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Abstract

LOMAC is a security enhancemenfor Linux ker
nels. LOMAC demonstratethatit is possibleto apply
MandatoryAccessControltechniqueso standard_inux
kernelsalreadydeployed in the field, andto do soin
a mannerthatis simple,compatible andlargely invisi-
ble to thetraditionalLinux user The LOMAC Loadable
Kernel Module protectsthe integrity of critical system
processesandfiles from viruses,worms, Trojan horses,
andmaliciousremoteusers. It is compatiblewith stan-
dard Linux 2.2 kernelsand applications,and seeksto
provide useful protectionwithout site-specificconfigu-
ration. LOMAC is designedo be a form of MAC that
typical userscanlive with.

1 Intr oduction

Overthelast25yearsmary projectshave demonstrated
useful Mandatory AccessControl (MAC) featureson
UNIX systemsTwo earlyexamplesincludeKSOS[18]
and UCLA SecureUNIX [23]. More recentexamples
include DTE [3], and Security-Enhanced.inux [17].
However, despitetheir successthesedemonstrations
have not promptedwidespreadadoption of MAC in
mainstreanUNIX kernels.

Onelikely explanationfor this lack of widespreagdop-
tion maybe overall costof use:In thesedemonstrations,
the new MAC featurescameat the cost of incompati-
bility with existing kernelandapplicationsoftware,in-
creasedadministratve overheador a disruptionof tra-
ditionalusagepatterns Amongtypical userstheoverall
costof adoptingthe new MAC featuresoutweighedhe
percevedbenefitsdiscouragingvidespreaanainstream
adoption.

The LOMAC projectis an attemptto bring simple but
usefulMAC integrity protectionto Linux in aform that:

is applicableto standardkernels,

is compatiblewith existing applications,

requiresno site-specificconfigurationand

is largely invisible to traditionalusers.

In short, LOMAC aims to provide a form of MAC

that typical userscanlive with [19]. LOMAC imple-

mentsa form of Low WaterMark MAC integrity pro-

tection[5] in a LoadableKernel Module (LKM). Ad-

ministratorscanload the LOMAC LKM into standard,
off-the-CD-ROM Linux 2.2 kernels,ncludingbothker-

nels distributed in binary form and kernelsbuilt from

standardsources.Onceloaded the LOMAC LKM pro-

tectsthe integrity of critical systemprocesseandfiles

from viruses,worms, Trojan horses,and maliciousre-

moteusers.Becausef its compatibledesign,LOMAC

canbeusedto provide integrity protectionfor presently-
deployed systemsasedon standard_inux kernelswith

little impacton their normaloperation.

Severaltheoreticalaspectof the LOMAC projecthave
beendiscussedh apreviouspape9]. Theseaspectsn-
cludeLOMA C’sapplicationof Low WaterMark model,
the UNIX compatibility benefitsof modelslike Low
WaterMark over mary betterknown models,andsome
of the drawbacksof LOMAC'’s LKM-basedimplemen-
tationwith regardto thereferencenonitorapproachl].
Thispaperontheotherhandwill focusonthedetailsof
LOMAC's implementation paying particular attention
to the techniquesrequiredto enhancestandardLinux
kernelswithout patchingtheir source andto managese-
curity attributeswithoutkernelandfilesystemsupport.

The discussionbegins with section2, which describes
the integrity protectionprovided by LOMAC. This is
followed by a detailed examinationof LOMAC's ar
chitectureand implementationin section 3, focusing
on LOMAC's useof interpositionandimplicit attribute
mappingto maintaincompatibility with standard_inux
kernels. Section4 explains how LOMAC appliesits
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Figurel: LOMAC's 2-level partitioningof a system.

protectionmechanismin a mannerthat encouragesip-
plication compatibility and avoids administratve over
head.Sectiorns presentsheresultsof someperformance
benchmarksanddiscussegpotentialoptimizations.Sec-
tion 6 addresseasabilityconcernsaandlists somefuture
directionsfor LOMAC, includingstrateyiesto overcome
someof its presenshortcomingsandan upcomingport
to FreeBSD.Section7 follows with a summaryof re-
lated efforts to enhancethe security of Linux kernels.
Finally, section8 presentsomeconclusions.

2 Protection

LOMAC providesprotectionby dividing a systeminto
two integrity levels: high andlow. The diagramin fig-
ure 1 illustratesthis division. The high level contains
critical systemcomponentshatmustbe protectedsuch
astheinit processkerneldaemonssystembinaries,li-
brariesand configurationfiles. The low level contains
theremainingcomponentssuchasclientandsener pro-
cesseghat readfrom the network, local userprocesses
andtheir files. OnceLOMAC assignsafile to onelevel
or the other its level never changes.This is not so for
processest OMAC can“demote” high-level processes
by reducingtheirlevelsto low duringrun-time.LOMAC
never increaseghe level of a process. Section4 de-
scribeshow LOMAC decideswhich files andprocesses
belongin which part; this sectionsummarizefiow LO-
MAC useshis divisionto provide protection.

WhenLOMAC is running,a processs level determines
how muchpower it hasto modify otherpartsof the sys-
tem. Given the above division of the systeminto two
levels, LOMAC providesintegrity protectionwith two

main mechanisms. First, LOMAC preventslow-level

processefrom modifying (writing, truncating, delet-

ing) high-level files or signalling high-level processes.
Since non-administratie users,their network clients,

and all network senersrun at the low level, thesere-

strictionsprotectthe high-level part of the systemfrom

direct attacksby maliciousremoteusersand compro-

misedseners.

Second,LOMAC ensureghat (potentially dangerous)
datadoesnotflow from low-levelfilesto high-levelfiles.

A processouldattemptto causesuchaflow by reading
from a low-level file (asdataor as programtext) and

subsequentlyvriting to a high-level file. LOMAC pre-

ventssuchflows throughdemotion: whenever a high-

level processreadsfrom a low-level file, LOMAC re-

ducesthe processs level to low. Onceat the low in-

tegrity level, LOMAC's first mechanismprevents the

processfrom modifying high-level files, as described
above. This combinationof mechanismpreventsindi-

rectattacksby viruseswormsandTrojanhorses.

