid date.

Postcondition

none

ArapBalanceRetrieval Operation: getAccountBalanceByPeriodsAndParties

ArapPeriodBalanceList getAccountBalanceByPeriodsAndParties (

 in FdGeneralLedger::AccountId acc_id,

 in PeriodRange period_range,

 in wstring from_party_number,

 in wstring to_party_number

)

raises (

 FdGeneralLedger::PermissionDenied,

 FdGeneralLedger::BadAccountId,

 UnknownPeriod

);

Description

Retrieves the sum of the entries on an account filtered by a date interval and a range of party numbers.

Precondition

The account identified by the acc_id parameter must exist.

Input Parameters

acc_id: The ID of the account whose filtered balance is to be retrieved.

period_range: The range of periods of the entries to include in the sum. If the start_period field is an empty string, there is no lower limit on the entry periods; if the end_period field is an empty string, there is no upper limit on the entry periods.

from_party_number: The lower bound for inclusion of entries based on the number of the party associated with the entry. If an empty string is sendt, there is no lower limit on the party numbers to include.

to_party_number: The upper bound for inclusion of entries based on the number of the party associated with the entry. If an empty string is sendt, there is no upper limit on the party numbers to include.

Output Parameters

none

Return value

Returns an ArapPeriodBalance struct containing the sum of the entries which fall into the selection criteria in the this_period field. The year_to_date field is not set in the return value.

Exceptions

FdGeneralLedger::PermissionDenied: The client is not authorized to perform this operation.

FdGeneralLedger::BadAccountId: The account ID is not valid.

UnknownPeriod: One of the fields in the specified period range was not a valid period.

Postcondition

none

Section XI: ArapAccountHistoryRetrieval Interface

[image: image15.wmf]ArapAccountHistoryRetrieval

getAccountHistoryByDates()

getAccountHistoryByPeriods()

<<Interface>>

The ArapAccountHistoryRetrieval interface supports the retrieval of the history of entries registered on each account in the ledger for the current company.

ArapAccountHistoryRetrieval Operation: getAccountHistoryByDates

ArapEntryList getAccountHistoryByDates (

 in FdGeneralLedger::AccountId acc_id,

 in FdGeneralLedger::DateRange transaction_date_range

)

raises (

 FdGeneralLedger::PermissionDenied,

 FdGeneralLedger::BadAccountId,

 FdGeneralLedger::BadDate

);

Description

Retrieves the history of entries in a date range for an account.

Precondition

The acc_id parameter must identify a valid account.

Input Parameters

acc_id: The AccountId of the account whose history of entries should be retrieved.

transaction_date_range: Entries whose transaction date is in this range of values will be returned.

Output Parameters

none

Return value

Returns an ArapEntryList containing the entries on the specified account in the specified date range.

Exceptions

FdGeneralLedger::PermissionDenied: The client is not authorized to perform this operation.

FdGeneralLedger::BadAccountId: The account ID is not valid.

FdGeneralLedger::BadDate: One of the values in the transaction_date_range parameter was not a valid date.

Postcondition

none

ArapAccountHistoryRetrieval Operation: getAccountHistoryByPeriods

ArapEntryList getAccountHistoryByPeriods (

 in FdGeneralLedger::AccountId acc_id,

 in PeriodRange period_range

)

raises (

 FdGeneralLedger::PermissionDenied,

 FdGeneralLedger::BadAccountId,

 UnknownPeriod

);

Description

Retrieves the history of entries in a range of accounting periods for an account.

Precondition

The acc_id parameter must identify a valid account.

Input Parameters

acc_id: The AccountId of the account whose history of entries should be retrieved.

period_range: Entries whose transaction period is in this range of values will be returned.

Output Parameters

none

Return value

Returns an ArapEntryList containing the entries on the specified account in the specified accounting period range.

Exceptions

FdGeneralLedger::PermissionDenied: The client is not authorized to perform this operation.

FdGeneralLedger::BadAccountId: The account ID is not valid.

UnknownPeriod: One of the values in the period_range parameter was not a valid accounting period.

Postcondition

none

Section XII: ArapReconciliationLifecycle Interface

[image: image16.wmf]ArapReconciliationLifecycle

createReconciliation()

modifyReconciliation()

removeReconciliation()

<<Interface>>

The ArapReconciliation interface supports reconciliation, i.e. the matching of payments against debts, and records the detail of each such reconciliation.

ArapReconciliationLifecycle Operation: createReconciliation

void createReconciliation (

 in ArapReconciliation reconciliation

)

raises (

 FdGeneralLedger::PermissionDenied,

 FdGeneralLedger::BadDate,

 UnkownEntryIdsInList

);

Description

Reconciles a set of entries, recording the date of the reconciliation, who performed it, and any comments entered by the user performing the reconciliation.

Precondition

The entries in the reconciliation specification all have a reconciliation_status of NOT_RECONCILED or PARTLY_RECONCILED.

The entries are all on the same account, i.e. they all have the same value in the account_id field.

Input Parameters

reconciliation: Contains the specification of the reconciliation to perform.

Output Parameters

none

Return Value

Returns the ReconciliationId of the newly created reconciliation.

Exceptions

FdGeneralLedger::PermissionDenied: The client is not authorized to perform this operation.

FdGeneralLedger::BadDate: The reconciliation date is not valid.

UnkownEntryIdsInList: One or more of the specified entries do not exist, are not from the same account, or have a reconciliation_status of RECONCILED.
Postcondition

The reconciliation has been recorded.

The entries involved in the reconciliation have their reconciliation_id set to PARTLY_RECONCILED or RECONCILED, depending on whether the whole entry amount has been reconciled or not.

ArapReconciliationLifecycle Operation: modifyReconciliation

void modifyReconciliation (

 in ArapReconciliation reconciliation

)

raises (

 FdGeneralLedger::PermissionDenied,

 BadReconciliationId,

 FdGeneralLedger::BadDate,

 UnkownEntryIdsInList,

 CannotModify

);

Description

Reconciles a set of entries, recording the date of the reconciliation, who performed it, and any comments entered by the user performing the reconciliation.

Precondition

The ReconciliationId of the reconciliation parameter was returned from a previous call to createReconciliation().

The entries in the reconciliation specification which were not part of the previous version of the reconciliation all have a reconciliation_status of NOT_RECONCILED or PARTLY_RECONCILED.

The entries are all on the same account, i.e. they all have the same value in the account_id field.

Input Parameters

reconciliation: Contains the new specification of the reconciliation.

Output Parameters

none

Return Value

none

Exceptions

FdGeneralLedger::PermissionDenied: The client is not authorized to perform this operation.

BadReconciliationId: The specified ReconciliationId is not valid.

FdGeneralLedger::BadDate: The reconciliation date is not valid.

