
USENIX Association

Proceedings of the
FREENIX Track:

2001 USENIX Annual
Technical Conference

Boston, Massachusetts, USA
June 25–30, 2001

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

LOMAC: MAC YouCanLiveWith

TimothyFraser NAI Labs
tfraser@nai.com 3060WashingtonRoad

Glenwood,MD 21738

Abstract

LOMAC is a security enhancementfor Linux ker-
nels. LOMAC demonstratesthat it is possibleto apply
MandatoryAccessControltechniquesto standardLinux
kernelsalreadydeployed in the field, and to do so in
a mannerthat is simple,compatible,andlargely invisi-
ble to thetraditionalLinux user. TheLOMAC Loadable
KernelModule protectsthe integrity of critical system
processesandfiles from viruses,worms,Trojanhorses,
andmaliciousremoteusers.It is compatiblewith stan-
dard Linux 2.2 kernelsand applications,and seeksto
provide usefulprotectionwithout site-specificconfigu-
ration. LOMAC is designedto be a form of MAC that
typical userscanlivewith.

1 Intr oduction

Overthelast25years,many projectshavedemonstrated
useful MandatoryAccessControl (MAC) featureson
UNIX systems.Two earlyexamplesincludeKSOS[18]
andUCLA SecureUNIX [23]. More recentexamples
include DTE [3], and Security-EnhancedLinux [17].
However, despitetheir success,thesedemonstrations
have not promptedwidespreadadoption of MAC in
mainstreamUNIX kernels.

Onelikely explanationfor this lackof widespreadadop-
tion maybeoverallcostof use:In thesedemonstrations,
the new MAC featurescameat the cost of incompati-
bility with existing kernelandapplicationsoftware,in-
creasedadministrative overhead,or a disruptionof tra-
ditionalusagepatterns.Amongtypicalusers,theoverall
costof adoptingthenew MAC featuresoutweighedthe
perceivedbenefits,discouragingwidespreadmainstream
adoption.

The LOMAC project is an attemptto bring simplebut
usefulMAC integrity protectionto Linux in a form that:

� is applicableto standardkernels,

� is compatiblewith existing applications,

� requiresno site-specificconfiguration,and

� is largely invisible to traditionalusers.

In short, LOMAC aims to provide a form of MAC
that typical userscan live with [19]. LOMAC imple-
mentsa form of Low Water-Mark MAC integrity pro-
tection [5] in a LoadableKernel Module (LKM). Ad-
ministratorscanload the LOMAC LKM into standard,
off-the-CD-ROM Linux 2.2kernels,includingbothker-
nels distributed in binary form and kernelsbuilt from
standardsources.Onceloaded,theLOMAC LKM pro-
tectsthe integrity of critical systemprocessesandfiles
from viruses,worms,Trojan horses,andmaliciousre-
moteusers.Becauseof its compatibledesign,LOMAC
canbeusedto provideintegrity protectionfor presently-
deployedsystemsbasedon standardLinux kernelswith
little impacton theirnormaloperation.

Several theoreticalaspectsof theLOMAC projecthave
beendiscussedin apreviouspaper[9]. Theseaspectsin-
cludeLOMAC’sapplicationof Low Water-Mark model,
the UNIX compatibility benefitsof models like Low
Water-Mark over many better-known models,andsome
of the drawbacksof LOMAC’s LKM-basedimplemen-
tationwith regardto thereferencemonitorapproach[1].
Thispaper, ontheotherhand,will focusonthedetailsof
LOMAC’s implementation,paying particularattention
to the techniquesrequiredto enhancestandardLinux
kernelswithoutpatchingtheirsource,andto managese-
curity attributeswithoutkernelandfilesystemsupport.

The discussionbegins with section2, which describes
the integrity protectionprovided by LOMAC. This is
followed by a detailedexaminationof LOMAC’s ar-
chitectureand implementationin section 3, focusing
on LOMAC’s useof interpositionandimplicit attribute
mappingto maintaincompatibilitywith standardLinux
kernels. Section4 explains how LOMAC appliesits

network servers, clients

user files, downloads

system binaries, libs, /etc

init, kernel daemons

Low Level

High Level

Figure1: LOMAC’s2-level partitioningof asystem.

protectionmechanismin a mannerthat encouragesap-
plication compatibility andavoids administrative over-
head.Section5 presentstheresultsof someperformance
benchmarks,anddiscussespotentialoptimizations.Sec-
tion 6 addressesusabilityconcernsandlistssomefuture
directionsfor LOMAC, includingstrategiesto overcome
someof its presentshortcomingsandanupcomingport
to FreeBSD.Section7 follows with a summaryof re-
lated efforts to enhancethe securityof Linux kernels.
Finally, section8 presentssomeconclusions.

2 Protection

LOMAC providesprotectionby dividing a systeminto
two integrity levels: high andlow. The diagramin fig-
ure 1 illustratesthis division. The high level contains
critical systemcomponentsthatmustbeprotected,such
asthe init process,kerneldaemons,systembinaries,li-
brariesandconfigurationfiles. The low level contains
theremainingcomponents,suchasclientandserverpro-
cessesthat readfrom the network, local userprocesses
andtheir files. OnceLOMAC assignsa file to onelevel
or the other, its level never changes.This is not so for
processes:LOMAC can“demote” high-level processes
by reducingtheirlevelsto low duringrun-time.LOMAC
never increasesthe level of a process. Section4 de-
scribeshow LOMAC decideswhich files andprocesses
belongin which part; this sectionsummarizeshow LO-
MAC usesthis division to provideprotection.

WhenLOMAC is running,a process’s level determines
how muchpower it hasto modify otherpartsof thesys-
tem. Given the above division of the systeminto two
levels, LOMAC provides integrity protectionwith two

main mechanisms.First, LOMAC prevents low-level
processesfrom modifying (writing, truncating, delet-
ing) high-level files or signalling high-level processes.
Since non-administrative users, their network clients,
and all network servers run at the low level, thesere-
strictionsprotectthehigh-level partof thesystemfrom
direct attacksby maliciousremoteusersand compro-
misedservers.

Second,LOMAC ensuresthat (potentially dangerous)
datadoesnotflow from low-level filesto high-levelfiles.
A processcouldattemptto causesuchaflow by reading
from a low-level file (as dataor as programtext) and
subsequentlywriting to a high-level file. LOMAC pre-
ventssuchflows throughdemotion: whenever a high-
level processreadsfrom a low-level file, LOMAC re-
ducesthe process’s level to low. Onceat the low in-
tegrity level, LOMAC’s first mechanismprevents the
processfrom modifying high-level files, as described
above. This combinationof mechanismspreventsindi-
rectattacksby viruses,wormsandTrojanhorses.

LOMAC cannotdistinguishbetweena programthathas
readlow-integrity databut is still runningproperlyand
onethat hasreadlow-integrity dataandhasbeencom-
promised.However, LOMAC canensurethatprocesses
which readpotentiallydangerouslow-level dataduring
run-timearedemotedto the low integrity level. Once
at this low level, LOMAC’s othermechanismsprevent
themfrom harminghigh-integrity processesor files.