LOMAC cannotdistinguishbetweera programthathas
readlow-integrity databut is still runningproperlyand
onethat hasreadlow-integrity dataand hasbeencom-
promised.However, LOMAC canensurethatprocesses
which readpotentially dangeroudow-level dataduring
run-time are demotedto the low integrity level. Once
at this low level, LOMAC's other mechanism®revent
themfrom harminghigh-integrity processesr files.

3 Implementation

Thereare two main problemsin implementingkernel-
residentMAC: gaining supervisorycontrol over ker
nel operationsand mappingsecurityattributesto files.
Thereare a rangeof potentialsolutionsto theseprob-
lems,eachembodyinga differenttradeof betweerfea-
turessuchasgeneralityandefficiency, andcostssuchas
incompatibility with existing software andthe needfor
configuration LOMA C haschosernow costsolutionsin
both cases. LOMAC usesinterpositionat the kernel’s
systemcall interface[10, 11, 20] to gain supervisory
control. LOMAC usesimplicit attribute mapping|[3]
to map securityattributesto files. Thesechoicesmay
not be assupportive of generalityand efficiency asal-
ternateapproachegvolving directmodificationsof the
kernelsource.However, they allow LOMAC to operate
onstandard.inux kernelsalreadydeployedin thefield -
anessentiapartof LOMAC's approacho encouraging
adoption.
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Figure2: LOMAC LoadableKernelModule Architecture

Figure 2 shaws the architectureof the LOMAC LKM.
Thediagramshaws a horizontalsplit betweerupperand
lowerhalves. Theupperhalfimplementshigh-level LO-
MAC functionalityin akernel-independemhannerand
consistsof approximatelyl000lines of C code(count-
ing only thoselines containingsemicolonsor braces).
Thelower half implementsa kernel-specifiénterfaceto
the Linux 2.2 seriesof kernels,andconsistsof approx-
imately 1500 lines of C code. An alternateLinux 2.0
interfacewas supportedn the past;alternatelinux 2.4
andFreeBSDinterfacesareexpectedn thefuture.

3.1 Gaining control

In orderto provide protection,LOMAC mustgain su-
pervisorycontrol over kernel operations- that is, LO-
MAC mustbe ableto make accessontrol decisionsas
describedn section2, andcompelthe kernelto enforce
them. LOMAC achieresthis control by interposingit-
selfbetweerprocesseandthekernelatthekernelssys-
temcall interface.LOMAC's kernelinterfacecontainsa
seriesof functionscalled“wrappers; dueto their sim-
ilarity to GenericSoftware Wrapperg[10]. Ultimately,
therewill beonesuchwrapperfor eachsecurity-relgant
Linux systemcall; somewrappershave not yet been
implementedin the presentversionof LOMAC. Each
wrappertakesthe sameparametersisits corresponding
systemcall. At initialization time, LOMAC traverses
the kernel's systemcall vector, which is essentiallyan
arrayof function pointersthroughwhich the kernelpro-
videsservicesto userprocessesLOMAC replaceghe
addressesf security-rel#antsystemcalls with the ad-
dresse®f thecorrespondingvrappersOncedone,calls
madethroughthe systemcall vectorwill call thewrap-
pers,ratherthanthe kernel’s correspondingystemcall
functions.

Wrapperdollow the algorithmshawn in figure 3. First,
LOMAC performsmediation:it decideswhetherto al-
low or dery the calling processs requesfor service. It
baseghis decisionon a comparisorof the calling pro-

cesss level andthelevelsof theagumentsasdescribed
in section2. If LOMAC decidesto dery, it returnsan
appropriateerrorcodeto the caller Otherwise LOMAC
proceedso thenext step,whereit callsthekernelsorig-
inal systemcall function to provide the actualservice.
Finally, LOMAC monitorsthe completionof the ker
nel’'s original systemcall, updatingits datastructurego
reflectchangesn the systemstate. This is whereLO-
MAC demotegprocessesandmarksthein-memorydata
structuresrepresentingopenfiles (dent r y structures)
with the appropriatdevelsfor futurereference.

Viewed from a high level of abstraction, this
interposition-basedwrapper algorithm is not overly
complex. However, implementingit in a mannerthat
avoids Time-Of-Check;Time-Of-Use(TOCTOU) errors
requirescare[11, 26]. Early versionsof LOMAC had
mary TOCTOU errors: Wrapperswould copy user

spacepathnamergumentsnto kernel-spaceandmake
mediationdecisionsbasedon thesecopies. After posi-
tivedecisionsthekernel’s original systencall functions
would copy the pathnamesnto kernel-space second
time, and operateon this secondcopy. The potential
existed for a userprocessto make a systemcall with

anallowablepathnamendchanget to anon-allavable
pathnameafter LOMAC had madeits mediationdeci-
sion,but beforeit calledthekernels original systemcall

function. This ability to changepathname$etweerthe

wr apper ( arguments ) {
Medi ate: decide to allow
or deny the operation;

call kernel’s original
systemcal |l function;

Moni tor: update LOVAC s state
on successful conpl etion;

Figure3: WrapperAlgorithm



01: int wap_open( const char *filenane, int flags, int node ) {
02: char *k_filename_s, *k_canabspath_s;

03: struct dentry *p_dentry, *p_dir_dentry;

04: struct file *p_file;

05: int ret_val

06:

07: if( ISERR( ( k filenane_s = getnane( filenane ) ) ) ) {
08: return( PTR ERR( k_filename_s ) );

09:

}
10: if( !'( k_canabspath_s = (char *)_get free_page( GFP_KERNEL ) ) ) {
11: ret_val = - ENOVEM

12: got o out _put nane;

13: }

14: if( ( ret_val = nake_canabspath( k_filenane_s, k_canabspath_s,
15: & dir_dentry, &p dentry ) ) ) {

16: got o out dputs;

17: }

18:

19: if( ( flags & O TRUNC ) |

20: ( ( flags & OCREAT ) && ( !p_dentry ) ) ) {

21: if( ! ( p_dentry & WRI TE EXEMPT( p_dentry ) ) ) {
22: if( !'( nediate_subject object("open",current,p _dir_dentry) ) ) {
23: ret _val = -EACCES