UnkownEntryIdsInList: One or more of the specified entries do not exist, are not from the same account, or have a reconciliation_status of RECONCILED as a result of a different reconciliation.
CannotModify: The reconciliation could not be modified due to implementation-specific constraints imposed on reconciliations.

Postcondition

The modified reconciliation has been recorded.

The entries involved in the reconciliation have their reconciliation_id set to PARTLY_RECONCILED or RECONCILED, depending on whether the whole entry amount has been reconciled or not.

Entries in the original reconciliation but not in this reconciliation now have their reconciliation_status set to NOT_RECONCILED or PARTLY_RECONCILED.

ArapReconciliationLifecycle Operation: removeReconciliation

void removeReconciliation (

 in ReconciliationId reconciliation_id

)

raises (

 FdGeneralLedger::PermissionDenied,

 BadReconciliationId,

 FdGeneralLedger::CannotRemove

);

Description

Removes a reconciliation and reverses its effects on the reconciliation_status of the entries involved.

Precondition

The ReconciliationId of the reconciliation parameter was returned from a previous call to createReconciliation().

Input Parameters

reconciliation_id: Contains the ReconciliationId of the reconciliation to remove.

Output Parameters

none

Return Value

none

Exceptions

FdGeneralLedger::PermissionDenied: The client is not authorized to perform this operation.

BadReconciliationId: The specified ReconciliationId is not valid.

FdGeneralLedger::CannotRemove: The reconciliation could not be removed due to implementation-specific constraints imposed on reconciliations.

Postcondition

The reconciliation has been removed.

The entries involved in the reconciliation have their reconciliation_id set to NOT_RECONCILED or PARTLY_RECONCILED as appropriate.

Section XIII: ArapReconciliationRetrieval Interface

[image: image17.wmf]ArapReconciliationRetrieval

getReconciliation()

getReconciliationsByEntry()

<<Interface>>

The ArapReconciliationRetrieval interface makes available to the user the reconciliations that have been made, i.e. which payments where matched against which debt, when, and by whom.

ArapReconciliationRetrieval Operation: getReconciliation

ArapReconciliation getReconciliation (

 in ReconciliationId reconciliation_id

)

raises (

 FdGeneralLedger::PermissionDenied,

 BadReconciliationId

);

Description

Returns the information about a reconciliation from its ReconciliationId.

Precondition

The ReconciliationId indicates a reconciliation previously created by the ArapReconciliationLifecycle service.

Input Parameters

reconciliation_id: The ID of the reconciliation to retrieve.

Output Parameters

none

Return Value

Returns an ArapReconciliation containing the details of the specified reconciliation.

Exceptions

FdGeneralLedger::PermissionDenied: The client is not authorized to perform this operation.

BadReconciliationId: The specified ReconciliationId is not valid.

Postcondition

none

ArapReconciliationRetrieval Operation: getReconciliationsByEntry

ArapReconciliationList getReconciliationsByEntry (

 in FdGeneralLedger::EntryId entry_id

)

raises (

 FdGeneralLedger::PermissionDenied,

 BadEntryId

);

Description

Returns all the reconciliations where a specified entry is involved.

Precondition

The EntryId identifies a valid entry which has been posted to the ledger.

Input Parameters

entry_id: The ID of the entry for which the reconciliations are to be retrieved.

Output Parameters

none

Return Value

Returns an ArapReconciliationList containing an ArapReconciliation for each of the reconciliation the entry is part of.

Exceptions

FdGeneralLedger::PermissionDenied: The client is not authorized to perform this operation.

BadEntryId: The specified EntryId is not valid.

Postcondition

none

Section XIV: ArapPartyStatementVerification Interface

[image: image18.wmf]ArapPartyStatementVerification

getStatementByAccount()

reverseStatement()

reverseStatementFromParty()

verifyStatementFromParty()

<<Interface>>

The ArapPartyStatementVerification interface provides support for partial automation of what is traditionally a manual task, namely verifying the state of a customer account in our books with our status as a supplier account in the customer’s books, and vice versa. This is done before the closing of each accounting year.

By reversing the statements received from business partners, they can be compared automatically to corresponding entries on the partner’s account. This allows the accountant to skip the verification of those business partner statements which are equal, and also provides the necessary support for building “diff” tools which show the differences side-by-side.

Obviously, if there are any differences, these differences cannot be resolved automatically – some of these differences might even end up being resolved in a court of law.

ArapPartyStatementVerification Operation: getStatementByAccount

ArapStatement getStatementByAccount (

 in FdGeneralLedger::AccountId acc_id,

 in ArapStatementSpec statement_specification
)

raises (

 FdGeneralLedger::PermissionDenied,
 FdGeneralLedger::BadAccountId
);

Description

Returns a list of available integrity tests. Each integrity test is identified by a name.

Precondition

The account identified by the acc_id parameter must be of type CUSTOMER_ACCOUNT or SUPPLIER_ACCOUNT.

Input Parameters

acc_id: The account ID for which to get the statement according to the specification.

statement_specification: Specifies which components the statements should include, i.e. only balances, entries contained in certain Groups, entries for a date range, and/or unsettled entries for a date range.

Output Parameters

none

Return Value

Returns an ArapStatement struct containing the requested statement.

Exceptions

FdGeneralLedger::PermissionDenied: The client is not authorized to perform this operation.

FdGeneralLedger::BadAccountId: The requested account was not found, or is not a customer or supplier account.

Postcondition

none

ArapPartyStatementVerification Operation: reverseStatement

ArapStatement reverseStatement (

 in FdGeneralLedger::AccountId acc_id,

 in ArapStatement statement

)

raises (FdGeneralLedger::PermissionDenied);
Description

Reverses a statement for a customer or supplier, i.e. switching credits and debits, product_id and their_product_id, and so on, in order to get a statement which corresponds as closely as possible to a similar statement retrieved from the other party’s AR/AP system.

Precondition

The account identified by the acc_id parameter must be of type CUSTOMER_ACCOUNT or SUPPLIER_ACCOUNT.

The statement parameter must contain an ArapStatement previously obtained from getStatementByAccount().

Input Parameters
acc_id: Identifies the account ID of the customer or supplier.

statement: The ArapStatement to reverse.

Output Parameters

none

Return Value

Returns a reversed version of the ArapStatement sent in to the operation..

Exceptions

FdGeneralLedger::PermissionDenied: The client is not authorized to perform this operation.

FdGeneralLedger::BadAccountId: The requested account was not found, or is not a customer or supplier account.

Postcondition

none

ArapPartyStatementVerification Operation: reverseStatementFromParty

ArapStatement reverseStatementFromParty (

 in FdGeneralLedger::AccountId acc_id,

 in ArapStatement statement

)

raises (

 FdGeneralLedger::PermissionDenied,

 FdGeneralLedger::BadAccountId

);
Description

Reverses a statement received from a customer or supplier in order to get a statement on a form which facilitates comparisons against the information in this AR/AP facility.

