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Abstract

...doesn’t work. Which is a surprising result. The Euler transformation of
alternating series is known to improve numeric convergence. Sometimes. Applied
to the zeta-like series

M f (s) =
∞

∑
n=1

f−s
n

for fn a completely multiplicative arithmetic function, it fails. The intended ques-
tion to be posed is: what classes of fn result in M f (s) obeying the Riemann hy-
pothesis? A numerical survey addressing this question seems straightforward, if
only the summation can be re-written to converge quickly in the critical strip. Eu-
ler re-summation is a basic, simple trick for achieving this. It works like a charm,
for fn = n, and utterly fails otherwise.

Introduction
A completely multiplicative sequence is an arithmetic function fn taking values on
the natural numbers n and being a homomorphism preserving the factorization of the
integers: namely, fnm = fn fm holds. By convention, f : N→ C. Famous examples
include fn = n−s and fn = χ (n) the Dirichlet characters. Of course, the divisor function
and many other classical functions from number theory are known.

The Riemann hypothesis famously concerns the zeta function

ζ (s) =
∞

∑
n=1

1
ns

and analogously the Dirichlet series

Lχ (s) =
∞

∑
n=1

χ (n)
ns

How far can the hypothesis be extended? What other classes of sequences obey it?
A natural conjecture is that it has something to do with the completely multiplicative
nature of the series. Thus, an object worth consideration is the analogous series

M f (s) =
∞

∑
n=1

f−s
n (1)
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given a completely multiplicative arithmetic function fn. Several questions can be
posed: Where are the zeros of M f (s)? What sort of functions fn result in zeros on the
critical line? How general is the setting for the Riemann hypothesis?

Recall that the homomorphism fnm = fn fm completely determines the value of f on
composite integers; thus, a completely multiplicative function is completely specified
by its values on the set of primes P, i.e. by f : P→ C. It is not further constrained;
there are uncountably many completely multiplicative functions.

Numerical exploration
Can we even get off the ground, here? Such a general setting is so broad that it’s hard to
find a place to start. Numerical exploration might provide quick, easy insights. Perhaps
a simple place to start would be a perturbation of the primes

fp = p(1+ ε) (2)

for some small (real or complex) ε .
Numerical exploration requires numerically stable convergent series. How might

one find one? Given some generic sequence fp ≥ 1, it would seem likely that eqn.
1 (depending on the sequence) has a pole at s = 1. This obstructs naive summation;
to get started, one needs some form of analytic continuation, or some re-summation
that converges for ℜs < 1. The first obvious, simple trick is to create a conditionally
convergent alternating series, analogous to the Dirichlet eta. It is easy to show the
identity:

M f (s) =
1

1−2 f−s
2

∞

∑
n=1

(−1)n+1

f s
n

where (depending on the sequence) the sum on the right might be expected to be condi-
tionally convergent for ℜs > 0. As written, it is also clear that the rate of convergence
is far too slow for numerical exploration.

The convergence of alternating series can often be improved by means of Euler
summation. In this particular case, it seems promising to write

E f (s) =
∞

∑
n=1

(−1)n+1

f s
n

=
∞

∑
n=0

1
2n+1

n

∑
k=0

(
n
k

)
(−1)k

f s
k+1

(3)

with the right-hand side being tame enough for numerical exploration.
Or so one might hope. The results surprised me.

• When fp = p then the sum converges quickly and easily. Using arbitrary-precision
numerics, asking for varying degrees of precision, exploring the critical strip
0 < ℜs < 1, there’s no particular problem.

• When fp = p(1+ ε) for |ε| > 0 the summations start out reasonably enough,
and then becomes poor, verging on non-existent, soon offering no advantage at
all over brute-force summation of the alternating series.
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These statements can be made more precise. Consider the individual terms

tn =
1

2n+1

n

∑
k=0

(
n
k

)
(−1)k

f s
k+1

For ε = 0, the re-summation is known to yield a globally convergent series for the
Riemann zeta, as proven by Helmut Hasse in 1930; a modern treatment is given by
Sondow[1], showing uniform convergence on compact sets. Numerically, what this
means is that, for large enough n, that

tn (ε = 0)→ O
(
2−n)

as a numerical observation (and not as an analytic claim; but the proof of uniform con-
vergence says about as much.). Each term gets smaller by almost a factor of two. At
that rate, it does not take particularly long to converge well. Convergence is exponen-
tial.

This does not happen for |ε| > 0. For the first few terms, one does see a similar
behavior:

tn (|ε|> 0)∼ tn (ε = 0)

can be seen for a handful or few dozens of terms, depending on ε . This soon disappears,
being replaced by

tn (|ε|> 0)∼ 1
f s
n

(4)

That is, the Euler series transformation trick provides no acceleration at all.
That’s very very interesting. This requires some thinking ....