24: got o out _dputs;

25: }

26: if( !'( mediate_subject_path("open", current, k_canabspath_s) ) ) {
27: ret _val = -EACCES

28: got o out dputs;

29: }

30: } /* if this is not an exenpt case */

31: } /* if we should nediate */

32:

33: TURN_ARG_CHECKS_OFF;

34: ret_val = ((int (*)(const char *, int, int))orig _open)
35: ( k_canabspath_s, flags, node );

36: TURN_ARG CHECKS ON

37: if( ret_val >=0) {

38: p file = fget( ret_val )

39: nmoni tor_open( current, p_file->f _dentry );

40: fput( p_file);

41: }

42:

43: out _dputs:

44 if( p_dir_dentry ) { dput( p_dir_dentry ); }

45: if( p_dentry ) { dput( p_dentry ); }

46: free_page( (unsigned |ong)k _canabspath_s );
47: out _put namne:

48: put nane( k_filenanme_s );

49: return( ret_val )

50: } /* wap_open() */

Figure4: C sourcefor LOMAC v1.1.0swrapperfor sysopen(run-timeassertiongandmostcommentsemoved).



time of LOMAC's check,andthe time the kernelused
the pathnameave userprocessethe opportunityto de-
featLOMAC's protection.

Figure 4 illustratesthe solutionto the TOCTOU prob-
lem: copy pathnameargumentsinto kernel-spaceat the
beginning of thewrapper andinvoke the kernel’s origi-

nal systemcall with the addres®f this copy, ratherthan
theaddresf the original userspacebuffer. Thefigure
containsthe C sourcefor LOMAC’s opensystemcall

(sys_open) wrapper The sourceshows the additional
buffer-copying, as well asthe unusualtoggling of the
Linux kernels senseof the kernel-/usetspacebound-
ary requiredto make theits original systemcalls accept
thesecopies.

In its first 18 lines, the wrapperexaminests arguments,
gatheringthe informationit needsin later steps. Line
7 copiesthe filename argumentinto kernel-spaceto
avoid TOCTOU errors. All subsequenbperationsare
on this copy, ratherthan the userspaceoriginal. LO-
MAC determineshelevels of files basedon their abso-
lute canonical-formpathnamessing an algorithmdis-
cussedn the next subsectionLine 14 prepareghefile-
namefor its level determinatiorby corvertingit into this
form.

Thenested f statementin lines19 through21 ensure
thatLOMA C performsmediationonly whenthereis the
potentialfor afile creationor truncation.LOMAC does
not mediatewrites to files in the openwrapper This
mediationis handledby otherwrapperscorresponding
to the Linux kernels variouswrite systemcalls. The
VWRI TE_EXEMPT macroon line 21 existsto allow harm-
lesstruncatef device specialfiles suchasseriallines
andterminals.Similar exemptionsexist in thewrite sys-
tem call wrappers. Theseexemptionsallow low-level
processe$o performl/O on thesedevices,while keep-
ing the device specialfiles themselesin the high-level
partof thesystem.

Lines 22 through32 performthe actualmediation. Be-
fore allowing the open,LOMA C makeschecksbothon
thefile andon its parentdirectory astraditional UNIX
does.Line 22 ensureghatthe calling processhassuffi-
ciently high integrity level to modify the contentsof the
namedfile’s parentdirectory Line 26 ensureghatthe
calling processhasa sufficiently high integrity level to
createor truncatethe namedfile. Thesechecksarehan-
dled by functionsin the kernel-independemart of the
LOMAC LKM.

Lines 33 through36 invoke the kernels original system
call function using the wrappers kernel-spaceopy of

the filenameargument. When serving user processes,
the kernel's systemcalls expectto copy their pathname
argumentdrom userspace Beforecopying, the system
callsexecutea checkto ensurehatthe pathnamebuffer
addresds indeedon the userside of the kernel-/user
spaceboundary- a checkthatwill normally fail on the
wrappers kernel-spacgoathnamebuffers. Fortunately
thekernelprovidesamechanisnto disablethis checkon
aperprocesdasis.Themacroson lines33 and36 tog-
gle this checkoff for thedurationof the original system
call function. For safety the canonical-absoluteath-
nameconversionfunctiononline 14 performsthe safety
checkghatLOMA C turnsoff in theoriginal systenxall.

Lines 37 through50 concludethe wrapper If the open
systemcall succeedeth openingafile, lines37 though
41 call LOMAC's kernel-independertpenmonitoring
function to label the file’s in-memory data structure
(dent r y) with the appropriatdevel. The variousread
andwrite wrapperswill subsequentlysethislabelwhen
they mediateandmonitoroperationon thefile.

As shown in figure 4, it takesa considerablemountof
wrappercodeto supportmediationand monitoring in
aninterposition-basedcheme Theextra buffer copy to
avoid TOCTOU errorsaddsoverhead.Similarly, mary
wrappergontainnested f statementBk ethosen lines
19 through22 to predict,basedon the agumentswhat
operationthe kernelwill eventuallyperform. The read
and write wrappersrequire more extensve logic, be-
causethesesystemcalls must handle operationson a
variety of objects(files, pipes,soclets), eachof which
requiredifferentmediationandmonitoring.

An alternative approachto gaining control might be to
patchthe kernel source,placing mediationand moni-
toring further down in the kernel, at the point closer
to whereit operateson objects. This move would re-
duceoverheady eliminatingthe extra TOCTOU buffer
copiesand the needto predict the kernel's behaior
aheadof time. However, this patchingstratey is not
presentlyanoptionfor LOMA C, which mustavoid mod-
ifying kernelsourcein orderto maintaincompatibility
with existing kernels.

3.2 Attrib ute Mapping

In addition to gaining supervisorycontrol, LOMAC
must also assignintegrity levels to files in a manner
thatis persistentacrossreboots. LOMAC maintainsa
persistenimappingbetweenevels and absolutecanon-
ical pathnamesn its Path Level Map (PLM) module.



| level | flags | path |

high "/ hone/ htt pd"
low | child-of | "/ hone"
high e

Tablel: ThreePath-Level Map Rules

Whenever thekernelopensafile, LOMAC labelsits in-
memorydatastructurgldent r y) with theintegrity level
indicatedby the PLM.

