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ABSTRACT. XXX OBSOLETE XXX HALF-BAKED XXX
The ideas described herein are confusingly presented, and are half-baked, incomplete,

incoherent. Essentially all the ideas herein are presented more sensibly, more coherently
in other papers on this website.

Much of what was originally in this paper has been edited out, and moved to another
paper, which presents the ideas in a much clearer fashion: see [9].

XXX OBSOLETE XXX HALF-BAKED XXX
This paper reviews connections between the Bernoulli map, the baker’s map and the

Ising model. The Bernoulli map is possibly the simplest exactly solvable model of deter-
ministic chaos. Its Frobenius-Perron operator or transfer operator has a set of well-known
polynomial eigenvectors, given by the Bernoulli polynomials. Its also has a set of smooth
but non-integrable eigenvectors given by the Hurwitz zeta function. Alternately, it has a
set of fractal eigenvectors, of which the Blancmange or Takagi curve is one.

An even larger set of functions that are eigenvectors of the Bernoulli operator may be
obtained by considering a one dimensional lattice model, such as the Ising model. Func-
tions that are translationally invariant on a one-dimensional lattice are nothing more or less
than eigenvectors of the Bernoulli operator with eigenvalue one. These functions, when
graphed on the real number line, are in general not even continuous.

Functions that are continuous-nowhere are traditionally considered to be intractable,
and usually, very little can be said about them. By identifying them with a set of simple,
tractable operations on a one-dimensional lattice model, one obtains a set of tools with
which to manipulate and analyze such functions.

A notable example of a discontinuous-everywhere function that is not traditionally in-
tegrable, yet, when properly defined, can be integrated, is derivative of the Minkowski
question mark function. It, and its generalizations are known as “multi-fractal measures”.
Thus, this paper explores what it means to “take the derivative of the question mark func-
tion”. As a side-effect, all of the various functions that occur have a particular fractal
self-symmetry, which can be made explicitly manifest; it is the symmetry of the dyadic
monoid, that is, the period-doubling subset of the modular group SL(2,Z).

Much of this paper is expository, reviewing well-known terminology and constructions
and/or touching on related topics the author has previously written on. There is one new,
novel result however: this paper gives an exact expression for the translation-invariant
lattice potential for the Minkowksi Question Mark function; this potential is not the Kac
potential, as conjectured by Mayer[5]. The exact solution is not only non-local on the
lattice, it is also not a pairwise interaction. This result seems to doom the utility of lattice
methods for gaining analytical insight into the Question Mark function.

This document started as a research diary noting various results, and is haphazardly
structured.

AT THIS TIME, THIS PAPER MAKES SEVERAL POSSIBLY INCORRECT STATE-
MENTS, AND SEVERAL MORE MISLEADING REMARKS. PLEASE BE PATIENT
WHILE THE AUTHOR FIGURES OUT HOW TO BEST FIX THEM. CAVEAT EMP-
TOR.

This paper is part of a set of chapters that explore the relationship between the real
numbers, the modular group SL(2,Z), and fractals.

Date: 15 September 2006 (updated October 2008).
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1. INTRO

THIS IS A DRAFT WORK IN PROGRESS. The intro hasn’t been written yet, but if it
was, it would work like this:

Exactly solvable chaotic dynamical systems are interesting because they provide insight
into the behaviour of chaotic dynamical systems “in the large”. The simplest exactly solv-
able model of deterministic chaos is the iterated Bernoulli map[1]. It is a map of the unit
interval onto itself, given by

(1.1) b(x) = 2x mod 1

Picking some “random” irrational x and then iterating this map, one sees bn(x) bounce all
over the unit interval: the map is ergodic. One may compute correlation functions for it,
and other statistical measures.