Precondition

The account identified by the acc_id parameter must be of type CUSTOMER_ACCOUNT or SUPPLIER_ACCOUNT.

Input Parameters

acc_id: Identifies the account ID of the customer or supplier.

statement: The ArapStatement to reverse.

Output Parameters

none

Return Value

Returns a reversed version of the ArapStatement sent in to the operation..

Exceptions

FdGeneralLedger::PermissionDenied: The client is not authorized to perform this operation.

FdGeneralLedger::BadAccountId: The requested account was not found, or is not a customer or supplier account.

Postcondition

none

ArapPartyStatementVerification Operation: verifyStatementFromParty

StatementVerificationResult verifyStatementFromParty (

 in FdGeneralLedger::AccountId acc_id,

 in ArapStatement statement

)

raises (

 FdGeneralLedger::PermissionDenied,

 FdGeneralLedger::BadAccountId

);
Description

Performs a verification of a statement received from an other party against the information in this AR/AP Facility.

Precondition

The account identified by the acc_id parameter must be of type CUSTOMER_ACCOUNT or SUPPLIER_ACCOUNT.

Input Parameters

acc_id: Identifies the account ID of the customer or supplier.

statement: The ArapStatement received from the customer or supplier to verify against the information in this AR/AP Facility.

Output Parameters

none

Return Value

Returns a StatementVerificationResult with one of the following values:

EQUAL: The statement corresponds exactly to the information contained in this AR/AP Facility.

DIFFERENT_SPEC: No differences were found, but some of the statement items were contained in one of the statements only.

DIFFERENCES_FOUND: One or more items in the statement does not correspond to the information in this AR/AP Facility.

Exceptions

FdGeneralLedger::PermissionDenied: The client is not authorized to perform this operation.

FdGeneralLedger::BadAccountId: The

Postcondition

none

Appendix A - Requirements Compliance

The scope of the proposed solutions to the RFP is defined by that document in the following statements:

· this RFP seeks responses that identify the external interfaces, relationships and semantics, that are required for accounting application interoperability with General Ledger (GL) systems.

· this RFP does not seek proposals for the internal interfaces of a General Ledger system or other functions that are not required for general interoperability with accounting applications.

· this RFP does not seek proposals for other financial and accounting applications, but proposals must define how such other applications could interface and inter-operate with the GL Facility using OMG IDL interfaces.

· this RFP is limited exclusively to the General Ledger component of the Common Accounting Facility as found in the OMG Common Facilities Architecture.

RFP Requirements for the AR/AP Facility

The technical requirements for the General Ledger Facility are specified in the Financial Domain Task Force RFP, document finance/01-04-04, Section 6. The following sections follow the outline of the corresponding RFP sub-sections.

Mandatory Requirements

Requirement

Proposals shall provide a sufficient level of description of interfaces and behaviors to allow for independently developed accounting applications (including legacy) to interoperate using submitted AR/AP interfaces.

Response

Met in full.

Previous sections of this submission have specified each of the operations for each of interfaces comprising the proposed AR/AP facility, including preconditions, postconditions, and exception conditions.

Requirement

Proposals shall provide views of the balances and details of AR/AP transactions as they existed at any specific point in time.

Response

Met in full.

The interfaces ArapTransactionRetrieval, ArapAccountRetrieval, and ArapBalanceRetrieval support the retrieval of views of transactions and balances specifying either the date range or accounting periods of interest.

Requirement

Submissions shall incorporate classic double entry accounting (CDEA) as the basic semantics of representing transactions. CDEA is the system of recording transactions in two or more offsetting debits and credits, which add up to zero, with each row having date/time and account classifications necessary for statutory GAAP and tax reporting (generally accepted accounting principles).

Response

Met in full.

Requirement

Submissions shall support interfaces that enable roll-up. For purposes of this requirement, roll-up is defined as the summarizing of multiple rows of AR/AP into aggregates along at least two dimensions (i.e. group-by queries). These dimensions will include summaries by party ranges (customer or supplier), by date ranges, and by party ranges by date ranges as a minimum.

Response

Met in full.

The ArapBalanceRetrieval interface contains operations that support retrieval of aggregated information along the required dimensions.

Requirement

Settlement – Submissions shall support a rich and complete manifest (remittance advice) at the time of executing settlements. In other words, the core AR/AP system must contain details, or references to details, of products and services associated with the AR or AP with the complete granularity that reasonably exists in the business domain, and be capable of providing completely granular information to the AR/AP user, and manifest accompanying a payment or settlement when necessary.

Response

Met in full.

Payment and settlement transactions are reconciled against corresponding entry of the original sales or purchase transaction, from which all details of the sale or purchase are readily available.

Requirement

Submissions shall be a logical superset of OMG’s General Ledger facility, or provide explanation why OMG’s GL facility was not used. Any submissions not based on OMG’s GL facility shall explain how the five purposes of a master GL (Financial reporting, Tax reporting, Cash balance/cash flow management, Fiscal control/internal control, and administering settlement of AR/AP. (6.1.7 above) are achieved by the submission.

Response

Met in full.

The AR/AP facility is an extension of the OMG GL facility, where the central OMG GL information elements (accounts, transactions, and entries) are reused through aggregation into the corresponding AR/AP information elements. The AR/AP facility interfaces and operations differ from those of the OMG GL facility insofar as they operate on these extended information elements, along with supporting AR/AP specific functionality.

Requirement

Submissions shall support a system of coding and classification of transactions sufficient to enable financial reporting under Generally Accepted Accounting Principles (GAAP), for example mapping transactions or account Ids in the chart of accounts, to XBRL classifications.

Response

Met in full.

Each AR/AP account has an associated XBRL type, and accounts can be retrieved based on their XBRL classification.

Requirement

Interfaces shall be specified with the expectation that the AR/AP system is the “server”, and some other system is the client. That is:

· Where information is fed into the AR/AP system, the model to be supported is “push” — the client system initiates the transfer; and

· Where information is obtained from the AR/AP system, the model to be supported is “pull” — the AR/AP system is the server and it responds to requests for that information.

Response

Met in full.

The specification does not make any assumption of the presence of other servers to provide the full AR/AP functionality. All the interfaces support the creation, modification, and retrieval exclusively of information stored in the AR/AP facility.

Requirement

Submissions shall support party roles, identifiers or structures which unambiguously support the distinction between AR and AP items for the same party not having right of offset (netting), but which are not bound to particular roles (or names of roles) such as Customer or Supplier.

Response

Met in full.

The AR/AP facility requires separate accounts for the customer and supplier roles of each party; information about debts and payments are recorded onto these separate customer and supplier accounts.