LOMAC'’s PLM implementsa simple form of implicit

attributemapping3]. Givenanabsolutecanonicapath-
name,it consultsa datastructuresimilar to theabridged
oneshown in table1. This datastructureis anarray of

records,eacha level, flag, pathtriplet. Therecordsare
sortedJongestpathfirst. Thebasicalgorithmis, givena
target path, its level canbe found by searchindinearly
thoughthe list of recordsuntil a recordis foundwhose
pathis aprefix of thetargetpath. Thelevelin thisrecord
is the properlevel for thefile namedby thetarget path.
For example, the level of “/home/httpd/html”is high,

becausét matcheghe recordfor prefix “/home/httpd”.
The attribute mappingis “implicit” becausehe appro-
priate level of a large numberof files is implied by a
smallsetof rules.

Thechild-of flag addsaslightbit of additionalcomplex-
ity. For example,the list of recordsusesthe child-of
flag in the recordfor /home. This recordindicatesthat
all childrenof /homearelow by default. Becausef the
child-of flag, the recorddoesnot apply to /homeitself,
only its children.

If, during a searchthroughthe recordlist, the the tar
get path matchesa records path exactly, the flag field
is checled. If the child-of flag is set,the matchis ig-
nored,andthe searchcontinues Consequentlythelevel
of “/home/httpd”is high becausét exactly matcheghe
record for prefix “/home/httpd”, which has no child-
of flag. The level of “/home/tfraser”is low becauset
matchegherecordfor prefix “/home” with the child-of
flag, andthe level of “/home” is high becauset skips
the child-of “/home” recordand matcheghe recordfor
prefix“/”.

The actuallist of PLM recordsusedby the presentver-
sionof LOMAC contain25records.The PLM canmap
levelsto filesonary typeof filesystemjncludingremote
network filesystems. It requiresno filesystemsupport
for storing attributeson disk. Sincethe PLM’s list of
rulesis completelystatic,it is trivially persistenticross

rebootsandis notsusceptibléo consisteng problemsf
thefilesystemis modifiedwhile LOMAC is notrunning.

The PLM does have two main dravbacks, however.
First, it requirescanonicalabsolutepathnamesisinput.
Determiningthe canonicalabsoluteform of a pathname
in asystemcall wrapperaddsoverhead.

Second,the PLM can produceinconsistentintegrity
level resultswhen queriedon files namedby multiple
hardlinks: If the differenthardlink namescorrespond
to differentlevels, the PLM will returnwhichever level
correspondso the hardlink namespecifiedin a query
LOMAC preventsthe creationof suchconfusinghard
links during its run-time; administratorsmusttake care
to avoid creatingthembeforethey load LOMAC. This
problemdoesnot extend to symbolic links. LOMAC
calls the appropriatekernel functions to translateall
pathsinto canonical(all symboliclinks translated)ab-
solute(relative to theroot directory)form beforeexam-
ining them. ConsequentlyL OMAC handlessymbolic
links properly

4 Application

In orderto applytheprotectionschemalescribedn sec-
tion 2, LOMAC mustbe ableto determinethe appropri-
atelevel for every processandfile in the system. This

sectiondescribeshow LOMAC malkesthis determina-
tion. LOMA C’schoiceof solutionimpactsbothapplica-
tion compatibility andthe degreeto which LOMAC re-

mainsinvisibleto users.It is alsoessentiato LOMAC's

ability to automaticallyassignthe appropriatdevelsto

usersandnetwork senerswithout site-specifiacconfigu-
ration.

4.1 Dividing the Filesystem

Section3.2 explainedhow LOMAC usesa small setof
rulesto determinewhich partsof the filesystemare at
the high integrity level, andwhich are at the low level.
Theserulesarepresentlysetat compile-time.Although
future versionsof LOMAC may provide a moreconfig-
urablerule set,the goal of the presenimplementatioris
to deliver a singlegenericconfigurationthatprovidesat
leastsomeprotectionon awide variety of systems.

The division describedby the currentrule setreflects
the tension betweentwo competinggoals: providing



themaximumamountof protection,andmaintainingthe
maximumamountof applicationcompatibility. Thefirst
goal demandghat all files be at the high level, where
LOMAC will keepthemsafefrom modificationby low-
level processes. However, the secondgoal demands
that all files be at the low level, where LOMAC wiill
never preventlow-level processefrom modifyingthem.
This secondyoalis importantto compatibility- prevent-
ing file modificationscanintroduceincompatibilitiesby
causingapplicationgo fail.

LOMAC's presentdivision is a compromisebetween
thesegoals that emphasizespplication compatibility.

The division roughly parallels the traditional UNIX

boundarybetweenthe portion of the filesystemowned
by the root user (high), and the portion owned by lo-

cal non-rootusers(low). This parallelismhelpsto re-
duceLOMAC'’s visibility to non-rootusers.For exam-
ple,LOMAC tendsto preventthe sameoperationsasthe
traditionalUNIX accesgontrolmechanismshigh-level

files tendto be ownedby the root user Non-rootuser
processesun at the low level. LOMAC preventslow-

level processe$rom modifying high-level files. How-

ever, thisbehavior is oftennot surprisingbecaus¢hefa-
miliar UNIX accessontrolswould also prevent these
modifications as attemptednon-root modifications of

root-owvned files. Only when a low-level processac-
quiresroot privilegesdoesthedifferencebecomeaeadily
apparent a low-level root processhasgreatlyreduced
powersin the presencef LOMAC.

4.2 Monitoring Processes

While file levels are static, procesdevels candecrease
duringrun-time.In generalLOMAC assignsnew pro-
cesghesameevel astheprocessvho createdt. At ini-
tializationtime, LOMA C assignghehighintegrity level
to the first procesqtheidle/init process)which initial-
izesthe systemby creatinga new high-level procesgo
handlevarioussystemtasks. Theseprocessesontinue
by creatingmorehigh-level children. As individual pro-
cesseseadfrom low-level files, LOMAC demoteghem
to the low integrity level. Fromthatpoint on, all their
childrenbggin life atthelow integrity level.