One method for studying a chaotic map is in terms of its Frobenius-Perron or transfer
operator. The utility of the transfer operator can be introduced by an appeal to physics,
and the statistical mechanics of continuum systems. The argument goes as follows: while
iterated maps have a point dynamics that bounces all over the place, in nature, physical
observables are smooth. Therefore, one should study the dynamics of a smooth distribution
of particles under the action of chaotic operators. The transfer operator gives exactly such
an opportunity. It is defined as a certain map L : F →F where F is some collection of
functions on the unit interval. For example one may take F = P(x) the set of polynomials
in one variable, or F = L2([0,1]) the set of square-integral functions on the unit interval.
Given some iterated function (for example, b(x)), it is defined as the map

(1.2) L f = g

with f ,g ∈F such that, on a pointwise basis, one has

(1.3) g(x) = ∑
y∈b−1(x)

f (y)
b′(y)

where b′(y) is the derivative of b at y. When the pre-image b−1(x) is not a countable
collection of points, the sum may be replaced by an integral. The transfer operator can be
defined with varying degrees of sophistication and rigor, and can be found in many places
in the literature; simple, workable definitions can be found in [1, 8]. In short, while iterating
a function such as b(x) gives the time evolution of a point, iterating the operator L gives
the time evolution of a smooth distribution. A general feature that is physically appealing
is that the transfer operator typically has only one eigenstate associated with an eigenvalue
of 1: this is the ground state or equilibrium state. All other eigenstates are associated
with real eigenvalues that are less than one: upon iteration, the associated eigenstates must
necessarily die away geometrically. This behaviour is physically appealing: it describes
the approach to equilibrium of a system that may initially be far from equilibrium, and it
provides a set of time scales at which that approach is made.

The transfer operator of the Bernoulli map is called the Bernoulli operator LB and is
given by

(1.4) [LB f ] (x) = g(x) =
1
2

(
f
( x

2

)
+ f

(
1+ x

2

) )
When F is the space of polynomials, the eigenfunctions of LB are the Bernoulli polyno-
mials Bn(x), and are associated with the eigenvalues 2−n[3, 1, 6]. The constant function
B0(x) = 1 is associated with the eigenvalue 1; it is the only non-decaying eigenfunction
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associated with the iteration of LB: the equilibrium state is a constant distribution. The
spectrum of LB is discrete.

If one considers a larger space of functions F , then one finds that LB has a larger
set of eigenvalues. For example, if one considers the collection C ∞(0,1) of infinitely-
differentiable functions on the open unit interval (i.e. not containing the endpoints), then
the spectrum of LB is continuous, and takes on all values in the unit disk |λ | < 1 of the
complex plane. The eigenstates are given by the Hurwitz zeta function[6]. The spectrum
is degenerate, in that there are multiple eigenstates associated with each eigenvalue. Cu-
riously, linear combinations of the Hurwitz zeta function may be taken, constructing the
fractal Blancmange or Takagi curve. That is, for every eigenvalue on the complex unit disk,
there is a corresponding fractal curve that is an eigenvector of LB, with that fractal having
a dyadic self-symmetry. The Takagi curve is continuous but differentiable nowhere; how-
ever, it is bounded, and it is integrable. In this larger space, there is still only one unique
eigenvector with eigenvalue one: this is still the constant function.

There is yet a larger space of functions F that one may consider, and this is the space
of functions that are continuous nowhere on the unit interval and are unbounded in mag-
nitude, but are, in a certain sense, integrable. In classical analysis, such functions are
outcasts, seemingly intractable and uncoercible. However, they may in fact be constructed
in a very natural fashion: these are functions on the state space of a one-dimensional lat-
tice model. They may be mapped to the unit interval with the dyadic mapping, and when
mapped in this way, are plainly discontinuous and generally beastly. However, the lattice
posses an alternate topology, which makes these functions not only manipulable but well-
studied. Examples of functions on the lattice include the energy of the Ising model, or the
Boltzmann probability distribution of the set of states of the Ising model. In the lattice
model, the Bernoulli map corresponds to nothing more than the shift of the lattice by one:
a translation of the lattice. The eigenvectors of LB are simply functions whose magnitude
changes geometrically as the lattice is shifted by one: LBis just the shift operator. Curi-
ously, there is now a very large class of functions associated with the eigenvalue one: this
is the class of translation-invariant functions.