Optional Requirements

Requirement

Proposals may follow a model driven architecture and provide

· a platform-independent UML model of the facility (PIM),

· a platform-specific model (PSM) based on the UML profile for CORBA, and

· platform-specific models (PSM) for other technologies. Of particular relevance is the technology model of ebXML (i.e. the exchange of business documents derived from registry of core components using SOAP messaging), and a mapping to XML business documents using XMI

Response

The initial submission provides only a platform-specific model in the form of OMG/ISO IDL, even though the submission has been created with a model-driven architecture approach. The revised submission will be accompanied by supplementary documents including a platform-independent UML model, and a PSM for SOAP/WSDL.

Requirement

Proposals may provide UML models describing the AR/AP facility from the RM/ODP enterprise and information viewpoints described in ISO/IEC 10746, Reference Model of Open Distributed Processing.

Response

The revised submission will be accompanied by supplementary documents including RM/ODP enterprise and information viewpoints.

Requirement

Proposals may provide for consolidated reporting from multiple AR/AP ledgers. Even though consolidation is not required by the majority of AR/AP users, it is sometimes performed in multi-company enterprises (often by manual procedures due to lack of systems integration).

Response

The submission does not the support required for multi-company enterprise consolidation.

Requirement

Proposals may provide for the passing of individual transactions or batches of transactions across frontiers to/from third parties or settlement agents, banks, etc. as a message format for B2B commerce.

Response

The submission includes several information elements for this express purpose, including the representation of both parties’ identifiers for the elements involved in each transaction.

Requirement

Proposals may provide for interparty transmission of AR/AP ledger rows for consolidation or roll-up into reciprocal party books. Such proposals may define the rules for switching of the subject/object context of the consolidated rows. For example, debits may become credits, originating and reciprocal party fields may be reversed, and account codes may be reversed under unambiguous rules.

Response

The submission supports this requirement directly with the ArapPartyStatementVerification interface.

Requirement

Proposals may provide for localization of the AR/AP ledger with respect to statutory requirements, natural languages, and local accounting practices.

Response

The submission supports such localization insofar as the interfaces are locale independent, but no specific localization support beyond the chart of account creation operation is included.

Requirement

Proposals may provide interfaces to support the representation of customized AR/AP processing rules which may include GL rules, disbursement rules, transfer payee rules, reporting rules, costing/labor distribution rules, gross-up rules, custom calculation formulas, and retro pay rules. Proposals may also consider this internal to the AR/AP process and not a necessary external interface.

Response

The submission provides no explicit support for such rules, although it is expected that some implementations will support the processing of such rules on the Journal inputs.

Requirement

Proposals may provide interfaces to support the input of tax rules to the AR/AP facility. Proposals may also consider this internal to the AR/AP process and not a necessary external interface.

Response

The submission provides no explicit support for such rules, although it is expected that some implementations will support the processing of such rules on the Journal inputs.

Requirement

Proposals may provide interfaces to support the “real-time” AR/AP-processing model where all AR/AP calculations are made continuously based on the availability of data.

Response

The interfaces defined in the submission do not pose constraints on the implementation regarding whether AR/AP processing is done real time or not. Netaccount’s implementation of the facility performs the processing in real time.

Requirement

Submissions may provide solutions for associating the related transactions of business collaborations, as defined in the ebXML Business Process workgroup.

Response

The submission provides the group_id field on transactions to group the related transactions of business collaborations. Transactions can also be retrieved based on their group_id value.

Requirement

Submissions ay provide models which support multiple namespaces or agencies' party ID lists, e.g. DUNS numbers, industry syntax such as telephone billing numbers, etc. Submissions may support frameworks such as UDDI whitepages, ebXML addressing, or W3C namespaces or URNs as solutions for global Party Id schemes.

Response

The submission does not provide any specific support for linking to global party registries. Most companies need to attach their own information to each party; it is assumed that this is handled by a separate service (such as the OMG Party facility), which would be responsible for maintaining such links. The party information stored in the AR/AP facility is restricted to the minimum required for statutory accounting reporting requirements.

Requirement

Reciprocal party views – A reciprocal party is any party with respect to whom the AR/AP ledger maintains a balance (e.g. trading partners) . Submissions may provide interfaces which enable reciprocal parties to view their balances and entries in the AR/AP ledger, without compromising the privacy of transactions they are not a party to.

Response

The submission does not provide such interfaces directly, but the ArapPartyStatementVerification interface provides all the necessary operations to support an application that performs such interactions.

Common Mandatory Requirements

Every RFP issued by the OMG includes a common set of requirements which must be met by every submission, found in section 5.1 of the RFP.

Requirement

Proposals shall express interfaces in OMG IDL. Proposals should follow accepted OMG IDL and CORBA programming style. The correctness of the IDL shall be verified using at least one IDL compiler (and preferably more then one). In addition to IDL quoted in the text of the submission, all the IDL associated with the proposal shall be supplied to OMG in compiler-readable form.

Response

Met in full.

Requirement

Proposals shall specify operation behaviour, sequencing, and side-effects (if any).

Response

Met in full.

Requirement

Proposals shall be precise and functionally complete. There should be no implied or hidden interfaces, operations, or functions required to enable an implementation of the proposed specification.

Response

Met in full.

Requirement

Proposals shall clearly distinguish mandatory interfaces and other specification elements that all implementations must support from those that may be optionally supported.

Response

Met in full.

Requirement

Proposals shall reuse existing OMG specifications including CORBA, CORBAservices, and CORBAfacilities in preference to defining new interfaces to perform similar functions.

Response

Met in full.

Requirement

Proposals shall justify and fully specify any changes or extensions required to existing OMG specifications. This includes changes and extensions to CORBA inter-ORB protocols necessary to support interoperability. In general, OMG favours upwards compatible proposals that minimise changes and extensions to existing OMG specifications.

Response

This submission contains no such changes or extensions.

Requirement

Proposals shall factor out functions that could be used in different contexts and specify their interfaces separately. Such minimality fosters re-use and avoids functional duplication.

Response

Met in full.

Requirement

Proposals shall use or depend on other interface specifications only where it is actually necessary. While re-use of existing interfaces to avoid duplication will be encouraged, proposals should avoid gratuitous use.

Response

Met in full.

Requirement

Proposals shall specify interfaces that are compatible and can be used with existing OMG specifications. Separate functions doing separate jobs should be capable of being used together where it makes sense for them to do so.

Response

Met in full.

Requirement

Proposals shall preserve maximum implementation flexibility. Implementation descriptions should not be included, however proposals may specify constraints on object behaviour that implementations need to take into account over and above those defined by the interface semantics.

Response

Met in full.

Requirement

Proposals shall allow independent implementations that are substitutable and interoperable. An implementation should be replaceable by an alternative implementation without requiring changes to any client.

Response

Met in full.

Requirement

Proposals shall be compatible with the architecture for system distribution defined in ISO/IEC 10746, Reference Model of Open Distributed Processing (ODP). Where such compatibility is not achieved, the response to the RFP must include reasons why compatibility is not appropriate and an outline of any plans to achieve such compatibility in the future.