This demotionbehaior allows LOMAC to automati-
cally assignusersessiongo the appropriatdevel. For
example,with a consolelogin, the init, getty, andlogin
processeall runatahighlevel. Uponverifying ausers
identity, login spavns a child which executeshe users
shell. Theshellsof non-rootusersmmediatelyreadre-
sourcefiles from the low-level partof the system caus-

ing LOMAC to demotethem. Fromthatpoint on, their
children operateat a low level. LOMAC doesnot de-
motethe root users shell becausehe root users home
directory andits contentsare at a high level. The root
users shellmaythereforecreatehigh-level children,al-
thoughLOMAC will demotethemif they goonto read
from thelow-level partof thesystem.Thisautomaticas-
signmenbf levelsallows LOMA C to provide protection
without beingconfiguredo recognizea site-specifidist
of users.

LOMAC also usesits demotionbehaior to automati-
cally confineprogramsthat usethe network to interact
with (potentially malicious) remoteentities. LOMAC

treatsall network interfacesaslow-level files. As soon
as a processreadsfrom a network interface, LOMAC

demotest to thelow integrity level. This schemeplaces
network clients and seners at a safe,low level at the
momentthey first risk compromise- thatis, assoonas
they recevetheirfirst communicatiorfrom thenetwork.

Furthermore,this schemeallows LOMAC to provide
protectionwithout beingconfiguredto recognizea site-
specificlist of potentially dangerousetwork-readers

LOMAC simply waits for a potentially dangerouset-
work readoperationandthenmakesthe appropriatede-
motion.

4.3 Exceptionsfor Compatibility

LOMAC's protectionschemas specificallydesignedo

prevent possibly malicious remoteentities from using
thenetwork to commandocal processeto modify local

/ et ¢ configurationfiles. Unfortunately this scenario
essentiallydescribesthe purposeof punp, the client-

side DHCP agent: punp modifieslocal configuration
filessuchas/ et c/ r esol v. conf onbehalfof remote
DHCP seners. Similarly, LOMAC's protectionscheme
is specificallydesignedo preventprocessefrom trans-
ferring data from low-integrity to high-integrity files.

Unfortunatelythisis essentiallywhatoccursaslog mes-
sagestravel from low-integrity processego the high-

integrity systemlog file throughthe systemlog daemon,
sysl ogd.

In both thesecases L OMAC mustmalke an exception
to allow thesecritical programgo operateproperly To
thisend,LOMA C maintainsa shortlist of “trusted” pro-
grams. LOMAC never demotesprocesseshatarerun-
ning trustedprograms. Being free from demotion,as
long aspunp andsysl ogd begin runningat a high
level, they will remainatthatlevel andoperateproperly
Sincetrustfreesa programonly from LOMAC'’s demo-



tion behavior, runninga trustedprogramat the low in-
tegrity level doesnot provide any additionalprivileges.
Still, the presenceof trustedprogramsrepresentsome
risk. If ahigh-level processunninga trustedprogram
werecompromisedl OMA C would not preventit from
harmingthe high-integrity partof the system.

LOMAC also usesthe trusted programmechanisnto
malke some concessiondo usability Becauseit de-
motesnetwork-readingprograms,LOMAC effectively
preventsremoteadministration.(A level-1 processcan-
notmodify critical configuratiorfiles, evenwith theroot
identity.) Sinceremoteadministratioris critical to some
real-world operations] OMAC truststhe SecureShell
daemonsshd. This arrangemengrantsadministrators
high-level usersessionyia SSH,asfollows:

LOMAC demotesuntrustedremotelogin daemonsuch
ast el net d andr | ogi nd assoonasthey readfrom
thenetwork, preventingthemfrom forking off high-level
children. However, becauseof LOMAC's trust, high-
level processesunning sshd canreadfrom the net-
work without being demoted,and fork off high-level
processet runlocalusershells.With thetrustedsshd
actingasan un-demotabléridgeto the network inter-
face thesdocal usershellsescapalemotionthemseles
by interactingwith the network only indirectly, through
high-level pseudoterminadevices.

LOMAC also provides a trusted file upgrader | up.

Whenrun at a high integrity level, | up allows admin-
istratorsto copy low-integrity files (suchasdownloaded
software updates)o the high-integrity areaof the sys-
tem, presumabhafter manuallyverifying thatthey rep-
resentno threatto integrity. Thel up programis effec-
tively a limited versionof cp with additionallogging.
Only its trust-enable@scapdrom demotionallowsiit to

upgradefiles. Consequentlyrunningl up from a low

integrity level will notpermitauserto write a high-level

file.

4.4 LOMA Candroot

Although LOMAC's division of the systemattempts
to parallel the traditional UNIX root/non-rootbound-
ary for the sale of compatibility, LOMAC's protection
mechanisndoesnotdependnthelLinux kernel’s exist-
ing root-identity-basegrotectionmechanismLOMAC
provides protectionby observingrequestsfor service
madeby processest the kernel's systemcall interface,
andderying thoserequestst identifiesasthreatsto the
integrity of the system.lt is not awareof the Linux no-

tion of useridentity; consequentlyt doesnot allow the
root userary specialprivileges. Corversely LOMAC
doesnot override,disable,or wealentheexisting Linux
protectionmechanismsWhen LOMAC is running, an
operationwill be allowed if andonly if both LOMAC
andthe existing Linux protectionmechanismsgreeit
shouldbeallowed.

SinceLOMAC's stratgyy of controlling the transferof

datais orthogonalto the traditional UNIX root-based
mechanismijt is also orthogonalto efforts to increase
the granularity of this root-basedmechanismsuchas
Linux-privs[21].

5 Performance

Table 2 shows the resultsof three benchmarkscom-
paring the performanceof Linux kernelsrunning with
(“LOMA C v1.1.0") and without LOMAC (“No LO-
MAC"). The benchmarkgestedversion1.1.0 of LO-
MAC with run-time assertionglisabled. The first en-
try in thetablemeasurghetime to performthe “make”
portion of the Linux 2.2.5 kernel build procedureon
450MHz Intel Pentium ll-based RedHat 6.0 system.
Eachresultis the averageof 10 trials, discardingan
initial uncountedtrial to prime caches. Although this
macro-benchmarkendsto hide LOMAC’s additional
kernel overhead,it givesan impressionof how a user
might perceve LOMAC's performanceon a real work-
load.

