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ABSTRACT. An exploration of the non-square-integrable eigenfunctions of the quantum
simple harmonic oscillator. Unlike the square-integrable eigenfunctions, these form a con-
tinuous spectrum, and in fact a Riemann surface. The eigenfunctions themselves are given
by the confluent hypergeometric series (Kummer’s function).

1. INTRODUCTION

Like what the abstract says

2. SOLUTIONS

Introduction to basic notation. The classical hamiltonian:

H =
p2

2m
+

1
2

mω
2x2

Quantized by taking

p =−i~
d
dx

with classic square-integrable eigenfunctions forming a Hilbert space:

ψn(x) =
1√
2nn!

(mω

π~

)1/4
exp

(
−mωx2

2~

)
Hn

(√
mω

~
x
)

where n is an integer, and Hn are the Hermite polynomials

Hn(y) = (−1)n exp
(
y2) dn

dyn exp
(
−y2)

There are eigenfunctions:

H ψn =
(

n+
1
2

)
ψn

It is convenient to eliminate the extraneous constants. Writing

y =
√

mω

~
x

one then has that the Hamiltonian is given by

(2.1) H =
H
~ω

=
1
2

(
− d2

dy2 + y2
)

The remainder of this paper will be devoted to exploring the continuous-spectrum solutions
of this normalized Hamiltonian, that is, discovering and describing the solutions ψ(y) of

(2.2) Hψ = λψ

for λ ∈ C the complex plane.

Date: 29 November 2006.
1



englishTHE SIMPLE HARMONIC OSCILLATOR englishLINAS VEPSTAS

3. CONFLUENT HYPERGEOMETRIC SOLUTIONS

This section derives the confluent hypergeometric eigenfunctions. Let

ψ(y) = exp
(
−y2

2

)
ϕ(y)

Then the differential equation becomes

ϕ
′′−2yϕ

′+(2λ−1)ϕ = 0

Substituting z = y2 and η(z) = ϕ(y), one obtains the differential equation

zη
′′+

(
1
2
− z

)
η
′−

(
1−2λ

4

)
η = 0

which may be immediately recognized as Kummer’s differential equation for the confluent
hypergeometric functions:

zη
′′+(b− z)η

′−aη = 0

which has solutions

M(a,b;z) =1 F1(a,b;z) =
∞

∑
n=0

(a)n

(b)n

zn

n!

and

U(a,b;z) =
π

sinπb

[
M(a,b;z)

Γ(1+a−b)Γ(b)
+ z1−b M(1+a−b,2−b;z)

Γ(a)Γ(2−b)

]
where (a)n = a(a + 1) · · ·(a + n− 1) is the rising factorial. From the point of view of
presenting solutions to equation 2.2, there are only two linearly independent solutions.
These are

ψ1(y) = e−y2/2M
(

1−2λ

4
,

1
2

; y2
)

and

ψ2(y) = ye−y2/2M
(

3−2λ

4
,

3
2

; y2
)

The appropriate normalization for these two solutions is not yet clear, since neither is
square-integral along the real y-line, except when λ = n+1/2, of course.

A few symmetries may be noted. The Hamiltonian 2.1 changes sign under the substitu-
tion y→ iy, and so the eigenvalues flip sign: λ→−λ. Thus, “rotating” the eigenfunctions
by 90 degrees corresponds to flipping the sign of the eigenvalue.

4. LADDER OPERATORS

The traditional ladder operators for the simple harmonic oscillator may be written as

a† =
1√
2

(
y− d

dy

)
for the raising operator, and

a =
1√
2

(
y+

d
dy

)
for the lowering operator, so that

H =
1
2

(
− d2

dy2 + y2
)

= a†a+
1
2
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FIGURE 3.1. Graph of ψ1 and ψ2

This line graph shows ψ1(x) and ψ2(x) for x real, and λ = 4.505. This eigenvalue is very
near 4.5, at which point ψ1 would be a product of the Hermite polynomial H4(x) and
exp−x2/2. However, being slightly off ths square-integrable eigenvalue, the resulting

eigenfunctions diverge exponentially outside of this narrow oscillatory region.

Under the action of these operators, one has that

aψ1(λ) =
√

2
(

1
2
−λ

)
ψ2(λ−1)

and

aψ2(λ) =
1√
2

ψ1(λ−1)

Note that the lowering operator has only one function in its kernel, namely ψ1 for λ = 1/2;
this is the ground state of the traditional harmonic oscillator. For all other eigenvalues, the
lowering operator is a bi-directional shift operator. A similar observation applies for the
rasing operator, for which one has

a†
ψ1(λ) =

√
2
(

λ+
1
2

)
ψ2(λ+1)

and

a†
ψ2(λ) =− 1√

2
ψ1(λ+1)

and so again, the operator is a bi-directional shift, with only one function in its kernel,
namely ψ1 for λ =−1/2.
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FIGURE 3.2. Phase plot of ψ1