Euler Transformation
A recap of the Euler transformation of series is in order. Given a convergent alternating
series, the Euler re-summation is given by

∞

∑
n=1

(−1)n−1 an =
∞

∑
n=1

1
2n+1

n

∑
k=0

(−1)k
(

n
k

)
ak+1

A simple visual derivation proceeds by re-summing with finite differences. One begins
simply by rewriting:

a1−a2 +a3−·· ·=
a1

2
+

1
2
(∆a1−∆a2 +∆a3−·· ·)

where ∆am = am−am+1is the difference between successive terms. The expression in
parenthesis is again an alternating series, so the re-summation is repeated. One defines
the finite difference ∆nam recursively as

∆
nam = ∆

n−1am−∆
n−1am+1

terminating the recursion by ∆0am = am. The re-summation is now
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∞

∑
n=1

(−1)n−1 an =
∞

∑
n=0

∆na1

2n+1

and it is straight-forward to invoke the binomial theorem to obtain the finite differences
in terms of binomial coefficients

∆
nam =

n

∑
k=0

(−1)k
(

n
k

)
ak+m

A rich class of results can be obtained from algebraic re-arrangements, particularly
when the an be be interpolated by a function, viz. an = f (n) for some complex-analytic
function f (z) on the complex plane. In such a case, the re-summtion suggests a New-
ton series, which in turn link to the Newton-Mellin-Poisson cycle, as noted by Flajolet
and Sedgewick.[2] This opens the path for the application of tools from analytic com-
binatorics.

The Newton interpolation formula is

f (z) =
∞

∑
n=0

(−1)n
(

z−1
n

)
∆

na1

but it is well-defined only when the finite differences are well-behaved. Returning to
the perturbed prime sequence of eqn 2, the numeric evidence from eqn 4 indicates that

∆
na1 ∼

2n

f s
n

which promptly overwhelms the binomial coefficient. The perturbed prime sequence
does not have a Newton interpolation. This is easily seen for z = 0, as

(−1)n
(
−1
n

)
= 1

or generally

(−1)n
(
−k
n

)
=

(
n+ k−1

n

)
applies to z− 1 = −k. For positive z, the situation is more subtle. In essence, the fn
are extremely “jagged”, as a sequence – when n is a composite number, having many
factors, it becomes combinatorially large: fn = n(1+ ε)Ω(n) where Ω(n) is the number
of prime factors of n, with multiplicity. When Ω(n) is large, so then fn is far out of line
from a placid linear progression, and the interpolant is forced to interpolate ever-wilder,
spikier swings.

Conjectures
This suggests new questions: for which completely multiplicative functions fn does a
well-behaved Newton series exist? If the Newton series is well-behaved, then does it

4



follow that eqn 3 is uniformly convergent on compact domains? And finally: if the
re-summation is uniformly convergent on compact domains, does it then follow that
the zeros lie in vertical strips, if not on vertical lines?

The use of the plural in the last conjecture follows from classical identities for the
Liouville lambda λ (n), which is completely multiplicative, and has a Dirichlet series

∞

∑
n=1

λ (n)
n−s =

ζ (2s)
ζ (s)

so that the corresponding critical line lies at 2s = 1+ iτ . Similarly, for the divisor
function σα (n) generates the Dirichlet series

∞

∑
n=1

σα (n)
n−s = ζ (s)ζ (s−α)

so that the zeros appear on two vertical lines. Note that the divisor function is multi-
plicative, but not completely multiplicative.

The first conjecture is too strong: the Newton series for the Liouville lambda
and the divisor function are effectively undefined: the finite differences grow without
bound. The second conjecture is much weaker than the first: for the Liouville lambda,
the finite differences grow as

∆
n
λ (1)∼ 2n

and so it doesn’t have a well-behaved Euler re-summation. But it does make it con-
ceivable that an ill-behaved Newton series might still have a reasonable Euler re-
summation: the inverse-power-of-two factor in the Euler re-summation can hide some
amount of mis-behavior.

The conclusion seems to be that summability does not have a direct influence on
the Riemann hypothesis: it seems to be a nice ingredient, but not a necessary one.

Conclusion
The Riemann hypothesis is a tough nut to crack, and part of that is that it is unclear
where to search. The zeta function has a number of remarkable properties; but which
of these, or which combination leads to a solution? One fairly evident conjecture is
that “it has something to do with multiplicative sequences”, which is what is being
explored here. Easier said than done. There are an uncountable infinity of completely
multiplicative functions, even if, as in the case of the Liouville lambda, one limits
oneself to only two values.
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