The secondandthird tableentriesshav the lateng/ and

throughputperformancef the Apache/1.3.9vebsener

runningon a 133MHz Intel Pentium-baseékedHat6.1

system. This web sener was connectedvia a 10Mbit

crosswer(uplink) Ethernetableto a SunMicrosystems
Ultra 5 workstationrunning Solaris2.6. This worksta-
tion performeda seriesof 47 10-minute-longrials run-

ning the WebStone2.5b4web sener benchmarkusing

32 test clients applying the standardWwebStonestatic

workloadto the webserer to produceeachresult. The

apparensmallimprovementin lateng is spurious;the

performancampact of LOMAC is much smallerthan

thevariancein the WebStonébenchmarlsresults.

The remaining table entries shov the results of
the BYTE UNIX benchmarksperformed with the
UnixBench4.1.0software on the samesystemusedfor
the kernel-uild benchmark.Eachresultis the average
of 21 trials. The table omits the largely computational
DhryStoneand WhetStonecomponentof the bench-



KernelBuild Elapsedlime (s)
mean  std.dev. penalty

No LOMAC 269.61 0.03 -
LOMACV1.1.0 278.05 0.03 3.1%
Webstond_ateng (s)

mean  std.dev. penalty
No LOMAC 0.569 0.003 -
LOMACV1.1.0 0.567 0.003 -0.2%

WebstoneThroughputMbit/s)
mean  std.dev. penalty
No LOMAC 8.327  0.058 -
LOMACV1.1.0 8.305 0.063 0.3%

UB Execl Throughputloops/s)
mean  std.dev. penalty
No LOMAC 6424 237 -
LOMACV1.1.0 537.0 21.7 16.4%

UB File Copy 256 Byte buffers (KByte/s)
mean  std.dev. penalty
No LOMAC 34393 289 -
LOMACV1.1.0 31131 222 9.5%

UB File Copy 1024Byte buffers (KByte/s)
mean  std.dev. penalty
No LOMAC 69672 385 -
LOMACV1.1.0 66155 573 5.0%

UB File Copy 4096Byte buffers (KByte/s)
mean  std.dev. penalty
No LOMAC 81379 547 -
LOMACvV1.1.0 79078 775 2.8%

UB PipeThroughpufloops/s)
mean  std.dev. penalty

No LOMAC 263124 1679 -
LOMACV1.1.0 234225 4289 11.0%

UB Pipe-basedontet Switch(loops/s)
mean  std.dev. penalty
No LOMAC 139917 1827 -
LOMACV1.1.0 116993 1510 16.4%

UB Proces<reation(loops/s)
mean  std.dev. penalty
No LOMAC 3811 20 -
LOMACV1.1.0 3830 24 -0.5%

UB SystemCall Overheadloops/s)
mean  std.dev. penalty
No LOMAC 249414 332 -
LOMACvV1.1.0 249356 303 0.2%

UB 8 ShellScriptLoad (loops/minute)
mean  std.dev. penalty
No LOMAC 1442 3.0 -
LOMACv1.1.0 129.0 3.1 10.5%

Table2: BenchmarkResults

mark; the presencef LOMAC did not significantlyaf-

fect thesecomponents. The apparentsmall improve-

mentin processreationtime is alsospurious;the per

formancampactof LOMAC is smallerthanthevariance
in theProces<reationportionof theUnixBenchbench-
mark.

LOMAC's performancds comparabléo interposition-
basedgeneral kernel extension mechanismssuch as
GenericSoftwareWrapperd10] andSLIC [11]. For ex-

ample,the SLIC prototypereportedperformanceenal-
tiesrangingfrom 0%to 5% onanemacs-hilding bench-
mark,dependingon how mary securityextensionswvere
loadedatthetime. The GenericSoftwareWrappergro-

totype reportedpenaltiesranging from 3.5% to 6.5%
on a kernel-tuilding benchmark,up to 1.4% for Web-
Stonelateng, andupto 3.3%for WebStonghroughput,
againdependingon how mary securityextensionsvere
loaded.

LOMAC hasnot yet beenoptimizedfor performance;
thereare several areasof its implementatiornthat trade
performancdor simplicity in orderto supporttherapid
developmentof new featuresFor example,whenapro-
cesopenor executesafile, LOMAC consultghe PLM
to determinethe file's level andthe level of its parent
directory LOMAC saves theselevels in memory for
the benefit of its read and write mediationfunctions.
However, LOMAC makes no attemptto skip the PLM
lookup on subsequenbpens,evenfor files anddirecto-
riesthatalreadyhave theirlevelsstoredin memory The
PLM implementatioris presentlybasedon a simplebut
inefficient sequentialsearch. Lookupson short, com-
mondirectoriessuchas“/bin” and“/usr/bin” require25
string comparisonsThis inefficiency is reflectedin the
high penaltyshovn by the UnixBenchExecl Through-
put benchmark. Considerablgime could be saved by
avoiding redundanPLM lookups,andby improving the
PLM’s searchalgorithm.

At ahigherlevel, LOMAC might save time by not medi-
atingthe actionsof high-level processesinceLOMAC

always allows high-level processes$o do asthey wish.

Similarly, LOMAC might save time by not considering
low-level processe$or demotion,sincelow-level pro-

cessearealreadyrunningat the lowestintegrity level.

This optimizationhasthe potentialto reducethe over

headof read and write operationsshovn in the three
UnixBenchFile Copy benchmarks.As LOMAC nears
its goalsfor featuresanincreasingamountof develop-
ment resourceswill be allocatedto improving perfor

mance.