3 Implementation

Thereare two main problemsin implementingkernel-
residentMAC: gaining supervisorycontrol over ker-
nel operations,andmappingsecurityattributesto files.
Therearea rangeof potentialsolutionsto theseprob-
lems,eachembodyinga differenttradeoff betweenfea-
turessuchasgeneralityandefficiency, andcostssuchas
incompatibility with existing softwareandthe needfor
configuration.LOMAC haschosenlow costsolutionsin
both cases.LOMAC usesinterpositionat the kernel’s
systemcall interface [10, 11, 20] to gain supervisory
control. LOMAC usesimplicit attribute mapping[3]
to map securityattributesto files. Thesechoicesmay
not be assupportive of generalityandefficiency asal-
ternateapproachesinvolving directmodificationsof the
kernelsource.However, they allow LOMAC to operate
onstandardLinux kernelsalreadydeployedin thefield -
anessentialpartof LOMAC’s approachto encouraging
adoption.

Monitor PLM Mediate

Wrappers and Utility Functions

1000 lines of C code

1500 lines of C code Kernel-dependent

Kernel-independent

Figure2: LOMAC LoadableKernelModuleArchitecture

Figure2 shows the architectureof the LOMAC LKM.
Thediagramshowsahorizontalsplit betweenupperand
lowerhalves.Theupperhalf implementshigh-levelLO-
MAC functionalityin akernel-independentmanner, and
consistsof approximately1000linesof C code(count-
ing only thoselines containingsemicolonsor braces).
Thelowerhalf implementsa kernel-specificinterfaceto
the Linux 2.2 seriesof kernels,andconsistsof approx-
imately 1500 lines of C code. An alternateLinux 2.0
interfacewassupportedin thepast;alternateLinux 2.4
andFreeBSDinterfacesareexpectedin thefuture.

3.1 Gaining control

In order to provide protection,LOMAC mustgain su-
pervisorycontrol over kerneloperations- that is, LO-
MAC mustbeableto make accesscontrol decisionsas
describedin section2, andcompelthekernelto enforce
them. LOMAC achievesthis control by interposingit-
selfbetweenprocessesandthekernelat thekernel’ssys-
temcall interface.LOMAC’skernelinterfacecontainsa
seriesof functionscalled“wrappers,” dueto their sim-
ilarity to GenericSoftwareWrappers[10]. Ultimately,
therewill beonesuchwrapperfor eachsecurity-relevant
Linux systemcall; somewrappershave not yet been
implementedin the presentversionof LOMAC. Each
wrappertakesthesameparametersasits corresponding
systemcall. At initialization time, LOMAC traverses
the kernel’s systemcall vector, which is essentiallyan
arrayof functionpointersthroughwhich thekernelpro-
videsservicesto userprocesses.LOMAC replacesthe
addressesof security-relevantsystemcalls with the ad-
dressesof thecorrespondingwrappers.Oncedone,calls
madethroughthesystemcall vectorwill call thewrap-
pers,ratherthanthe kernel’s correspondingsystemcall
functions.

Wrappersfollow thealgorithmshown in figure3. First,
LOMAC performsmediation: it decideswhetherto al-
low or deny thecalling process’s requestfor service.It
basesthis decisionon a comparisonof the calling pro-

cess’s level andthelevelsof thearguments,asdescribed
in section2. If LOMAC decidesto deny, it returnsan
appropriateerrorcodeto thecaller. Otherwise,LOMAC
proceedsto thenext step,whereit callsthekernel’sorig-
inal systemcall function to provide the actualservice.
Finally, LOMAC monitors the completionof the ker-
nel’s original systemcall, updatingits datastructuresto
reflectchangesin the systemstate. This is whereLO-
MAC demotesprocesses,andmarksthein-memorydata
structuresrepresentingopenfiles (dentry structures)
with theappropriatelevelsfor futurereference.

Viewed from a high level of abstraction, this
interposition-basedwrapper algorithm is not overly
complex. However, implementingit in a mannerthat
avoidsTime-Of-Check,Time-Of-Use(TOCTOU)errors
requirescare[11, 26]. Early versionsof LOMAC had
many TOCTOU errors: Wrapperswould copy user-
spacepathnameargumentsinto kernel-space,andmake
mediationdecisionsbasedon thesecopies. After posi-
tivedecisions,thekernel’soriginalsystemcall functions
would copy the pathnamesinto kernel-spacea second
time, and operateon this secondcopy. The potential
existed for a userprocessto make a systemcall with
anallowablepathnameandchangeit to anon-allowable
pathnameafter LOMAC had madeits mediationdeci-
sion,but beforeit calledthekernel’soriginalsystemcall
function. This ability to changepathnamesbetweenthe

wrapper(arguments){
Mediate: decide to allow
or deny the operation;

call kernel’s original
system call function;

Monitor: update LOMAC’s state
on successful completion;

}

Figure3: WrapperAlgorithm

01: int wrap_open(const char *filename, int flags, int mode) {
02: char *k_filename_s, *k_canabspath_s;
03: struct dentry *p_dentry, *p_dir_dentry;
04: struct file *p_file;
05: int ret_val;
06:
07: if(IS_ERR((k_filename_s = getname(filename)))) {
08: return(PTR_ERR(k_filename_s));
09: }
10: if(!(k_canabspath_s = (char *)__get_free_page(GFP_KERNEL))) {
11: ret_val = -ENOMEM;
12: goto out_putname;
13: }
14: if((ret_val = make_canabspath(k_filename_s, k_canabspath_s,
15: &p_dir_dentry, &p_dentry))) {
16: goto out_dputs;
17: }
18:
19: if((flags & O_TRUNC) ||
20: ((flags & O_CREAT) && (!p_dentry))) {
21: if(! (p_dentry && WRITE_EXEMPT(p_dentry))) {
22: if(!(mediate_subject_object("open",current,p_dir_dentry))) {
23: ret_val = -EACCES;
24: goto out_dputs;
25: }
26: if(!(mediate_subject_path("open",current,k_canabspath_s))) {
27: ret_val = -EACCES;
28: goto out_dputs;
29: }
30: } /* if this is not an exempt case */
31: } /* if we should mediate */
32:
33: TURN_ARG_CHECKS_OFF;
34: ret_val = ((int (*)(const char *, int, int))orig_open)
35: (k_canabspath_s, flags, mode);
36: TURN_ARG_CHECKS_ON;
37: if(ret_val >= 0) {
38: p_file = fget(ret_val);
39: monitor_open(current, p_file->f_dentry);
40: fput(p_file);
41: }
42:
43: out_dputs:
44: if(p_dir_dentry) { dput(p_dir_dentry); }
45: if(p_dentry) { dput(p_dentry); }
46: free_page((unsigned long)k_canabspath_s);
47: out_putname:
48: putname(k_filename_s);
49: return(ret_val);
50: } /* wrap_open() */

Figure4: C sourcefor LOMAC v1.1.0’swrapperfor sysopen(run-timeassertionsandmostcommentsremoved).

time of LOMAC’s check,andthe time the kernelused
thepathnamegaveuserprocessestheopportunityto de-
featLOMAC’sprotection.