The remainder of this paper is devoted to an exposition of the lattice-model construction
of eigenstates of the transfer operator. An exploration is made not only of the Bernoulli
map, which corresponds to a one-sided lattice, but also to the baker’s map, which corre-
sponds to a two-sided lattice. Since such continuous-nowhere functions seem outrageous,
a motivation for this study is provided in the next section. It is a “multi-fractal measure”,
the derivative of the Minkowski question mark function, which is continuous nowhere, and
unbounded, and yet is integrable. As multi-fractals occur naturally in physical systems,
one cannot simply dismiss such crazy eigenvectors of LB as unphysical: they are not only
physical, but actually observed.

2. SPIN LATTICE MODELS

In ergodic theory, there is a well-known set of isomorphisms and correspondences be-
tween one dimensional spin lattice models (such as the Ising model or Potts model), sub-
shifts of finite type, and motion on hyperbolic surfaces. See, for example, [5] for a review.
This section reviews a small portion of this theory in a simplified manner, applying it in a
concrete fashion to the question mark function.

The importance of lattice models to the study of dynamical systems arises from the
fact that the natural topology of the one-dimensional lattices, the so-called “cylinder set
topology” is a refinement of the natural topology of the real number line. As such, it
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allows for the construction and consistent discussion of a much larger class of functions
than the natural topology of the real number line allows. In particular, functions which are
well-behaved in various ways (such as being smooth, or being symmetric) in the lattice
topology are non-differentiable and non-integrable when mapped to the real number line.
Thus, the cylinder set topology allows for a natural setting for the discussion of objects that
otherwise appear to be difficult to manipulate.

Possibly the very simplest exactly solvable model of deterministic chaos is the Bernoulli
map[1]. The Bernoulli map can be understood to be the (one-sided) shift operator on the
set of (infinite) string strings in two letters. The Bernoulli map, like all discrete dynamical
systems, can be studied in terms of its Frobenius-Perron operator or transfer operator. The
transfer operator is a curious construction. Consider, for example, the set of all possible
functions from the set of strings in two letters, to the real numbers. The transfer operator
is then a representation of the the shift operator on this function space. That is, it describes
what happens to the function when the underlying string is shifted by one. Transfer opera-
tors, being operators, may be decomposed in terms of eigenvalues and eigenvectors. Often
one is interested in the polynomial or holomorphic eigenvectors. One may also study the
square-integrable eigenvectors. Sometimes, the polynomial eigenvectors are a subset of
the square-integrable eigenvectors, sometimes not. The transfer operator may be unitary in
one function basis, but not in another; it need not in general be either a compact operator
or a trace-class operator.

If one considers a one-dimensional lattice where each lattice location can take one of
two values, then the Bernoulli operator is nothing more and nothing less than the shift or
translation operator on this lattice. Lattice models provide a very natural way to construct
translation-invariant functions on them. But of course (and as will be shown), a translation-
invariant function on a lattice is nothing more and nothing less than an eigenvector of the
transfer operator, with an eigenvalue of one: indeed this is the definition of translation in-
variance. The set of translation-invariant functions on a one-dimensional lattice is much,
much larger than the set of square integrable eigenvectors of the transfer operator, which
is in turn much larger than the set of polynomial (or holomorphic) eigenvectors of this op-
erator. Thus, the study of lattice models provides a broader context for the discussion of
dynamical systems, and the lattice model topology allows for the discussion and manipula-
tion of functions (such as the derivative of the Minkowski function) that are not otherwise
easy to manipulate.

The Bernoulli map is a one-sided shift operator, and it does not have a time-reversible
dynamics. It corresponds to the shift operator on a lattice with extends only in one di-
rection. The baker’s map provides a simple, solvable time-reversible chaotic dynamical
system. The baker’s map corresponds to a bi-infinite one-dimensional lattice, where the
shift can be made to the right or to the left. The connection to the Ising model is, in one
sense, shallow: the Ising model just happens to show how to construct translation-invariant
functions on a lattice, and thus construct eigenvectors (with unit eigenvalue) of the transfer
operator. In another sense, the connection is much deeper: by understanding the cylinder
set topology, and the fractal self-similarities that it generates, one may gain a better under-
standing of the structure of functional integrals in quantum field theory. The ideas are not
disjoint: rather the methods and theorems from one field of study can be imported to better
understand the other.