Response

Met in full - RM-ODP has been used for the development of this initial submission, which represents the computational viewpoint.

Requirement

In order to demonstrate that the service or facility proposed in response to this RFP, can be made secure in environments requiring security, answers to the following questions shall be provided:

1. What, if any, are the security sensitive objects that are introduced by the proposal?

2. Which accesses to security-sensitive objects must be subject to security policy control?

3. Does the proposed service or facility need to be security aware?

4. What CORBAsecurity level and options are required to protect an implementation of the proposal? In answer to this question, a reasonably complete description of how the facilities provided by the level and options (e.g. authentication, audit, authorization, message protection etc.) are used to protect access to the sensitive objects introduced by the proposal shall be provided.

5. What default policies should be applied to the security sensitive objects introduced by the proposal?

6. Of what security considerations must the implementers of your proposal be aware?

Response

1. All interfaces deal with sensitive information – a company’s accounting data, debts, and outstanding payments.

2. All accesses after obtaining the initial ArapArbitrator interface through a Trader or Naming service must be subject to security policy control.

3. Although there is nothing technical in the specification that mandates the existence of any security service or policy, almost all companies have rigid security policies for this type of information.

4. CORBAsecurity Level One is well suited to protect implementations of the proposal, given the role-access based structuring of operations into interfaces. Applicable options include authentication, authorization, and message protection.

5. As a minimum, the interface which creates and removes ledgers must be restricted to administration and maintenance clients.

6. As this is a domain submission, the most important consideration is the protection of the sensitive data stored by the facility.

Requirement

Proposals shall specify the degree of internationalization support that they provide.

Response

a) Uncategorized.

Proof of Concept Statement

An implementation of this specification is currently being completed by netaccount AS as an upgrade to its netaccount.com internet service.

The implementation will be available for display at the OMG Technical Meeting following the final submission.

Relationships to Existing OMG Specifications

The following paragraphs contain the discussion of the AR/AP submission to the existing OMG specifications required by the RFP.

General Ledger Facility

This submission reuses several of the definitions from the General Ledger specification related to common double-entry accounting and to the related exception conditions; it extends the General Ledger facility with AR/AP specifics. The availability of a deployed General Ledger facility is not necessary for the deployment of an AR/AP facility implementation, although several operations are provided expressly for a General Ledger facility to update itself from the AR/AP facility.

Currency Facility

This submission makes no explicit use of the Currency facility, even though it depends on the Currency facility specification indirectly through the General Ledger specification. however

Event Service

This submission makes no explicit use of the Event Service.

Security Service

While this submission makes no explicit use of the Security service, the organization of the interfaces made to provide specific interfaces to different clients is well-suited for the application of the OMG Security service at level one which uses role-based access control for each interface.

Level two of the OMG Security service could be used by implementation in order to restrict particular clients’ access to specific account types or individual accounts.

Transaction Service

While this submission makes no explicit use of the Transaction service, it is likely that most implementations will use the of this service.

Notification

This submission makes no explicit use of the Notification Service.

Party Management Facility

This submission does not depend in any way on the OMG Party facility. However, it does assume that the management of party information beyond the minimum required for accounting and statutory reporting purposes is managed in a separate party facility, and operations are provided expressly for enabling this party facility to maintain the accounting information about parties in the AR/AP ledger.

Issues to be Discussed

Issue

Submissions shall discuss support for other standard general ledger models or vocabularies, or explain why the data elements or interfaces in those models are not supported. The existence of a particular data element in more than one of the other GL models creates some presumption that that element is widely required in a GL. “Other GL models” include, EDIFACT structures for general ledger, and OAGIS PostJournal BOD. In addition, the submission shall discuss support any general ledger structure or spec that may emerge from XBRL or ebXML Core Components prior to the submission.

Response

This submission draws on the research performed by arapXML.net, and includes the dataelements identified in arapXML except for those that are used in multi-company enterprise consolidation scenarios.

Issue

Accounts payable and receivable transactions are based on commercial and legal models that are very widely understood. The EWG of ASC X12 and UN/CEFACT is the agency responsible for maintaining definitions of most data elements in accounts payable and receivable. At date of this RFP, this responsibility had been delegated to the Core Components workgroup of the ebXML. Submissions shall document the relationship to these models.

Response

The applicable information elements in the submission can be mapped to the corresponding ebXML Core Components, but not vice versa.

Issue

Security and integration with the OMG Security Service, and the requirement for additional security services, models or profiles.

Response

For a discussion of this submission’s relationship to the OMG Security service, see “Relationships to Existing OMG Specifications” above. The submission does not require additional security services, models, or profiles, although it does not preclude the adoption of alternative or additional security models and mechanisms by implementations.

Issue

Time and time zones.

Response

The submission provides no support for handling different time zones. Legal requirements for accounting reporting are only concerned with the date of entry, the date of the related document, and the accounting period.

Issue

Considerations for integration of legacy systems implementing AR/AP interfaces. This includes interoperability with compliant (OMG) and non-compliant (wrapped) systems.

Response

Legacy systems can implement these AR/AP interfaces as long as they provide a sufficiently rich transaction/entry schema, and a way of tracing a reconciled payment back to those transactions and entries. The ArapPartyStatementVerification interface will require new functionality to be added for systems not designed for B2B interactions; this functionality is easily implementable using the other AR/AP interfaces and an external Party service.

Issue

Relationships and dependencies with respect to other OMG or non-OMG technologies.

Response

See “Relationships to Existing OMG Specifications” above.

Issue

Submissions shall state whether any accounting period "close" operation is implemented. Submitters shall discuss how the mechanism operates.

Response

See the closePeriod and closeAccountingYear operations in the ArapAccountLifecycle interface.

Issue

Submissions shall state whether any data cleardown / purge operations are supported. Submitters shall discuss how the mechanism operates.

Response

The submission does not include support for data cleardown or purge operations.

Issue

Proposals shall discuss in detail the semantics for any use of XML and its relationship to the CORBA standards in this specification.

Response

This initial submission does not use XML; the only specified platform is based OMG/ISO IDL and hence assumes a CORBA environment.

Issue

Submitters shall discuss relationships to the OMG specifications in their submissions, as described in section 6.4.

Response

See “Relationships to Existing OMG Specifications” above.

Issue

The exchange of transactions with third parties normally takes place within within a business process framework such as Rosettanet PIPs, ebXML business process schemas, or TMWG UMM. Submissions shall describe their relationship to such frameworks.

Response

The submission is limited to the accounts receivable and accounts payable view of the interaction with other companies. It aims to include sufficiently rich information about elements to be a useful component in B2B scenarios, but does not make any provisions for business process frameworks.

Issue

Submitters shall discuss mechanisms provided in the submission to enable the AR/AP system or its users to administer payables and receivables with external parties when the third party AR/AP system maintains items and balances at varying levels of aggregation described in 6.1.5.