Figure4 illustratesthe solution to the TOCTOU prob-
lem: copy pathnameargumentsinto kernel-spaceat the
beginningof thewrapper, andinvoke thekernel’s origi-
nal systemcall with theaddressof this copy, ratherthan
theaddressof theoriginal user-spacebuffer. Thefigure
containsthe C sourcefor LOMAC’s opensystemcall
(sys open) wrapper. Thesourceshows theadditional
buffer-copying, as well as the unusualtoggling of the
Linux kernel’s senseof the kernel-/user-spacebound-
ary requiredto make theits original systemcallsaccept
thesecopies.

In its first 18 lines,thewrapperexaminesits arguments,
gatheringthe information it needsin later steps. Line
7 copies the filename argument into kernel-spaceto
avoid TOCTOU errors. All subsequentoperationsare
on this copy, ratherthan the user-spaceoriginal. LO-
MAC determinesthelevelsof files basedon their abso-
lute canonical-formpathnamesusingan algorithmdis-
cussedin thenext subsection.Line 14 preparesthefile-
namefor its level determinationby convertingit into this
form.

Thenestedif statementsin lines19 through21 ensure
thatLOMAC performsmediationonly whenthereis the
potentialfor a file creationor truncation.LOMAC does
not mediatewrites to files in the openwrapper. This
mediationis handledby otherwrapperscorresponding
to the Linux kernel’s variouswrite systemcalls. The
WRITE EXEMPT macroon line 21existsto allow harm-
lesstruncatesof device specialfiles suchasseriallines
andterminals.Similarexemptionsexist in thewrite sys-
tem call wrappers. Theseexemptionsallow low-level
processesto performI/O on thesedevices,while keep-
ing the device specialfiles themselvesin the high-level
partof thesystem.

Lines22 through32 performtheactualmediation.Be-
fore allowing theopen,LOMAC makeschecksbothon
the file andon its parentdirectory, astraditionalUNIX
does.Line 22 ensuresthat thecalling processhassuffi-
ciently high integrity level to modify thecontentsof the
namedfile’s parentdirectory. Line 26 ensuresthat the
calling processhasa sufficiently high integrity level to
createor truncatethenamedfile. Thesechecksarehan-
dled by functionsin the kernel-independentpart of the
LOMAC LKM.

Lines33 through36 invoke thekernel’s original system
call function using the wrapper’s kernel-spacecopy of

the filenameargument. When servinguserprocesses,
thekernel’s systemcallsexpectto copy their pathname
argumentsfrom user-space.Beforecopying, thesystem
callsexecutea checkto ensurethat thepathnamebuffer
addressis indeedon the userside of the kernel-/user-
spaceboundary- a checkthatwill normally fail on the
wrapper’s kernel-spacepathnamebuffers. Fortunately,
thekernelprovidesamechanismto disablethischeckon
a per-processbasis.Themacroson lines33 and36 tog-
gle this checkoff for thedurationof theoriginal system
call function. For safety, the canonical-absolutepath-
nameconversionfunctionon line 14performsthesafety
checksthatLOMAC turnsoff in theoriginalsystemcall.

Lines37 through50 concludethe wrapper. If the open
systemcall succeededin openinga file, lines37 though
41 call LOMAC’s kernel-independentopenmonitoring
function to label the file’s in-memory data structure
(dentry) with theappropriatelevel. Thevariousread
andwrite wrapperswill subsequentlyusethislabelwhen
they mediateandmonitoroperationson thefile.

As shown in figure4, it takesa considerableamountof
wrappercodeto supportmediationand monitoring in
aninterposition-basedscheme.Theextra buffer copy to
avoid TOCTOU errorsaddsoverhead.Similarly, many
wrapperscontainnestedif statementslikethosein lines
19 through22 to predict,basedon thearguments,what
operationthe kernelwill eventuallyperform. The read
and write wrappersrequire more extensive logic, be-
causethesesystemcalls must handleoperationson a
variety of objects(files, pipes,sockets),eachof which
requiresdifferentmediationandmonitoring.

An alternative approachto gainingcontrol might be to
patch the kernel source,placing mediationand moni-
toring further down in the kernel, at the point closer
to whereit operateson objects. This move would re-
duceoverheadby eliminatingtheextraTOCTOU buffer
copies and the need to predict the kernel’s behavior
aheadof time. However, this patchingstrategy is not
presentlyanoptionfor LOMAC,whichmustavoid mod-
ifying kernelsourcein order to maintaincompatibility
with existing kernels.

3.2 Attrib ute Mapping

In addition to gaining supervisorycontrol, LOMAC
must also assignintegrity levels to files in a manner
that is persistentacrossreboots. LOMAC maintainsa
persistentmappingbetweenlevels andabsolutecanon-
ical pathnamesin its Path Level Map (PLM) module.

level flags path

high "/home/httpd"
low child-of "/home"
high "/"

Table1: ThreePath-Level MapRules

Whenever thekernelopensa file, LOMAC labelsits in-
memorydatastructure(dentry) with theintegrity level
indicatedby thePLM.

LOMAC’s PLM implementsa simple form of implicit
attributemapping[3]. Givenanabsolutecanonicalpath-
name,it consultsadatastructuresimilar to theabridged
oneshown in table1. This datastructureis anarrayof
records,eacha level, flag, pathtriplet. The recordsare
sorted,longestpathfirst. Thebasicalgorithmis, givena
targetpath,its level canbe foundby searchinglinearly
thoughthe list of recordsuntil a recordis foundwhose
pathis aprefixof thetargetpath.Thelevel in thisrecord
is theproperlevel for thefile namedby thetargetpath.
For example, the level of “/home/httpd/html” is high,
becauseit matchesthe recordfor prefix “/home/httpd”.
The attribute mappingis “implicit” becausethe appro-
priate level of a large numberof files is implied by a
smallsetof rules.

Thechild-of flagaddsaslightbit of additionalcomplex-
ity. For example, the list of recordsusesthe child-of
flag in the recordfor /home. This recordindicatesthat
all childrenof /homearelow by default. Becauseof the
child-of flag, the recorddoesnot apply to /homeitself,
only its children.

If, during a searchthroughthe recordlist, the the tar-
get pathmatchesa record’s pathexactly, the flag field
is checked. If the child-of flag is set, the matchis ig-
nored,andthesearchcontinues.Consequently, thelevel
of “/home/httpd”is high becauseit exactly matchesthe
record for prefix “/home/httpd”, which has no child-
of flag. The level of “/home/tfraser”is low becauseit
matchestherecordfor prefix “/home” with thechild-of
flag, and the level of “/home” is high becauseit skips
thechild-of “/home” recordandmatchesthe recordfor
prefix “/”.

Theactuallist of PLM recordsusedby thepresentver-
sionof LOMAC contains25records.ThePLM canmap
levelsto filesonany typeof filesystem,includingremote
network filesystems. It requiresno filesystemsupport
for storing attributeson disk. Sincethe PLM’s list of
rulesis completelystatic,it is trivially persistentacross

reboots,andis notsusceptibleto consistency problemsif
thefilesystemis modifiedwhile LOMAC is not running.