2.1. Overview. Consider the one-dimensional, two-state lattice model, with the lattice
having a countable infinity of lattice positions. The set of all possible states of the lattice
is the set of all possible (infinitely-long) strings in two letters. This set of strings is a very
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large set: it has ℵ1 = 2ω elements in the set. The cardinality of this set is the cardinal-
ity of the continuum. The (classical) Hamiltonian is a function that assigns a real value
to each possible element of this set. The Hamiltonian is not the only physically interest-
ing function; in physics, one may also be interested in the partition function, the mean
magnetization, ore correlation functions. In mathematics, there are yet more interesting
aspects.

When discussing such lattice models, a problem arises: how should one label the points
in this set? Each corresponds to an infinite string in two letters. This set is not enumerable,
so one cannot label them with integers. Operations with respect to the label, such as sum-
mation or integration, are potentially troublesome. Summation requires a countable label;
summation is defined only on countable sets. The analog of summation for uncountable
sets is integration; however, integration cannot be simply or naively defined on uncountable
point-sets, and requires the framework of measure theory to be mathematically rigorous.

The following sections will develop the two-state one-dimensional lattice model, pri-
marily with the goal of elucidating the structure of Minkowski’s question mark function.
It is important to realize that lattice models can be generalized in a large variety of ways,
and many of these generalizations have important implications for physics, and are math-
ematically interesting for a large variety of reasons. Almost none of these generalizations
or connections are mentioned below; they can be found in [5]. The focus here really is
intended to be the question mark function.

The discussion will explore several directions, focusing on the natural topology of one-
dimensional lattice models, and relating that topology to the Cantor set, and the natural
topology on the real numbers. The full exposition requires the application of measure the-
ory and sigma algrebras to the one-dimensional lattice models; these ideas are presented
here as simply as possible, assuming little prior acquaintance. One can also gain consider-
able intuition by sticking to naive point-set topology, that is, by working with a lattice of
finite size N and imagining the possibility of taking the limit of N → ∞. The finite-sized
lattice provides a simple, concrete system for discussion, and is thus presented first, in the
following section.

2.2. Naive lattice theory. The naive approach to lattice theory is to work with a finite-
sized lattice, one with N lattice points, and then attempt to perform the N→∞ limit. In the
following, we work with a one-dimensional, two-state lattice model, where the two states
are alternately denoted by A,B or 0,1 or L,R or −1,+1, as suitable for the given context.

Given a lattice of N sites, there are 2N different possible lattice configurations, that is,
2N different possible strings in two letters. One defines an interaction potential between
neighboring spins in the lattice. For the traditional Ising model, the interaction potential is

(2.1) V (σ) = Jσ0σ1 +Mσ0

Here, σ = (σ0,σ1,σ2, . . .) ∈ 2N is one possible configuration, and σk ∈ {−1,+1} is the
spin at lattice location k. The Ising potential consists of a nearest-neighbor interaction,
with energy J ∈ R and the interaction of the spin with an external magnetic field M. The
physical interpretation of the words “spin” and “magnetic field” or even “energy” is not
important for the development here; these are merely the terms used by physicists to label
these quantities.

The total energy of a given lattice configuration σ is given by

(2.2) H(σ) =
N

∑
k=0

V (τk
σ)
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where τ is the shift operator: τ(σ0,σ1,σ2, . . .) = (σ1,σ2,σ3, . . .). That is, one takes the
interaction potential to be translation invariant, and so sums over all nearest-neighbor in-
teractions. In fact, the class of translation invariant interactions can be shown to be isomor-
phic to a certain class of measure-preserving dynamical systems, again, see [5] for details.
The above summation glosses over boundary conditions, that is, it ignores what happens
when k = N. This gloss can be hand-waved away by arguing that it makes no difference to
the N→ ∞limit. Similarly, the lattice is considered to extend only to the right, i.e. to exist
for non-negative k values only; this is another gloss that makes little practical difference,
and is useful to keep notation simple and unburdened.