Response

The ArapPartyStatementVerification interface supports the automatic comparison of statements received from third parties with the information contained in the AR/AP facility at three different levels of aggregation (balance, transaction, entry) and using several different inclusion criteria.

Appendix B – AR/AP Ledger Facility IDL

#ifndef __FDARAP_DEFINED

#define __FDARAP_DEFINED

#include "FdGeneralLedger.idl"

#include "CBO.idl"

module FdARAP {

 struct UnsettledBalanceDateIntervals {

 CBO::DTime due_date;

 sequence<unsigned short> day_intervals;

 boolean include_before_first_date;

 boolean include_after_last_date;

 };

 struct ArapAccountUnsettledBalances {

 FdGeneralLedger::AccountId acc_id;

 sequence<CBO::DDecimal> balances;

 };

 struct PeriodRange {

 wstring start_period;

 wstring end_period;

 };

 struct ArapDateBalance {

 CBO::DDecimal this_month;

 CBO::DDecimal year_to_date;

 FdGeneralLedger::AccountId acc_id;

 };

 struct ArapPeriodBalance {

 CBO::DDecimal this_period;

 CBO::DDecimal year_to_date;

 FdGeneralLedger::AccountId acc_id;

 };

 struct ArapReconciliationEntry {

 FdGeneralLedger::EntryId entry_id;

 CBO::DDecimal reconciled_amount;

 };

 struct DimensionReference {

 wstring dimension_name;

 wstring dimension_account_reference;

 };

 typedef wstring JournalId;

 typedef wstring PartyId;

 enum AccountType {

 BALANCE_ACCOUNT,

 BANK_SETTLEMENT_ACCOUNT,

 CUSTOMER_ACCOUNT,

 SUPPLIER_ACCOUNT,

 PRODUCT_ACCOUNT,

 TAX_ACCOUNT,

 PROFIT_LOSS_ACCOUNT,

 SALES_ACCOUNT,

 PURCHASE_ACCOUNT,

 INVENTORY_CHANGE_ACCOUNT

 };

 struct ArapAccount {

 FdGeneralLedger::AccountInfo account_info;

 AccountType account_type;

 wstring xbrl_type;

 };

 struct ArapPartyAccount {

 ArapAccount account;

 wstring party_number;

 wstring tax_registration_number;

 PartyId party_id;

 };

 typedef sequence <ArapAccount> ArapAccountList;

 typedef sequence <ArapAccountUnsettledBalances> ArapAccountUnsettledBalancesList;

 typedef wstring ProductId;

 struct ArapProductAccount {

 ArapAccount account;

 ProductId product_id;

 wstring product_number;

 };

 typedef sequence <ArapPartyAccount> ArapPartyAccountList;

 typedef sequence <ArapProductAccount> ArapProductAccountList;

 typedef sequence <ArapDateBalance> ArapDateBalanceList;

 typedef sequence <ArapPeriodBalance> ArapPeriodBalanceList;

 enum ReconciliationStatus {

 NOT_RECONCILED,

 PARTLY_RECONCILED,

 RECONCILED

 };

 typedef wstring ReconciliationId;

 struct ArapReconciliation {

 ReconciliationId reconciliation_id;

 CBO::DTime reconciliation_date;

 wstring comment;

 wstring user;

 sequence <ArapReconciliationEntry> entries;

 };

 typedef sequence <ArapReconciliation> ArapReconciliationList;

 enum StatementVerificationResult {

 EQUAL,

 DIFFERENT_SPEC,

 DIFFERENCES_FOUND

 };

 typedef wstring GroupId;

 typedef sequence <GroupId> GroupIdList;

 struct ArapStatementSpec {

 FdGeneralLedger::Date include_balance_by_date;

 FdGeneralLedger::DateRange include_unsettled_transactions_by_due_dates;

 GroupIdList include_group_ids;

 FdGeneralLedger::DateRange include_account_history_for_dates;

 };

 typedef sequence <DimensionReference> DimensionReferenceList;

 struct ArapEntry {

 ProductId product_id;

 PartyId party_id;

 wstring settlement_method;

 FdGeneralLedger::Date due_date;

 FdGeneralLedger::Entry entry;

 wstring their_party_id;

 ReconciliationStatus reconciliation_status;

 wstring their_product_id;

 AccountType account_type;

 DimensionReferenceList dimension_references;

 DimensionReferenceList their_dimension_references;

 wstring orig_unit;

 };

 struct ArapTransaction {

 GroupId group_id;

 wstring group_status;

 boolean is_posted;

 wstring initiating_document_type;

 FdGeneralLedger::TransactionInfo transaction_info;

 sequence <ArapEntry> arap_entries;

 wstring user;

 wstring description;

 wstring their_transaction_id;

 };

 struct ArapJournal {

 sequence <ArapTransaction> transactions;

 JournalId journal_id;

 };

 typedef sequence <ArapTransaction> ArapTransactionList;

 typedef sequence <ArapEntry> ArapEntryList;

 struct ArapStatement {

 ArapStatementSpec specification;

 CBO::DDecimal balance;

 ArapTransactionList unsettled_transactions;

 ArapTransactionList group_transactions;

 ArapEntryList account_history;

 };

 typedef sequence<octet> OctetList;

 interface ArapPartyStatementVerification {

 ArapStatement getStatementByAccount (

 in FdGeneralLedger::AccountId acc_id,

 in ArapStatementSpec statement_specification

)

 raises (FdGeneralLedger::PermissionDenied, FdGeneralLedger::BadAccountId);

 ArapStatement reverseStatement (

 in FdGeneralLedger::AccountId acc_id,

 in ArapStatement statement

)

 raises (FdGeneralLedger::PermissionDenied);

 ArapStatement reverseStatementFromParty (

 in FdGeneralLedger::AccountId acc_id,

 in ArapStatement statement

)

 raises (FdGeneralLedger::PermissionDenied, FdGeneralLedger::BadAccountId);

 StatementVerificationResult verifyStatementFromParty (

 in FdGeneralLedger::AccountId acc_id,

 in ArapStatement statement

)

 raises (FdGeneralLedger::PermissionDenied, FdGeneralLedger::BadAccountId);

 };

 exception LedgerNameInUse {

 wstring error;

 };

 interface ArapFacilityLifecycle {

 void createArapLedger (

 in wstring new_ledger_name,

 in FdGeneralLedger::ChartKind chart_of_accounts_schema,

 in wstring copied_ledger_name_for_schema

)

 raises (FdGeneralLedger::PermissionDenied, LedgerNameInUse, FdGeneralLedger::BadChartKind, FdGeneralLedger::UnknownLedger);

 void removeArapLedger (

 in wstring ledger_name

)

 raises (FdGeneralLedger::PermissionDenied, FdGeneralLedger::UnknownLedger, FdGeneralLedger::CannotRemove);