The PLM does have two main drawbacks, however.
First, it requirescanonicalabsolutepathnamesasinput.
Determiningthecanonicalabsoluteform of a pathname
in a systemcall wrapperaddsoverhead.

Second, the PLM can produce inconsistentintegrity
level resultswhen queriedon files namedby multiple
hardlinks: If the differenthardlink namescorrespond
to differentlevels, the PLM will returnwhichever level
correspondsto the hardlink namespecifiedin a query.
LOMAC preventsthe creationof suchconfusinghard
links during its run-time;administratorsmusttake care
to avoid creatingthembeforethey load LOMAC. This
problemdoesnot extend to symbolic links. LOMAC
calls the appropriatekernel functions to translateall
pathsinto canonical(all symbolic links translated)ab-
solute(relative to theroot directory)form beforeexam-
ining them. Consequently, LOMAC handlessymbolic
links properly.

4 Application

In orderto applytheprotectionschemedescribedin sec-
tion 2, LOMAC mustbeableto determinetheappropri-
ate level for every processandfile in the system.This
sectiondescribeshow LOMAC makes this determina-
tion. LOMAC’schoiceof solutionimpactsbothapplica-
tion compatibilityandthedegreeto which LOMAC re-
mainsinvisible to users.It is alsoessentialto LOMAC’s
ability to automaticallyassignthe appropriatelevels to
usersandnetwork serverswithout site-specificconfigu-
ration.

4.1 Dividing the Filesystem

Section3.2 explainedhow LOMAC usesa small setof
rules to determinewhich partsof the filesystemareat
the high integrity level, andwhich areat the low level.
Theserulesarepresentlysetat compile-time.Although
futureversionsof LOMAC mayprovide a moreconfig-
urableruleset,thegoalof thepresentimplementationis
to delivera singlegenericconfigurationthatprovidesat
leastsomeprotectionon a widevarietyof systems.

The division describedby the current rule set reflects
the tensionbetweentwo competinggoals: providing

themaximumamountof protection,andmaintainingthe
maximumamountof applicationcompatibility. Thefirst
goal demandsthat all files be at the high level, where
LOMAC will keepthemsafefrom modificationby low-
level processes. However, the secondgoal demands
that all files be at the low level, whereLOMAC will
neverpreventlow-level processesfrom modifying them.
Thissecondgoalis importantto compatibility- prevent-
ing file modificationscanintroduceincompatibilitiesby
causingapplicationsto fail.

LOMAC’s presentdivision is a compromisebetween
thesegoals that emphasizesapplicationcompatibility.
The division roughly parallels the traditional UNIX
boundarybetweenthe portion of the filesystemowned
by the root user(high), and the portion owned by lo-
cal non-rootusers(low). This parallelismhelpsto re-
duceLOMAC’s visibility to non-rootusers.For exam-
ple,LOMAC tendsto preventthesameoperationsasthe
traditionalUNIX accesscontrolmechanisms:high-level
files tendto be ownedby the root user. Non-rootuser
processesrun at the low level. LOMAC preventslow-
level processesfrom modifying high-level files. How-
ever, thisbehavior is oftennotsurprisingbecausethefa-
miliar UNIX accesscontrolswould also prevent these
modificationsas attemptednon-root modificationsof
root-owned files. Only when a low-level processac-
quiresrootprivilegesdoesthedifferencebecomereadily
apparent- a low-level root processhasgreatlyreduced
powersin thepresenceof LOMAC.

4.2 Monitoring Processes

While file levels arestatic,processlevels candecrease
duringrun-time.In general,LOMAC assignsanew pro-
cessthesamelevel astheprocesswhocreatedit. At ini-
tializationtime,LOMAC assignsthehigh integrity level
to the first process(the idle/init process),which initial-
izesthe systemby creatinga new high-level processto
handlevarioussystemtasks. Theseprocessescontinue
by creatingmorehigh-level children.As individualpro-
cessesreadfrom low-level files,LOMAC demotesthem
to the low integrity level. From that point on, all their
childrenbegin life at thelow integrity level.

This demotionbehavior allows LOMAC to automati-
cally assignusersessionsto the appropriatelevel. For
example,with a consolelogin, the init, getty, andlogin
processesall runatahigh level. Uponverifying auser’s
identity, login spawnsa child which executestheuser’s
shell. Theshellsof non-rootusersimmediatelyreadre-
sourcefiles from the low-level partof thesystem,caus-

ing LOMAC to demotethem. Fromthatpoint on, their
childrenoperateat a low level. LOMAC doesnot de-
motethe root user’s shell becausethe root user’s home
directoryandits contentsareat a high level. The root
user’s shellmaythereforecreatehigh-level children,al-
thoughLOMAC will demotethemif they go on to read
from thelow-levelpartof thesystem.Thisautomaticas-
signmentof levelsallowsLOMAC to provideprotection
withoutbeingconfiguredto recognizeasite-specificlist
of users.

LOMAC also usesits demotionbehavior to automati-
cally confineprogramsthat usethe network to interact
with (potentially malicious)remoteentities. LOMAC
treatsall network interfacesaslow-level files. As soon
as a processreadsfrom a network interface,LOMAC
demotesit to thelow integrity level. Thisschemeplaces
network clients and servers at a safe, low level at the
momentthey first risk compromise- that is, assoonas
they receivetheirfirst communicationfrom thenetwork.
Furthermore,this schemeallows LOMAC to provide
protectionwithout beingconfiguredto recognizea site-
specificlist of potentiallydangerousnetwork-readers-
LOMAC simply waits for a potentiallydangerousnet-
work readoperationandthenmakestheappropriatede-
motion.

4.3 Exceptionsfor Compatibility

LOMAC’sprotectionschemeis specificallydesignedto
prevent possiblymalicious remoteentities from using
thenetwork to commandlocalprocessesto modify local
/etc configurationfiles. Unfortunately, this scenario
essentiallydescribesthe purposeof pump, the client-
side DHCP agent: pump modifieslocal configuration
filessuchas/etc/resolv.conf onbehalfof remote
DHCPservers.Similarly, LOMAC’s protectionscheme
is specificallydesignedto preventprocessesfrom trans-
ferring data from low-integrity to high-integrity files.
Unfortunately, thisis essentiallywhatoccursaslog mes-
sagestravel from low-integrity processesto the high-
integrity systemlog file throughthesystemlog daemon,
syslogd.

In both thesecases,LOMAC mustmake an exception
to allow thesecritical programsto operateproperly. To
thisend,LOMAC maintainsashortlist of “trusted”pro-
grams. LOMAC never demotesprocessesthat arerun-
ning trustedprograms. Being free from demotion,as
long aspump andsyslogd begin running at a high
level, they will remainat thatlevel andoperateproperly.
Sincetrust freesa programonly from LOMAC’s demo-

tion behavior, runninga trustedprogramat the low in-
tegrity level doesnot provide any additionalprivileges.
Still, the presenceof trustedprogramsrepresentssome
risk. If a high-level processrunninga trustedprogram
werecompromised,LOMAC would not preventit from
harmingthehigh-integrity partof thesystem.