6 Discussion

Sectiond present@nanalyticalargumentfor the usabil-
ity of LOMAC, describinghow LOMAC is designedo
be compatiblewith existing applicationsandis largely
invisible to non-rootusers. Although there have been
no formal usability studiesof LOMAC, thereis some
anecdotakvidenceof its compatibility with traditional
UNIX: In orderto testtOMAC undemormalusagecon-
ditions,NAI Labs’ Chief ScientistrunsLOMAC on his
Linux workstation.However, hewasforcedto turn LO-
MAC off nearthe end of January 2001 while the au-
thor fixed a seriousbug. On the eveningof 31 January
2001,the authorcompletedhe fix andre-installedLO-
MAC on the chief scientists workstation.Significantly
he carelesslyforgot to inform anyone of what he had
done. LOMAC wasnot discovereduntil 11 dayslater,
whenthe authormentionedthe re-installationin casual
corversation. Although the chief scientists overall us-
ageof the workstationduring that periodwaslight, the
fact remainsthat LOMAC was sufficiently compatible
with traditionalUNIX to remainundetectedy anhighly
experiencediseruntil it wasunwittingly revealedby its
author

Thereis muchwork yet to be doneon LOMAC. With
moredevelopmentLOMAC canovercomemary of its
presentimitations. The remainderof this sectionsum-
marizessomepossiblefuture directions.

Impr oved handling of “/tmp”: In its presenstate the
PLM preventsthe effective useof temporaryfiles
by high-level processes. Directorieslike “/tmp”
must be ableto containfiles of differentintegrity
levels where the appropriatelevel can be deter
mined only by consideringthe level of the file's
creator not by consideringits pathname. The
PLM presently supportsonly low-level files in
“ftmp”, makingit impossibleto runtemporary-file-
dependenprogramslike emacsor gcc at a high
level.

Thereareatleasttwo waysin whichthe PLM might
be extendedto overcomethis problem. The PLM
might be extendedto polyinstantiate'/tmp”, pro-
viding separatéemporarydirectoriesor eachlevel
in amannerthatis transparento processesAlter-
nately the PLM might apply a new flag to “tmp”
indicating that the levels of files there should be
basedon the level of the creatingprocess. Both
of thesesolutionsinvolvetradeofs: A polyinstanti-
ated‘/tmp” mayconfuseuserq“why can't my low-
level processseethat high-level temporaryfile?”).

Ontheotherhand,allowing filesto inherittheircre-
ators’ levels will add compleity - the presentin-
variantthatafile’s level mayalwaysbedetermined
by its pathnamegreatly simplifiesmary aspectof
the LOMAC code.

Completecontrols: LOMAC doesnot yet control all
critical kernel operations. For example, even
though LOMAC controls the kernel’s read and
write systemcalls, processesay still bypasd O-
MAC by modifying files via memory-mapping.
Accesso memory-mappeflesis difficult for LO-
MAC to mediatebecauseonce a processmapsa
file, it may modify the file throughmemoryoper
ationsthat do not require systemcalls. To solve
this problem,LOMAC might perform pessimistic
read/writemediationat the time a file is memory-
mappedandrevoke or downgradedangerousnap-
pingsuponprocessiemotion.Severalotherkernel
abstractionsalso lack sufficient controls, includ-
ing messagejueuessemaphoresgndall forms of
sharednemory

Port to Linux 2.4,FreeBSD,TrustedBSD: As  was
describedin section 3, LOMAC's architecture
includes a separatekernel-dependeninterface.
Althoughearlierversionsof LOMAC hadalternate
interfacesfor Linux 2.0 and 2.2, only the 2.2
interfaceis supportedn the presentversion. The
2.2interfacedoesnotsupportthe 2.4 Linux kernel;
a new interfacewill berequired. Experiencewith
theseinterfaces has shovn that LOMAC tracks
changesin the Linux kernel relatively easily:
becauset hassofew dependenciesn the kernel
source, porting has beenrequired only between
majorkernelrevisions(2.x, not 2.2.x) sofar.

An interposition-basegort to FreeBSDis sched-
uled for the secondhalf of 2001. As the Trust-

edBSDprojectbeggins to provide improved kernel

supportinterfacesfor LKMs like LOMAC, theau-

thor will port to theseinterfaces,aswell. In ad-

dition to makingLOMAC availableto moreusers,
theseportswill provide anopportunityto reimple-

ment LOMAC's kernel interfaceswith the bene-
fit of previous experience.Theseimplementations
may provide betterperformancendadditionalfea-

tures,suchasmultiprocessosupport.

Impr oved confinement: LOMAC protectgheintegrity
of high-level processeandfiles, but doesnot pro-
vide ary protectionfor thelow-level partof thesys-
tem. For example, althoughLOMAC preventsa
compromisedow-level sener from installingtrap-
doorsand Trojan horsesin the high-level part of



project patch

module

intrusion
detection
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wrappes

access
control

BeattieMAC X
GenericSoftwareWrappers
Immunix/SubDomain X
JanugLinux)
KernelHypervisors
LIDS X
LOMAC
MedusaDS9 X
Pitbull LX

RSBAC

SAICDTE
SELinux

VXE
William&Mary DTE

X X X X X

X
X

X X X X
x

xX X

X X X X X X X X X

Table3: A Comparisorof RelatedProjects

thesystemijt doesnot preventa compromisedow-
level sener from harmingthe integrity of the low-
level partof thesystemperhapdy destrging low-
integrity userfiles, or by sendingkill signalsto
otherlow-level seners. This dravbackwasdueto
the mannerin which the Low WaterMark model
divides a system“horizontally” into levels, sepa-
rating only high from low. Lipner hassuggested
an enhancementhat would add additional “v erti-
cal” divisions, separatingone sener from another
within agivenlevel [16]. Thepotentialof thistech-
nigueto improve LOMAC remaingo beexplored.

Configurable levels: Early versionsof LOMAC sup-
ported configurationswith more than two levels,
andallowed administratorgo assigndifferentlev-
els to eachnetwork interface. One useful three-
level configurationworkedwell on a hostwith two
network interfaces: The configurationplacedsys-
temobjectsandprocesseatthe highestevel, most
local userprocessesmost userfiles and an inter-
faceto aninternalnetwork atthe middlelevel, and
the remainingseners and an interface to the an
external network at the lowestlevel. This three-
level configuration provided integrity protection
to a larger portion of the systemthan LOMAC's
presenttwo-level configurationby bringing some
userresourcednto the uppertwo protectedevels.

