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The Black Body Radiation

= Chapter 4 of Kittel  and Kroemer

The Planck distribution
Derivation

Black Body Radiation
Cosmic Microwave Background
The genius of Max Planck

Other derivations
Stefan Boltzmann law

Flux => Stefan- Boltzmann
Example  of application: star diameter

Detailed Balance: Kirchhoff laws
Another example: Phonons in a solid

Examples of applications
Study  of Cosmic Microwave Background
Search for Dark Matter
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The Planck Distribution

Photons in a cavity
Mode characterized by

Number of photons s in a mode => energy

s is an integer ! Quantification

Similar to harmonic oscillator
Photons on same "orbital" cannot be distinguished. This is a quantum state, not s systems in interactions!

Occupation number

! System =1 mode , in contact with reservoir of temperature

Partition function

Mean number of photons

***Planck Distribution
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Black Body Radiation
Maxwell equations in vacuum

 => Photon has zero mass and 2 polarizations

Radiation energy between  and +d ?
State (=mode)density in phase space

=> density of energy
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Cosmic Microwave Radiation

Conclusions:
• Very efficient thermalization

In particular no late release of energy
• No significant ionization of  universe since!

e.g., photon-electron interactions= Sunyaev-Zel'dovich effect
• Fluctuations of T =>density fluctuations

COBE DMR result

Big Bang=> very high temperatures!
When T≈3000K, p+e recombine  =>H and universe becomes transparent
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The genius of Max Planck
Before

Physicists only considered continuous set of states (no 2nd quantization!)
Partition function of mode ω

Mean energy in mode  ω
 
 independent of  ω

Sum on modes => infinity =“ultraviolet catastrophe”

Max Planck
Quantized!

Cut off at    x cannot be smaller than 1!
 => finite integral
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Other derivations (1)
Grand canonical method

Consider N photons

=>

What is µ?  There is no exchange of photons with reservoir
(only exchange of energy) => entropy of reservoir does not

change with the number of photons in the black body (at constant energy)
Zero chemical potential! =>

Microscopic picture
Photons are emitted and absorbed by electrons on walls of cavity
We have the equilibrium
Special case of equilibrium  (cf Kittel & Kroemer Chap. 9 p. 247)

Equilibrium corresponds to maximum entropy
=>
In particular

this is due to the fact that the number of photons is not constant
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Other derivations (2)
Microcanonical method (Done in Homework)

To compute mean number photons in one  mode, consider ensemble of N oscillators at same
temperature and compute total energy U

=>

Microcanonical= compute entropy
and define temperature at equilibrium as

We have to compute the multiplicity g(n,N) of number of states with energy U= number of combinations of N positive
integers such that their sum is n

Same problem as coefficient of tn  in expansion  (cf Kittel chap. 1)

=>

Using Stirling approximation
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Counting Number of States
From first principles (Kittel-Kroemer)

In cubic box of side L (perfectly conductive=>E perpendicular to surface)

with the wave equation constraint

=> ω has specific values! (“1st quantification”)
 2 degrees of freedom  (massless spin 1 particle)

("2nd quantification")

=> number of states in mode ω is  2xnumber of integers satisfying  wave equation constraints
Sum on states can be replaced by integral on quadrant of sphere of radius squared
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Fluxes

Energy density
So far energy density integrated over solid angle. If we are interested in energy density traveling

traveling in a certain direction, isotropy implies

Note if we use ν instead of ω

Flux in a certain direction
 (Energy /unit time, area, solid angle,frequency)

Flux through a fixed opening
(Energy /unit time, area,frequency)
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Stefan-Boltzmann Law
Total Energy Density***

Integrate on ω

Change of variable

Total flux through an  aperture***
Integrate Jν
= multiply above result by c/4

 Stefan-Boltzmann constant!
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Spectrum at low frequency

 Rayleigh-Jeans region (= low frequency)

Power / unit area/solid angle/unit frequency
=Brightness

Power emitted / unit (fixed) area

Power received from a diffuse source

Detected Power (1 polarization)

Antenna temperature
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Applications
Many!

e.g. Star angular diameter
Approximately black body and spherical!

Spectroscopy =>Effective  temperature
Apparent luminosity l =power received per unit  area
             

 But power output

=> Baade-Wesserlink distance measurements of varying stars
    • Oscillating stars (Cepheids, RR Lyrae)
    • Supernova

Luminosity/temperature  variation

Doppler

If spherical expansion
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Entropy, Number of photons
Entropy

• Method 1  (Kittel) use thermodynamic identity+ 3rd law
at constant volume

• Method 2 :  sum of entropy of each mode

Remembering density of states

Finally
Number of photons
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Definition: A body is black if it absorbs all electromagnetic 
radiation incident on it

Usually true only in  a range of frequency

e.g. A cavity with a small hole appears black to the outside

Detailed balance: in thermal equilibrium, power emitted= power received!
Otherwise temperature would change!

Consequence: The spectrum of  radiation emitted by  a black body is the “black
body” spectrum calculated p. 4.

                       We could have inserted a filter
Absorptivity, Emissivity:

Absorptivity =fraction of radiation absorbed by body
Emissivity = ratio of emitted spectral density to black body spectral density.

Kirchhoff: Emissivity=Absorptivity
Applications: Johnson noise of a resistor at temperature T

Superinsulation (shinny)

Cavity Black
Body

Proof :  
c
4

AuBB =
c
4

Aucavity ⇒ uBB = ucavity

uBB( )d = ucavity( )d

received power = a( )uBB( )d = emitted power = e( )uBB( )d
a( ) = e( )

Rayleigh − Jeans => Spectral density = kBT ⇒
d Vnoise

2

d
= 4kBTR

Detailed Balance: Kirchhoff laws

Black
Body

Grey
Body

We will come back to this !
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Phonons in a solid
Phonons:

Quantized vibration of a crystal
described in same way as photons

If s phonons in a mode

mean occupancy
Sum on modes (3 polarizations)

But wave length smaller than lattice spacing is meaningless

<=> solid is finite: If N atoms each with 3 degrees of freedom,  at most 3N modes

Debye approximation:  • isotropic

                             •
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Phonons in a Solid

Debye law
VD( )
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Applications

Calorimetry: Measure energy deposition by temperature rise

Bolometry: Measure energy flux by temperature rise

 Chopping e.g., between sky and calibration load

Very sensitive!
Heat capacity goes to zero at low temperature
Fluctuations

Wide bandwidth (sense every frequency which couples to bolometer)

Study of cosmic microwave background
Bolometers

Search for dark matter particles

T =
E

C
⇒ need small C

∆T =
∆F

G
⇒ need small G but time constant =

C

G
 limited by stability ⇒ small heat capacity C

C ≈ T3

E = kBT2C ∝ T

5
2 M

1
2

4K → 300mK →100mK
170g at 20mK

F

E

Heat Capacity

Sky

Load

Heat Conductivity