LOMAC also usesthe trustedprogrammechanismto
make someconcessionsto usability. Becauseit de-
motesnetwork-readingprograms,LOMAC effectively
preventsremoteadministration.(A level-1 processcan-
notmodify critical configurationfiles,evenwith theroot
identity.) Sinceremoteadministrationis critical to some
real-world operations,LOMAC truststhe SecureShell
daemonsshd. This arrangementgrantsadministrators
high-level usersessionsvia SSH,asfollows:

LOMAC demotesuntrustedremotelogin daemonssuch
astelnetd andrlogind assoonasthey readfrom
thenetwork,preventingthemfrom forking off high-level
children. However, becauseof LOMAC’s trust, high-
level processesrunning sshd can read from the net-
work without being demoted,and fork off high-level
processesto runlocalusershells.With thetrustedsshd
actingasan un-demotablebridgeto the network inter-
face,theselocalusershellsescapedemotionthemselves
by interactingwith thenetwork only indirectly, through
high-level pseudoterminaldevices.

LOMAC also provides a trusted file upgrader, lup.
Whenrun at a high integrity level, lup allows admin-
istratorsto copy low-integrity files (suchasdownloaded
softwareupdates)to the high-integrity areaof the sys-
tem,presumablyaftermanuallyverifying that they rep-
resentno threatto integrity. Thelup programis effec-
tively a limited versionof cp with additionallogging.
Only its trust-enabledescapefrom demotionallows it to
upgradefiles. Consequently, runninglup from a low
integrity level will notpermitauserto write ahigh-level
file.

4.4 LOMA C and root

Although LOMAC’s division of the systemattempts
to parallel the traditional UNIX root/non-rootbound-
ary for the sake of compatibility, LOMAC’s protection
mechanismdoesnotdependon theLinux kernel’sexist-
ing root-identity-basedprotectionmechanism.LOMAC
provides protectionby observingrequestsfor service
madeby processesat thekernel’s systemcall interface,
anddenying thoserequestsit identifiesasthreatsto the
integrity of thesystem.It is not awareof theLinux no-

tion of useridentity; consequentlyit doesnot allow the
root userany specialprivileges. Conversely, LOMAC
doesnot override,disable,or weakentheexisting Linux
protectionmechanisms:WhenLOMAC is running,an
operationwill be allowed if andonly if both LOMAC
andthe existing Linux protectionmechanismsagreeit
shouldbeallowed.

SinceLOMAC’s strategy of controlling the transferof
data is orthogonalto the traditional UNIX root-based
mechanism,it is also orthogonalto efforts to increase
the granularityof this root-basedmechanism,suchas
Linux-privs[21].

5 Performance

Table 2 shows the resultsof three benchmarkscom-
paring the performanceof Linux kernelsrunning with
(“LOMA C v1.1.0”) and without LOMAC (“No LO-
MAC”). The benchmarkstestedversion 1.1.0 of LO-
MAC with run-time assertionsdisabled. The first en-
try in thetablemeasurethetime to performthe“make”
portion of the Linux 2.2.5 kernel build procedureon
450MHz Intel Pentium II-based RedHat 6.0 system.
Each result is the averageof 10 trials, discardingan
initial uncountedtrial to prime caches. Although this
macro-benchmarktends to hide LOMAC’s additional
kernel overhead,it givesan impressionof how a user
might perceive LOMAC’s performanceon a real work-
load.

Thesecondandthird tableentriesshow thelatency and
throughputperformanceof theApache/1.3.9webserver
runningon a 133MHz Intel Pentium-basedRedHat6.1
system. This web server was connectedvia a 10Mbit
crossover(uplink) Ethernetcableto aSunMicrosystems
Ultra 5 workstationrunningSolaris2.6. This worksta-
tion performeda seriesof 47 10-minute-longtrials run-
ning the WebStone2.5b4web server benchmarkusing
32 test clients applying the standardWebStonestatic
workloadto the webserver to produceeachresult. The
apparentsmall improvementin latency is spurious;the
performanceimpact of LOMAC is much smaller than
thevariancein theWebStonebenchmark’sresults.

The remaining table entries show the results of
the BYTE UNIX benchmarksperformed with the
UnixBench4.1.0softwareon thesamesystemusedfor
the kernel-build benchmark.Eachresult is the average
of 21 trials. The tableomits the largely computational
DhryStoneand WhetStonecomponentsof the bench-

KernelBuild ElapsedTime (s)
mean std.dev. penalty

No LOMAC 269.61 0.03 -
LOMAC v1.1.0 278.05 0.03 3.1%

WebstoneLatency (s)
mean std.dev. penalty

No LOMAC 0.569 0.003 -
LOMAC v1.1.0 0.567 0.003 -0.2%

WebstoneThroughput(Mbit/s)
mean std.dev. penalty

No LOMAC 8.327 0.058 -
LOMAC v1.1.0 8.305 0.063 0.3%

UB ExeclThroughput(loops/s)
mean std.dev. penalty

No LOMAC 642.4 23.7 -
LOMAC v1.1.0 537.0 21.7 16.4%

UB File Copy 256Byte buffers(KByte/s)
mean std.dev. penalty

No LOMAC 34393 289 -
LOMAC v1.1.0 31131 222 9.5%

UB File Copy 1024Bytebuffers(KByte/s)
mean std.dev. penalty

No LOMAC 69672 385 -
LOMAC v1.1.0 66155 573 5.0%

UB File Copy 4096Bytebuffers(KByte/s)
mean std.dev. penalty

No LOMAC 81379 547 -
LOMAC v1.1.0 79078 775 2.8%

UB PipeThroughput(loops/s)
mean std.dev. penalty

No LOMAC 263124 1679 -
LOMAC v1.1.0 234225 4289 11.0%

UB Pipe-basedContext Switch(loops/s)
mean std.dev. penalty

No LOMAC 139917 1827 -
LOMAC v1.1.0 116993 1510 16.4%

UB ProcessCreation(loops/s)
mean std.dev. penalty

No LOMAC 3811 20 -
LOMAC v1.1.0 3830 24 -0.5%

UB SystemCall Overhead(loops/s)
mean std.dev. penalty

No LOMAC 249414 332 -
LOMAC v1.1.0 249356 303 0.2%

UB 8 ShellScriptLoad(loops/minute)
mean std.dev. penalty

No LOMAC 144.2 3.0 -
LOMAC v1.1.0 129.0 3.1 10.5%

Table2: BenchmarkResults

mark; thepresenceof LOMAC did not significantlyaf-
fect thesecomponents. The apparentsmall improve-
mentin processcreationtime is alsospurious;the per-
formanceimpactof LOMACis smallerthanthevariance
in theProcessCreationportionof theUnixBenchbench-
mark.