However, someuserfiles hadto remainat the un-
protectedlowest level where programsthat read
from the lowest-lerel network interface, such as
E-mail agentsand web browsers, could modify
them. Consequentlythe three-level configuration
was more visible to non-rootusersthan the two-

level configurationpecausét forcedthemto oper
ateat multiple levels. For example,it forcedusers
to run separatdext editor processe$or modifying
lowest-lezel and middle-level files, andto choose
thepropereditordependingn the situation.

Becausehis compleity conflictswith LOMAC's
emphasi®nremaininglargelyinvisibleto theuser
this functionality hasnot yet beencarriedforward
into the presentprototype. However, future ver
sionsof LOMAC might be extendedto allow site-
specificconfigurationswith mary levels, and offer
the existing two-level configurationasa default. In
a configurationwith mary levels, supportfor pro-
gramsthat are trustedonly in restrictedrangesof
levelsmayalsobe useful[15].

7 Relatedwork

Thereare a wide variety of projectsaimedat improv-
ing the security of Linux kernels using interposition
and/orMAC. ExamplesncludeGenericSoftwareWrap-
perg[10], therecentLinux portof Janug12], KernelHy-
pervisorg20], LIDS [28], Malcolm Beatties MAC [4],
Medusa DS9 [29], Pitbull LX [2], RSBAC [22],
SAIC DTE [24], Security-Enhanced.inux [17], Im-
munix/Subdomair{7], VXE [14], and William&Mary
DTE[13].

Different projectsemphasizedifferent goals. Table 3
comparesthese projectsaccordingto several criteria.
The first two criteria dealwith implementation:Those



projectsthatmodify the kernelsourcereceive a markin
thepatch column,thosethatuseanLKM receveamark
in the modulecolumn. The lastthreecriteria dealwith
features: Projectsthat seekto provide generalsupport
for kernel securityextensionthroughsystemcall inter-
positionreceve amarkin thegeneil wrappeis column.
Thosethatprovide MAC functionalityaremarkedin the
accesgontmol column.Finally, thosethatprovide or are
bundledwith otherusefulsecurityfunctionality, suchas
intrusiondetectionaremarkedin theintrusiondetection
column. The projectsthat have the most relevanceto
LOMAC's goal of encouragingadoptionby decreasing
the overall costof usearethefour thatavoid modifying
kernelsource.

Of theseprojects,GenericSoftware WrappersandKer-
nel Hypervisorsseekto provide generakupportfor ker
nel extensions.Concevably, LOMAC could be imple-
mentedin the framavorksthey provide. Theremaining
two, Pitbull LX andJanusattemptonly to implementa
singleform of MAC, asLOMAC does.Pitbull LX and
Janusprovide protectionby confining potentially dan-
gerousapplicationsaccordingto the principle of Least
Privilege[25]. They lessertheirimpacton UNIX com-
patibility by confiningonly certainapplications rather
thanapplyingtheir controlsto every procesonthe sys-
tem.

Eachof thesefour LKM-basedapproachesasthe po-
tential to provide a very small overall costof use,par
ticularly if they weredistributedin aform thatlessened
administratve overheadanddid not overly disrupttypi-
cal usagepatterns,

In the wake of the 2001 Linux Kernel Summit, sev-

eral organizationshave begun efforts to improve the
Linux kernels supportfor securityenhancementike

LOMAC. The TrustedBSDproject[27] is alsodevelop-
ing similar improvementsfor the FreeBSDkernel. The
aspecbf theseefforts thatis mostrelevantto LOMAC

is their plan to provide a new meansof gaining super

visory controlover kerneloperationsThe Linux efforts

areconcentratingn placing“hooks” at strateic points
inside the kernel. Thesehookswill transfercontrol to

securitymoduleslike LOMAC, allowing themto make

accesgontroldecisions It is reasonabl¢o expecta fu-

tureversionof LOMAC basednthesehooksto perform
betterthanthe presenbne;placingthe hooksinsidethe

kernelhasthe potentialto eliminatethe needfor much
of theoperation-predictiomndbuffer-copying overhead
imposedby interpositionat the systemcall interface.

Fortunately LOMAC's architecturehas strong separa-
tion betweenthe interposition-basednterface and the

restof the LOMAC LKM. When such hooks become
standardckernelfeaturesthis separatiorwill allow LO-
MAC to discardits preseninterposition-baseahterface
andmake useof them.

8 Conclusions

LOMAC's presenimplementatiorshows thatit is pos-
sible to apply MandatoryAccessControl techniquego

standardff-the-CD-ROM Linux kernels.LOMAC uses
interpositionat the systemcall interfaceto gain super

visory control over kernel operations,and implicit at-

tribute mappingto markfiles with persistentabels.

By confining network-readingapplicationsto the low
integrity level, LOMAC preventscompromisedeners,
worms,andmaliciousremoteuserdrom harmingthein-
tegrity of the high-level part of the system,even when
they have root privilege. By demotingprocesseshat
reador executelow-integrity data,LOMAC ensureshat
network-importedvirus and Trojan horseprogramswill
be similarly confined,evenif they areinitially reador
executedby root-privilegedhigh-level processesDueto
this confinementsuchmaliciousprogramscannotcopy
themselesor be copiedby othersinto the high-integrity
partof thesystem.

Furthermore] OMAC's protectionschemerequiresno
supportfrom applications. LOMAC’s accesscontrol
functionality is automatic: Applicationsdo not needto
requestthat it be applied. It is alsotransparent:LO-
MAC interposestself at the kernel’s systemcall inter-
face,requiringonly thestandar¢parametersandreturn-
ing only the standarderrorcodes.LOMAC doesnot re-
quire usersor applicationgo explicitly chooseroles[8]
or domaing[6]. Becausef the automaticandtranspar
entnatureof its protectionmechanism|.OMAC canop-
eratewith existingapplicationseventhosedistributedin
binary-onlyform.

LOMAC is designedo becompatiblewith existing soft-
ware,largelyinvisibleto traditionalLinux usersandap-
plicablewithoutsite-specificonfiguration.n short,it is
designedo beaform of MAC thattypical userscanlive
with.
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