Quantities, such as the energy, may be readily graphed by identifying lattice locations
with bit positions in the bit-string representation of a dyadic rational. That is, one repre-
sents the lattice configuration σ with the rational number x(σ) given by

(2.3) x(σ) =
N

∑
k=0

(
σk +1

2

)
2−(k+1) =

N

∑
k=0

bk2−(k+1)

where bk ∈ {0,1} is the k’th binary digit of x. The shift operator leads to the identity

2kx(σ)−
⌊

2kx(σ)
⌋

= x
(

τ
k
σ

)
A graph of the energy, as a function of x, is shown in the figure 2.1. An obvious fractal-

like shape is readily visible, and it is straight-forward to give an explicit representation of
the action of the dyadic monoid on this fractal curve. This is given in a later section.

An important idea in statistical mechanics is not only the energy of each configuration
σ , but also a probability or likely-hood that it occurs in the “canonical ensemble” of all
possible configurations. This probability is given by the Boltzmann distribution or Gibbs
measure

(2.4) P(σ) =
1

Z(Ω)
exp(−βH (σ))

where the constant β is called the “inverse temperature” in physics. For this discussion,
the physical interpretation of these values is not particularly important; what is important
is that P(σ) can be interpreted as a probability (more precisely, a probability density func-
tion): it is non-negative, and with an appropriate normalization factor Z(Ω) (commonly
known as the partition function), it sums to one. Here, Ω = 2N = {σ} is used to denote the
set of all possible configurations. A graph of this probability function for the Ising model
is shown in figure 2.1.

The Gibbs measure has the remarkable and important property of giving a probability
weight to configurations σ such that the total entropy is maximized.

At least a superficial resemblance of the probability to the distribution of the Farey
numbers of figure ?? is readily apparent. This resemblance can be emphasized by graphing
the the cumulative distribution as a function of x(σ), that is, graphing

(2.5) F(y) = ∑
σ ;x(σ)<y

P(x)

A graph of the cumulative distribution is shown in the figure 2.2.

2.2.1. Fractal self-symmetry. In this section, we want to give explicit expression to the
apparent fractal self-similarity seen in the Ising model. To simplify the discussion, this
section assumes the limit N→ ∞, or at least that N is indeterminate when the N→ ∞ limit
is ambiguous or ill-defined. As before, the lattice is assumed to be one-sided: that is, it
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FIGURE 2.1. Ising Model Configuration Energy

This figure shows the energy of various configurations of the Ising model. A lattice with
ten lattice points is considered, so the total number of possible lattice states is 210 = 1024.

The energy of each of these possible lattice configurations is shown in green, while the
interaction energy is shown in red. The lattice states are labeled and ordered along the
horizontal axis by the rational number x = ∑

10
k=1 bk2−kwhere bk ∈ {0,1} is the lattice

configuration at the k’th location. The interaction energy, shown in red, is given by
V = 0.3(2b0−1)(2b1−1).

This figure shows the (un-normalized) partition probability P(σ) = exp(−H(σ)/kBT ) for
the same lattice and interaction as above. The temperature and units are taken such that

kB = T = 1.
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FIGURE 2.2. Ising Model Cumulative Distribution

This figure shows the cumulative distribution F(y) defined by equation 2.5, for the
probability distribution 2.4 for the Ising model interaction 2.1. As in the other graphs, the
lattice size is taken as N = 10, so that 2N = 1024 states are graphed. The Ising interaction

is taken with J = 0.3 and M = 0. The cumulative distribution is fractal, and its fractal
self-similarity can be given a precise expression. For comparison, the question mark

function is also graphed. Although the shapes are clearly different, none-the-less, this
begs the question: is there some interaction potential that can result in a perfect match?

starts at 0 and stretches off to the right, so that lattice positions can be labeled by non-
negative integers. The two-sided lattice is treated in a later section; while there are many
similarities, there are also important differences between the one-sided and the two sided
lattice.