LOMAC’s performanceis comparableto interposition-
basedgeneral kernel extension mechanismssuch as
GenericSoftwareWrappers[10] andSLIC [11]. For ex-
ample,theSLIC prototypereportedperformancepenal-
tiesrangingfrom 0%to 5%onanemacs-buildingbench-
mark,dependingonhow many securityextensionswere
loadedat thetime. TheGenericSoftwareWrapperspro-
totype reportedpenaltiesranging from 3.5% to 6.5%
on a kernel-building benchmark,up to 1.4% for Web-
Stonelatency, andup to 3.3%for WebStonethroughput,
againdependingon how many securityextensionswere
loaded.

LOMAC hasnot yet beenoptimizedfor performance;
thereareseveral areasof its implementationthat trade
performancefor simplicity in orderto supporttherapid
developmentof new features.For example,whena pro-
cessopensor executesafile, LOMAC consultsthePLM
to determinethe file’s level and the level of its parent
directory. LOMAC saves theselevels in memory for
the benefit of its read and write mediationfunctions.
However, LOMAC makesno attemptto skip the PLM
lookupon subsequentopens,evenfor files anddirecto-
riesthatalreadyhavetheir levelsstoredin memory. The
PLM implementationis presentlybasedon a simplebut
inefficient sequentialsearch. Lookupson short, com-
mondirectoriessuchas“/bin” and“/usr/bin” require25
stringcomparisons.This inefficiency is reflectedin the
high penaltyshown by the UnixBenchExecl Through-
put benchmark. Considerabletime could be saved by
avoiding redundantPLM lookups,andby improving the
PLM’ssearchalgorithm.

At ahigherlevel, LOMAC mightsavetimeby notmedi-
atingtheactionsof high-level processes,sinceLOMAC
alwaysallows high-level processesto do as they wish.
Similarly, LOMAC might save time by not considering
low-level processesfor demotion,sincelow-level pro-
cessesarealreadyrunningat the lowestintegrity level.
This optimizationhasthe potentialto reducethe over-
headof read and write operationsshown in the three
UnixBenchFile Copy benchmarks.As LOMAC nears
its goalsfor features,an increasingamountof develop-
ment resourceswill be allocatedto improving perfor-
mance.

6 Discussion

Section4 presentsananalyticalargumentfor theusabil-
ity of LOMAC, describinghow LOMAC is designedto
be compatiblewith existing applications,andis largely
invisible to non-rootusers. Although therehave been
no formal usability studiesof LOMAC, thereis some
anecdotalevidenceof its compatibility with traditional
UNIX: In orderto testLOMACundernormalusagecon-
ditions,NAI Labs’ Chief ScientistrunsLOMAC on his
Linux workstation.However, hewasforcedto turn LO-
MAC off nearthe end of January, 2001 while the au-
thor fixeda seriousbug. On the eveningof 31 January
2001,theauthorcompletedthefix andre-installedLO-
MAC on thechief scientist’s workstation.Significantly,
he carelesslyforgot to inform anyone of what he had
done. LOMAC wasnot discovereduntil 11 dayslater,
whenthe authormentionedthe re-installationin casual
conversation.Although the chief scientist’s overall us-
ageof theworkstationduring thatperiodwaslight, the
fact remainsthat LOMAC was sufficiently compatible
with traditionalUNIX to remainundetectedby anhighly
experienceduseruntil it wasunwittingly revealedby its
author.

Thereis muchwork yet to be doneon LOMAC. With
moredevelopment,LOMAC canovercomemany of its
presentlimitations. The remainderof this sectionsum-
marizessomepossiblefuturedirections.

Impr ovedhandling of “/tmp”: In its presentstate,the
PLM preventsthe effective useof temporaryfiles
by high-level processes.Directories like “/tmp”
mustbe able to containfiles of different integrity
levels where the appropriatelevel can be deter-
mined only by consideringthe level of the file’s
creator, not by consideringits pathname. The
PLM presently supportsonly low-level files in
“/tmp”, makingit impossibleto runtemporary-file-
dependentprogramslike emacsor gcc at a high
level.

Thereareatleasttwo waysin whichthePLM might
be extendedto overcomethis problem. The PLM
might be extendedto polyinstantiate“/tmp”, pro-
viding separatetemporarydirectoriesfor eachlevel
in a mannerthat is transparentto processes.Alter-
nately, the PLM might apply a new flag to “/tmp”
indicating that the levels of files thereshouldbe
basedon the level of the creatingprocess. Both
of thesesolutionsinvolvetradeoffs: A polyinstanti-
ated“/tmp” mayconfuseusers(“why can’t my low-
level processseethathigh-level temporaryfile?”).

Ontheotherhand,allowingfilesto inherittheircre-
ators’ levels will addcomplexity - the presentin-
variantthatafile’s level mayalwaysbedetermined
by its pathnamegreatlysimplifiesmany aspectsof
theLOMAC code.

Completecontrols: LOMAC doesnot yet control all
critical kernel operations. For example, even
though LOMAC controls the kernel’s read and
write systemcalls,processesmaystill bypassLO-
MAC by modifying files via memory-mapping.
Accessto memory-mappedfiles is difficult for LO-
MAC to mediatebecauseoncea processmapsa
file, it may modify the file throughmemoryoper-
ationsthat do not requiresystemcalls. To solve
this problem,LOMAC might performpessimistic
read/writemediationat the time a file is memory-
mapped,andrevokeor downgradedangerousmap-
pingsuponprocessdemotion.Severalotherkernel
abstractionsalso lack sufficient controls, includ-
ing messagequeues,semaphores,andall formsof
sharedmemory.

Port to Linux 2.4,FreeBSD,TrustedBSD: As was
described in section 3, LOMAC’s architecture
includes a separatekernel-dependentinterface.
Althoughearlierversionsof LOMAC hadalternate
interfaces for Linux 2.0 and 2.2, only the 2.2
interfaceis supportedin the presentversion. The
2.2interfacedoesnotsupportthe2.4Linux kernel;
a new interfacewill be required. Experiencewith
these interfaceshas shown that LOMAC tracks
changesin the Linux kernel relatively easily:
becauseit hasso few dependencieson the kernel
source,porting has been required only between
majorkernelrevisions(2.x, not 2.2.x)sofar.

An interposition-basedport to FreeBSDis sched-
uled for the secondhalf of 2001. As the Trust-
edBSDprojectbegins to provide improvedkernel
supportinterfacesfor LKMs like LOMAC, theau-
thor will port to theseinterfaces,as well. In ad-
dition to makingLOMAC availableto moreusers,
theseportswill provide anopportunityto reimple-
ment LOMAC’s kernel interfaceswith the bene-
fit of previousexperience.Theseimplementations
mayprovidebetterperformanceandadditionalfea-
tures,suchasmultiprocessorsupport.