This figure shows a phase plot of ψ1(y) for λ = 4.5, which corresponds to the integer
eigenvalue of n = 4 for the standard quantum harmonic oscillator. The square represents

values of y on the complex plane, bounded by the square −6≤ℜy≤ 6 and −6≤ ℑy≤ 6.
The colors denote values of argψ1, with black representing argψ1 =−π, green argψ1 = 0
and red a phase of +π. Zeros are clearly visible as points around which the full spectrum
of colors wrap around. This images shows four zeros, arranged in the real axis, which are

located exactly at the zeros of the Hermite polynomial H4(y). As the image suggests,
there are no other zeros on the complex y plane. The images for other values of

λ = n+1/2 for positive integer values of n are qualitatively similar, with the exception
that addtional zeros appear on the real axis, along with similarly appropriate asymptotic

behaviour along the imaginary axis,
The figure for λ =−4.5 is identical to this, except that it is rotated by 90 degrees. This is

because a subssistution of y→ iy takes λ→−λ.
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FIGURE 3.3. Phase plot of ψ1

This figure shows a phase plot of ψ1(y) for λ = 4.505. The domain and color scheme are
exactly as those for the image 3.2. Unlike image for λ = 4.5, there are additional zeros.
Two appear on the real axis, and, more notably, a hyperbola-like arrangement of zeros

asymptotically approaching the 45-degree diagonals. As the graphic suggests, there are an
infinite number of these. The asymptotes can be explained by noting that exp(y2/2)

behaves like the sine function along the y = r exp±iπ/4 diagonals. The images for other
real values of λ are qualitatively similar, provided that λ is not a half-integer. It should be
noted that the appearance of the zeros at the diagonals is completely discontinuous as a

function of λ, in that the figure for λ = 4.5+ ε for arbitrarily small ε 6= 0 will look
essentially like this figure, while that for ε = 0 will be that of figure 3.2.

Although these eigenfunctions cannot be square-normalized to give them a “natural”
scale, they can be scaled so that they appear more symmetric under the action of the ladder
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FIGURE 3.4. Phase plot of ψ1

This figure shows a phase plot of ψ1(y) for λ = 4.6+ i3.0. The domain and color scheme
are exactly as those for the image 3.2. Unlike image for λ = 4.505, there are no longer

any zeros on the real axis. In a qualtitative sense, the number of zeros have remained the
same; the location have changed. The 45-degree diagonal asymptotes appear to be

unaltered. Figures for similar nearby values of λ are qualitatively similar.

operators. Write

χ1(λ) = Γ

(
2λ+1

4

)√√√√ 2λ

Γ

(
2λ+1

2

) exp
(

iπλ

2

)
ψ1(λ)

and

χ2(λ) = Γ

(
2λ−1

4

)√√√√2λ
(
λ− 1

2

)
Γ

(
2λ−1

2

) exp
(

iπ(λ−1)
2

)
ψ1(λ)
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FIGURE 3.5. Phase plot of ψ1
(√

y
)

This figure shows a phase plot of ψ1(
√

y) for λ = 4.5. The color scheme is exactly as
those for the image 3.2, while the domain is −40≤ℜy,ℑy≤ 40. The square-root was
choosen out of recognition that the dominant hyperbola-like features of the previous

graphs are nothing other than the typical feature of a phase plot of the square of domain.
Removing this distraction more clearly shows the primary qualities of ψ1. As in the figure
3.2, the only zeros are on the real axis. This is in sharp contrast to any value of λ which is

not exactly a half-integer.

Then one has the far more symmetric relations

aχ1(λ) =

√
λ− 1

2
χ2(λ−1)

and

aχ2(λ) =

√
λ− 1

2
χ1(λ−1)
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FIGURE 3.6. Phase plot of ψ1
(√

y
)

This figure shows a phase plot of ψ1(
√

y) for λ = 4.6+ i4.0. The color scheme and
domain is exactly as for the image 3.5. As for any λ that is not precisely a half integer,

there is an arrangement of zeros along the vertical. As for any λ with an imaginary part,
there are no zeros on the real axis.

Substituting λ = n + 1/2, it can be seen that these have precsely the normalization used
for the canonical half-integer-valued eigenfunctions. The raising operators also have the
standard form:

a†
χ1(λ) =

√
λ+

1
2

χ2(λ+1)

and similarly for the exchange 1↔ 2.
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5. COHERENET STATES

The eigenfunctions of the shift operators are known as coherent states. These are more
easily constructed by using an alternate normalization for the states. Let

η1,2(λ) =

√
Γ

(
λ+

1
2

)
χ1,2(λ)

Then the lowering operator has the simpler form aη1(λ) = η2(λ−1) and aη2(λ) = η1(λ−
1) on these states. For λ 6= 1/2, eigenstates of the shift operator may be written as

φθ(q) =
∞

∑
n=−∞

qn
(

η1(λ+n)+ eiθ
η2(λ+n)

)
so that one has

aφθ(q) = qe−iθ
φθ(q)

Formulated in this way, one has an explicit 2πdegeneracy in the eigenvalue spectrum. Or
do we ??

6. TODO

Monodromy
Theta function representation

7. STRANGE IDEAS

What is
fn,p(y) = exp(yp)

dn

dyn exp(−yp)

for general values of p???
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