 };

 exception UnknownPeriod {

 wstring error;

 };

 interface ArapAccountHistoryRetrieval {

 ArapEntryList getAccountHistoryByDates (

 in FdGeneralLedger::AccountId acc_id,

 in FdGeneralLedger::DateRange transaction_date_range

)

 raises (FdGeneralLedger::PermissionDenied, FdGeneralLedger::BadAccountId, FdGeneralLedger::BadDate);

 ArapEntryList getAccountHistoryByPeriods (

 in FdGeneralLedger::AccountId acc_id,

 in PeriodRange period_range

)

 raises (FdGeneralLedger::PermissionDenied, FdGeneralLedger::BadAccountId, UnknownPeriod);

 };

 interface ArapBalanceRetrieval {

 ArapDateBalance getAccountBalanceByDate (

 in FdGeneralLedger::AccountId acc_id,

 in CBO::DTime date

)

 raises (FdGeneralLedger::PermissionDenied, FdGeneralLedger::BadAccountId, FdGeneralLedger::BadDate);

 ArapPeriodBalance getAccountBalanceByPeriod (

 in FdGeneralLedger::AccountId acc_id,

 in wstring period_id

)

 raises (FdGeneralLedger::PermissionDenied, FdGeneralLedger::BadAccountId, UnknownPeriod);

 ArapDateBalanceList getAccountBalancesByTypeAndDate (

 in AccountType acc_type,

 in CBO::DTime date

)

 raises (FdGeneralLedger::PermissionDenied, FdGeneralLedger::BadDate);

 ArapPeriodBalanceList getAccountBalancesByTypeAndPeriod (

 in AccountType acc_type,

 in wstring period_id

)

 raises (FdGeneralLedger::PermissionDenied, UnknownPeriod);

 ArapDateBalance getAccountBalanceSumByTypeAndDate (

 in AccountType acc_type,

 in CBO::DTime date

)

 raises (FdGeneralLedger::PermissionDenied, FdGeneralLedger::BadDate);

 ArapPeriodBalance getAccountBalanceSumByTypeAndPeriod (

 in AccountType acc_type,

 in wstring period_id

)

 raises (FdGeneralLedger::PermissionDenied, UnknownPeriod);

 ArapAccountUnsettledBalancesList getUnsettledBalances (

 in AccountType acc_type,

 in UnsettledBalanceDateIntervals date_intervals

)

 raises (FdGeneralLedger::PermissionDenied, FdGeneralLedger::BadDate);

 ArapDateBalanceList getAccountBalanceByDatesAndParties (

 in FdGeneralLedger::AccountId acc_id,

 in FdGeneralLedger::DateRange date_intervals,

 in wstring from_party_number,

 in wstring to_party_number

)

 raises (FdGeneralLedger::PermissionDenied, FdGeneralLedger::BadAccountId, FdGeneralLedger::BadDate);

 ArapPeriodBalanceList getAccountBalanceByPeriodsAndParties (

 in FdGeneralLedger::AccountId acc_id,

 in PeriodRange period_range,

 in wstring from_party_number,

 in wstring to_party_number

)

 raises (FdGeneralLedger::PermissionDenied, FdGeneralLedger::BadAccountId, UnknownPeriod);

 };

 exception BadPartyID {

 wstring error;

 PartyId bad_party_id;

 };

 exception BadPartyNumber {

 wstring error;

 wstring bad_party_number;

 };

 exception BadProductId {

 wstring error;

 ProductId bad_product_id;

 };

 exception BadProductNumber {

 wstring error;

 wstring bad_product_number;

 };

 exception CannotModify {

 wstring error;

 };

 interface ArapAccountLifecycle {

 FdGeneralLedger::AccountId createAccount (

 in ArapAccount account_info

)

 raises (FdGeneralLedger::PermissionDenied, FdGeneralLedger::BadAccountId, FdGeneralLedger::BadAccountName);

 FdGeneralLedger::AccountId createPartyAccount (

 in ArapPartyAccount account_info

)

 raises (FdGeneralLedger::PermissionDenied, BadPartyID, BadPartyNumber);

 FdGeneralLedger::AccountId createProductAccount (

 in ArapProductAccount account_info

)

 raises (FdGeneralLedger::PermissionDenied, BadProductId, BadProductNumber);

 void modifyAccount (

 in FdGeneralLedger::AccountId acc_id,

 in wstring new_acc_description

)

 raises (FdGeneralLedger::PermissionDenied, FdGeneralLedger::BadAccountId, CannotModify);

 void removeAccount (

 in FdGeneralLedger::AccountId acc_id

)

 raises (FdGeneralLedger::PermissionDenied, FdGeneralLedger::BadAccountId, FdGeneralLedger::CannotRemove);

 void closeAccountingPeriod (

 in wstring period_id

)

 raises (FdGeneralLedger::PermissionDenied, UnknownPeriod);

 void closeAccountingYear (

 in wstring last_period_in_accounting_year

)

 raises (FdGeneralLedger::PermissionDenied, UnknownPeriod);

 };

 exception UnkownEntryIdsInList {

 sequence<unsigned short> positions;

 };

 exception BadReconciliationId {

 wstring error;

 };

 interface ArapReconciliationLifecycle {

 ReconciliationId createReconciliation (

 in ArapReconciliation reconciliation

)

 raises (FdGeneralLedger::PermissionDenied, FdGeneralLedger::BadDate, UnkownEntryIdsInList);

 void modifyReconciliation (

 in ArapReconciliation reconciliation

)

 raises (FdGeneralLedger::PermissionDenied, BadReconciliationId, FdGeneralLedger::BadDate, UnkownEntryIdsInList, CannotModify);

 void removeReconciliation (

 in ReconciliationId reconciliation_id

)

 raises (FdGeneralLedger::PermissionDenied, BadReconciliationId, FdGeneralLedger::CannotRemove);

 };

 exception BadEntryId {

 wstring error;

 };

 interface ArapReconciliationRetrieval {

 ArapReconciliation getReconciliation (

 in ReconciliationId reconciliation_id

)

 raises (FdGeneralLedger::PermissionDenied, BadReconciliationId);

 ArapReconciliationList getReconciliationsByEntry (

 in FdGeneralLedger::EntryId entry_id

)

 raises (FdGeneralLedger::PermissionDenied, BadEntryId);

 };

 exception BadJournalId {

 wstring error;

 };

 interface ArapTransactionRetrieval {

 ArapJournal getJournal (

 in JournalId journal_id

)

 raises (FdGeneralLedger::PermissionDenied, BadJournalId);

 ArapTransactionList getUnpostedTransactions ()

 raises (FdGeneralLedger::PermissionDenied);

 ArapTransactionList getTransactionsByDates (

 in FdGeneralLedger::DateRange transaction_date_range

)

 raises (FdGeneralLedger::PermissionDenied, FdGeneralLedger::BadDate);