Impr ovedconfinement: LOMACprotectstheintegrity
of high-level processesandfiles, but doesnot pro-
videany protectionfor thelow-levelpartof thesys-
tem. For example,althoughLOMAC preventsa
compromisedlow-level server from installingtrap-
doorsand Trojan horsesin the high-level part of

general access intrusion
project patch module wrappers control detection
BeattieMAC x x
GenericSoftwareWrappers x x
Immunix/SubDomain x x x x
Janus(Linux) x x
KernelHypervisors x x
LIDS x x x
LOMAC x x
MedusaDS9 x x x
Pitbull LX x x
RSBAC x x
SAIC DTE x x
SELinux x x
VXE x x
William&Mary DTE x x

Table3: A Comparisonof RelatedProjects

thesystem,it doesnotpreventacompromisedlow-
level server from harmingthe integrity of the low-
level partof thesystem,perhapsby destroying low-
integrity user files, or by sendingkill signalsto
otherlow-level servers. This drawbackwasdueto
the mannerin which the Low Water-Mark model
divides a system“horizontally” into levels, sepa-
rating only high from low. Lipner hassuggested
an enhancementthat would addadditional“verti-
cal” divisions,separatingoneserver from another
within agivenlevel [16]. Thepotentialof this tech-
niqueto improveLOMAC remainsto beexplored.

Configurable levels: Early versionsof LOMAC sup-
ported configurationswith more than two levels,
andallowedadministratorsto assigndifferentlev-
els to eachnetwork interface. One useful three-
level configurationworkedwell on a hostwith two
network interfaces:The configurationplacedsys-
temobjectsandprocessesat thehighestlevel, most
local userprocesses,most userfiles andan inter-
faceto aninternalnetwork at themiddlelevel, and
the remainingservers and an interface to the an
external network at the lowest level. This three-
level configuration provided integrity protection
to a larger portion of the systemthan LOMAC’s
presenttwo-level configurationby bringing some
userresourcesinto theuppertwo protectedlevels.

However, someuserfiles hadto remainat the un-
protectedlowest level where programsthat read
from the lowest-level network interface, such as
E-mail agentsand web browsers, could modify
them. Consequently, the three-level configuration
was more visible to non-rootusersthan the two-

level configuration,becauseit forcedthemto oper-
ateat multiple levels. For example,it forcedusers
to run separatetext editorprocessesfor modifying
lowest-level andmiddle-level files, and to choose
thepropereditordependingon thesituation.

Becausethis complexity conflictswith LOMAC’s
emphasisonremaininglargely invisible to theuser,
this functionality hasnot yet beencarriedforward
into the presentprototype. However, future ver-
sionsof LOMAC might beextendedto allow site-
specificconfigurationswith many levels,andoffer
theexisting two-level configurationasa default. In
a configurationwith many levels, supportfor pro-
gramsthat are trustedonly in restrictedrangesof
levelsmayalsobeuseful[15].

7 Relatedwork

Thereare a wide variety of projectsaimedat improv-
ing the security of Linux kernels using interposition
and/orMAC.ExamplesincludeGenericSoftwareWrap-
pers[10], therecentLinux portof Janus[12], KernelHy-
pervisors[20], LIDS [28], Malcolm Beattie’s MAC [4],
Medusa DS9 [29], Pitbull LX [2], RSBAC [22],
SAIC DTE [24], Security-EnhancedLinux [17], Im-
munix/Subdomain[7], VXE [14], and William&Mary
DTE [13].

Different projectsemphasizedifferent goals. Table 3
comparestheseprojectsaccordingto several criteria.
The first two criteria dealwith implementation:Those

projectsthatmodify thekernelsourcereceive a markin
thepatch column,thosethatuseanLKM receiveamark
in the modulecolumn. The last threecriteria dealwith
features:Projectsthat seekto provide generalsupport
for kernelsecurityextensionthroughsystemcall inter-
positionreceiveamarkin thegeneral wrapperscolumn.
ThosethatprovideMAC functionalityaremarkedin the
accesscontrol column.Finally, thosethatprovideor are
bundledwith otherusefulsecurityfunctionality, suchas
intrusiondetection,aremarkedin theintrusiondetection
column. The projectsthat have the most relevanceto
LOMAC’s goal of encouragingadoptionby decreasing
theoverall costof usearethefour thatavoid modifying
kernelsource.

Of theseprojects,GenericSoftwareWrappersandKer-
nelHypervisorsseekto providegeneralsupportfor ker-
nel extensions.Conceivably, LOMAC could be imple-
mentedin theframeworksthey provide. Theremaining
two, Pitbull LX andJanus,attemptonly to implementa
singleform of MAC, asLOMAC does.Pitbull LX and
Janusprovide protectionby confining potentially dan-
gerousapplicationsaccordingto the principle of Least
Privilege[25]. They lessentheir impacton UNIX com-
patibility by confiningonly certainapplications,rather
thanapplyingtheir controlsto everyprocesson thesys-
tem.

Eachof thesefour LKM-basedapproacheshasthe po-
tential to provide a very small overall costof use,par-
ticularly if they weredistributedin a form that lessened
administrativeoverheadanddid not overly disrupttypi-
cal usagepatterns,

In the wake of the 2001 Linux Kernel Summit, sev-
eral organizationshave begun efforts to improve the
Linux kernel’s supportfor securityenhancementslike
LOMAC. TheTrustedBSDproject[27] is alsodevelop-
ing similar improvementsfor the FreeBSDkernel. The
aspectof theseefforts that is mostrelevant to LOMAC
is their plan to provide a new meansof gainingsuper-
visory controloverkerneloperations.TheLinux efforts
areconcentratingon placing“hooks” at strategic points
inside the kernel. Thesehookswill transfercontrol to
securitymoduleslike LOMAC, allowing themto make
accesscontroldecisions.It is reasonableto expecta fu-
tureversionof LOMACbasedonthesehooksto perform
betterthanthepresentone;placingthehooksinsidethe
kernelhasthe potentialto eliminatethe needfor much
of theoperation-predictionandbuffer-copying overhead
imposedby interpositionat thesystemcall interface.

Fortunately, LOMAC’s architecturehasstrongsepara-
tion betweenthe interposition-basedinterfaceand the

rest of the LOMAC LKM. When suchhooksbecome
standardkernelfeatures,this separationwill allow LO-
MAC to discardits presentinterposition-basedinterface
andmakeuseof them.

8 Conclusions

LOMAC’s presentimplementationshows that it is pos-
sible to apply MandatoryAccessControl techniquesto
standardoff-the-CD-ROM Linux kernels.LOMAC uses
interpositionat the systemcall interfaceto gain super-
visory control over kernel operations,and implicit at-
tributemappingto markfileswith persistentlabels.

By confining network-readingapplicationsto the low
integrity level, LOMAC preventscompromisedservers,
worms,andmaliciousremoteusersfrom harmingthein-
tegrity of the high-level part of the system,even when
they have root privilege. By demotingprocessesthat
reador executelow-integrity data,LOMAC ensuresthat
network-importedvirus andTrojanhorseprogramswill
be similarly confined,even if they are initially reador
executedby root-privilegedhigh-levelprocesses.Dueto
this confinement,suchmaliciousprogramscannotcopy
themselvesor becopiedby othersinto thehigh-integrity
partof thesystem.

Furthermore,LOMAC’s protectionschemerequiresno
support from applications. LOMAC’s accesscontrol
functionality is automatic:Applicationsdo not needto
requestthat it be applied. It is also transparent:LO-
MAC interposesitself at the kernel’s systemcall inter-
face,requiringonly thestandardparameters,andreturn-
ing only thestandarderrorcodes.LOMAC doesnot re-
quireusersor applicationsto explicitly chooseroles[8]
or domains[6]. Becauseof theautomaticandtranspar-
entnatureof its protectionmechanism,LOMAC canop-
eratewith existingapplications,eventhosedistributedin
binary-onlyform.

LOMAC is designedto becompatiblewith existingsoft-
ware,largelyinvisibleto traditionalLinux users,andap-
plicablewithoutsite-specificconfiguration.In short,it is
designedto beaform of MAC thattypicaluserscanlive
with.

9 Acknowledgements

Theauthorwould like to thankLeeBadgerfor his long-
standingsupportfor the LOMAC project,andfor sug-
gestingthetitle of thispaper.

LOMAC is Free software available for down-
load under the GNU General Public License from
ftp://ftp.tislabs.com/pub/lomac.

References

[1] J.P. Anderson.ComputerSecurityTechnologyPlanning
Study. TechnicalReportESD-TR-73-51,USAF Elec-
tronicSystemsDivision,HanscomAir ForceBase,Bed-
ford, Massachusetts,October1972.

[2] Argus SystemsInc. Pitbull LX. http://www.argus-
systems.com/products/whitepaper/lx/.

[3] L. Badger, D. F. Sterne,D. L. Sherman,and K. M.
Walker. A DomainandTypeEnforcementUNIX Proto-
type. USENIXComputingSystems, 9(1):47–83,Winter
1996.

[4] M. Beattie.MAC. http://users.ox.ac.uk/mbeattie/linux.
[5] K. J.Biba. Integrity Considerationsfor SecureComputer

Systems. Technical Report ESD-TR-76-372,USAF
ElectronicSystemsDivision, HanscomAir ForceBase,
Bedford,Massachusetts,April 1977.

[6] W. E. BoebertandR. Y. Kain. A PracticalAlternative to
HierarchicalIntegrity Policies.In Proceedingsof the8th
National ComputerSecurityConference, pages18–27,
Gaithersburg, Maryland,September1985.

[7] C. Cowan,S. Beattie,G. Kroah-Hartman,C. Pu,P. Wa-
gle, and V. Gligor. SubDomain:ParsimoniousServer
Security. In Proceedingsof the 14th USENIXSystems
Administration Conference(LISA 2000), New Orleans,
LA, December2000.

[8] D. FerraioloandR. Kuhn. Role-BasedAccessControls.
In Proceedingsof the15th NationalComputerSecurity
Conference, pages554–563,Baltimore,Maryland,Oc-
tober1992.

[9] T. Fraser. LOMAC: Low Water-Mark Integrity Protec-
tion for COTSEnvironments.In Proceedingsof the2000
IEEE Symposiumon Securityand Privacy, pages230–
245,Berkeley, California,May 2000.

[10] T. Fraser, L. Badger, andM. Feldman.HardeningCOTS
Softwarewith GenericSoftwareWrappers.In Proceed-
ingsof the1999IEEE Symposiumon SecurityandPri-
vacy, pages2–16,Berkeley, California,May 1999.

[11] D. P. Ghormley, D. Petrou,S. H. Rodrigues,andT. E.
Anderson. SLIC: An Extensibility Systemfor Com-
modity Operating Systems. In Proceedingsof the
USENIX1998 Annual Technical Conference, New Or-
leans,Louisiana,June1998.

[12] I. Goldberg, D. Wagner, R. Thomas,andE. Brewer. A
SecureEnvironmentfor UntrustedHelperApplications.
In Proceedingsof the6th USENIXSecuritySymposium,
pages1–13,SanJose,California,July1996.

[13] S. Hallyn and P. Kearns. Domain and Type Enforce-
mentfor Linux. In Proceedingsof the4th AnnualLinux
Showcase& Conference(ALS2000), Atlanta, Georgia,
October2000.

[14] U. InteS,Odessa.VXE. http://www.intes.odessa.ua/vxe.
[15] T. M. P. Lee. Using MandatoryIntegrity to Enforce

“Commercial” Security. In Proceedingsof the 1988
IEEE Symposiumon Securityand Privacy, pages140–
146,Oakland,California,April 1988.

[16] S. B. Lipner. Non-DiscretionaryControlsfor Commer-
cial Applications.In Proceedingsof the1982IEEESym-
posiumon Securityand Privacy, pages2–10,Oakland,
California,April 1982.

[17] P. A. Loscoccoand S. D. Smalley. Integrating Flexi-
ble Supportfor SecurityPoliciesinto the Linux Oper-
ating System. In Proceedingsof the FREENIXTrack:
USENIXAnnualTechnical Conference, June2001.

[18] E. J.McCauley andP. J.Drongowski. KSOS– TheDe-
signof aSecureOperatingSystem.In Proceedingsof the
National ComputerConference, Vol. 48, AFIPS Press,
pages345–353,Montvale,New Jersey, 1979.

[19] M. D. McIlroy andJ.A. Reeds.Multilevel securitywith
fewer fetters. In Proceedingsof theUSENIXUNIX Se-
curity Workshop, pages24–31,August1988.

[20] T. Mitchem,R. Lu, andR. O’Brien. UsingKernelHy-
pervisorsto SecureApplications. In Proceedingsof
the 13th Annual ComputerSecurityApplicationsCon-
ference, SanDiego,California,December1997.

[21] A. G. Morgan. linux-privs. http://www.kernel.org/
pub/linux/libs/security/linux-privs/old/doc.

[22] A. Ott. Regel-basierteZugriffskontrolle nach dem
GeneralizedFramework for AccessControl-Ansatzam
Beispiel Linux. Master’s thesis,UniversitatHamburg,
FachbereichInformatik,1997.

[23] G. J. Popek, M. Kampe, C. S. Kline, A. Stoughton,
M. Urban,andE. J. Walton. UCLA SecureUNIX. In
Proceedingsof theNationalComputerConference, Vol.
48,AFIPSPress, pages355–364,Montvale,New Jersey,
1979.

[24] SAIC. SAIC DTE. http://research-cistw.saic.com/
cace/dte.html.

[25] J. H. SaltzerandM. D. Schroder. TheProtectionof In-
formationin ComputerSystems.In Proceedingsof the
IEEEVol. 63(9), pages1278–1308,September1975.

[26] R. Spencer, S. Smalley, P. Loscocco,M. Hibler, D. An-
dersen,andJ.Lepreau.TheFlaskSecurityArchitecture:
SystemSupportfor DiverseSecurityPolicies. In Pro-
ceedingsof the8th USENIXSecuritySymposium, pages
123–139,Washington,DC, August1999.

[27] R. Watson. TrustedBSD:Adding Trusted Operating
SystemFeaturesto FreeBSD. In Proceedingsof the
FREENIX Track: USENIX Annual Technical Confer-
ence, June2001.

[28] H. Xie andP. Biondi. LIDS. http://www.lids.org.
[29] M. Zelem, M. Pikula, andM. Ockajak. MedusaDS9.

http://medusa.fornax.sk.