 ArapTransactionList getTransactionsByPeriods (

 in PeriodRange period_range

)

 raises (FdGeneralLedger::PermissionDenied, UnknownPeriod);

 ArapTransactionList getUnsettledTransactionsByDueDates (

 in FdGeneralLedger::DateRange due_date_range

)

 raises (FdGeneralLedger::PermissionDenied, FdGeneralLedger::BadDate);

 ArapTransactionList getUnsettledTransactionsByAccount (

 in FdGeneralLedger::AccountId acc_id,

 in FdGeneralLedger::DateRange due_date_range

)

 raises (FdGeneralLedger::PermissionDenied, FdGeneralLedger::BadAccountId, FdGeneralLedger::BadDate);

 };

 exception UnknownTransactionIdsInList {

 sequence<unsigned short> positions;

 };

 interface ArapTransactionLifecycle {

 JournalId enterJournal (

 in ArapJournal journal

)

 raises (FdGeneralLedger::PermissionDenied, FdGeneralLedger::BadTransactionsInList);

 JournalId postJournal (

 in JournalId journal_id

)

 raises (FdGeneralLedger::PermissionDenied, BadJournalId);

 FdGeneralLedger::TransactionIdList postTransactions (

 in FdGeneralLedger::TransactionIdList transaction_ids

)

 raises (FdGeneralLedger::PermissionDenied, FdGeneralLedger::BadTransactionsInList);

 void removeJournal (

 in JournalId journal_id

)

 raises (FdGeneralLedger::PermissionDenied, BadJournalId, FdGeneralLedger::CannotRemove);

 void removeTransactions (

 in FdGeneralLedger::TransactionIdList transaction_ids

)

 raises (FdGeneralLedger::PermissionDenied, UnknownTransactionIdsInList, FdGeneralLedger::CannotRemove);

 };

 exception BadAccountType {

 wstring error;

 };

 interface ArapAccountRetrieval {

 ArapAccount getAccount (

 in FdGeneralLedger::AccountId acc_id

)

 raises (FdGeneralLedger::PermissionDenied, FdGeneralLedger::BadAccountId);

 ArapAccountList getAccountsByType (

 in AccountType acc_type

)

 raises (FdGeneralLedger::PermissionDenied);

 ArapPartyAccount getPartyAccount (

 in FdGeneralLedger::AccountId acc_id

)

 raises (FdGeneralLedger::PermissionDenied, FdGeneralLedger::BadAccountId);

 ArapPartyAccount getPartyAccountByPartyId (

 in AccountType acc_type,

 in PartyId party_id

)

 raises (FdGeneralLedger::PermissionDenied, BadPartyID, BadAccountType);

 ArapPartyAccount getPartyAccountByPartyNumber (

 in AccountType acc_type,

 in wstring party_number

)

 raises (FdGeneralLedger::PermissionDenied, BadPartyNumber, BadAccountType);

 ArapPartyAccountList getPartyAccountsByType (

 in AccountType acc_type

)

 raises (FdGeneralLedger::PermissionDenied, BadAccountType);

 ArapProductAccount getProductAccount (

 in FdGeneralLedger::AccountId acc_id

)

 raises (FdGeneralLedger::PermissionDenied, FdGeneralLedger::BadAccountId);

 ArapProductAccount getProductAccountByProductId (

 in ProductId product_id

)

 raises (FdGeneralLedger::PermissionDenied, BadProductId);

 ArapProductAccount getProductAccountByProductNumber (

 in wstring product_number

)

 raises (FdGeneralLedger::PermissionDenied, BadProductNumber);

 ArapProductAccountList getAllProductAccounts ()

 raises (FdGeneralLedger::PermissionDenied);

 ArapAccountList getAccountsByXBRLType (

 in wstring xbrl_type

)

 raises (FdGeneralLedger::PermissionDenied);

 };

 interface ArapProfile {

 ArapAccountHistoryRetrieval getArapAccountHistoryRetrieval ()

 raises (FdGeneralLedger::PermissionDenied);

 ArapAccountLifecycle getArapAccountLifecycle ()

 raises (FdGeneralLedger::PermissionDenied);

 ArapAccountRetrieval getArapAccountRetrieval ()

 raises (FdGeneralLedger::PermissionDenied);

 ArapBalanceRetrieval getArapBalanceRetrieval ()

 raises (FdGeneralLedger::PermissionDenied);

 ArapReconciliationLifecycle getArapReconciliationLifecycle ()

 raises (FdGeneralLedger::PermissionDenied);

 ArapReconciliationRetrieval getArapReconciliationRetrieval ()

 raises (FdGeneralLedger::PermissionDenied);

 ArapTransactionLifecycle getArapTransactionLifecycle ()

 raises (FdGeneralLedger::PermissionDenied);

 ArapTransactionRetrieval getArapTransactionRetrieval ()

 raises (FdGeneralLedger::PermissionDenied);

 FdGeneralLedger::CurrencyMnemonic getArapLedgerCurrency ()

 raises (FdGeneralLedger::PermissionDenied);

 FdGeneralLedger::EntryTypeInfoList getEntryTypes ()

 raises (FdGeneralLedger::PermissionDenied);

 void closeSession ();

 };

 interface ArapArbitrator {

 FdGeneralLedger::wstringList getArapLedgerNames ();

 ArapProfile openSession (

 in wstring arap_ledger_name,

 in OctetList authentication_info

)

 raises (FdGeneralLedger::PermissionDenied, FdGeneralLedger::UnknownLedger);

 ArapFacilityLifecycle getArapFacilityLifecycle (

 in OctetList authentication_info

)

 raises (FdGeneralLedger::PermissionDenied);

 };

};

#endif

Appendix C - References

[1] arapXML Specification. http://www.arapxml.net

[2] IASC, “International Accounting Standard,” 1997.

[3] Y. Ijiri, Management Goals and Accounting for Control, vol. 3. Amsterdam, Netherlands: North-Holland, 1965.

[4] ISO/IEC, “JTC1/SC21 Open Systems Interconnection, Data Management and Open Distributed Processing,” , USA (ANSI).

[5] ISO/IEC, “ISO/IEC 10746-1 Information technology - Basic reference model of Open Distributed Processing - Part 1: Overview,” ISO ITU-T X.901 - ISO/IEC DIS 10746-1, 1996.

[6] ISO/IEC, “ISO/IEC 10746-2 Information technology - Open Distributed Processing - Reference Model:Foundations,” , 1996.

[7] ISO/IEC, “ISO/IEC 10746-3 Information technology - Open Distributed Processing - Reference Model: Architecture,” , 1996.

[8] OMG, “AR/AP Facility Request for Proposal”, finance/01-04-04

[9] OMG, “General Ledger, version 1.0”, formal/01-02-67

4

[image: image19.wmf][image: image20.wmf]