Consider the behavior of the classical Hamiltonian 2.2 under the right shift of the lattice,
with a new spin s introduced to occupy the zeroth position. One then has

(2.6) H(s,σ0,σ1,σ2, · · ·) = V (s,σ0,σ1,σ2, · · ·)+H(σ0,σ1,σ2, · · ·)

Taking s =−1 and using the dyadic mapping 2.3, the above may be written as

(2.7) H
( x

2

)
= V

( x
2

)
+H (x)

while for s = +1 one has

(2.8) H
(

1+ x
2

)
= V

(
1+ x

2

)
+H (x)



LATTICE MODELS AND FRACTAL MEASURES 9

For the probability distribution, one has (after taking kB = T = 1)

(2.9) P
( x

2

)
= e−V (x/2)P(x)

and so on. As any true self-similarity, this can be iterated repeatedly, so that

(2.10) P
( x

2n

)
= P(x)

n

∏
k=1

e−V (x/2k)

For the Ising potential 2.1, the function V (x) takes a particularly simple form:

(2.11) VIsing(x) =


J−M for 0≤ x < 1

4
−J−M for 1

4 ≤ x < 1
2

−J +M for 1
2 ≤ x < 3

4
J +M for 3

4 ≤ x≤ 1

and so the probability distribution has a simple scaling:

(2.12) PIsing
( x

2n

)
= λ

nPIsing(x) for 0≤ x≤ 1
2

where λ = exp(M− J).
Another natural symmetry operation of the lattice is the exchange of spin values +σk↔

−σk. For the dyadic mapping, this corresponds to the exchange x↔ 1−x. Let the exchange
of spin values be denoted by the operation r (for reflection); the dyadic representation of r
is the function rD(x) = 1−x. Let the right shift operation, with an insertion of a spin of -1 at
the zeroth lattice position be denoted by g. The dyadic representation of g is gD(x) = x/2.
The operations g and r, taken as a free monoid (that is a free group, but with non-negative
powers only) generate the dyadic monoid. A synopsis of the properties of this monoid are
given below, after which the analysis of self-similarity resumes.

2.2.2. The dyadic monoid. Given operations g and r acting as representations of trans-
lation and reflection, one has in essence constructed everything that is needed to have a
fractal with dyadic symmetry. That is, one need only to recognize that g and r generate
the dyadic monoid of the modular group SL(2,Z). The elements of this monoid are of the
form

(2.13) γ = gargbrgc · · ·

where a,b,c, . . . are non-negative integers. This section provides a very brief synopsis of
the general properties of monoid elements γ; these properties are presented in greater detail
in [7, 8]. First, all such elements may be represented by the continued fraction

(2.14) γC =
1

a+ 1
b+ 1

c+···

Since every real number has an (essentially) unique representation in terms of continued
fractions (up to a Z2choice), this means the self-symmetries of the fractal may be labeled
by the real numbers. The generators g and r also generate walks on the infinite binary tree:
g may be taken to mean “always take the left branch” and r may be taken to mean “reverse
the sense of left and right”. Walks on the binary tree may also be represented as a sequence
of left, right moves. An arbitrary string in two letters L and R may be taken to be a real
number as well, which may be denoted by γD when the sequence of L,R moves take one to
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the same place as the series of g,r moves given by γC. That is, one has the representation
as a binary fraction

(2.15) γD =
0.000...0︸ ︷︷ ︸ 11..1︸︷︷︸ 00..0︸︷︷︸ 11..1︸︷︷︸ 00..0︸︷︷︸1..

a−1 b c d e

where L = 0 and R = 1.
The Minkowski question mark function is nothing more and nothing less than the func-

tion that relates γC to γD. That is,

(2.16) ?(γC) = γD

In terms of the generators, on has r(x) = 1− r(1− x), which is satisfied by the ques-
tion mark: (? ◦ r)(x) =?(1− x) = 1−?(x) = (r◦?)(x). The generator g has inequivalent
representations gDand gC for the dyadic and continued fraction representations, given by
gD(x) = x/2 and gC(x) = x/(x+1), so that one has

(2.17) (gD◦?)(x) =
?(x)

2
=?
(

x
x+1

)
= (?◦gC)(x)

To summarize, a general monoid element γ = gargbrgc · · · has two inequivalent represen-
tations as a real number.

Another important property is that both gD and gC can also be understood to be maps
from the unit interval to a specific sub-interval. This, for example,

(2.18)

γD(x)= (ga1
D rDga2

D rD...rDgaN
D )(x)=

1
2a1
− 1

2a1+a2
+

1
2a1+a2+a3

−...+(−)N+1 x
2a1+a2+a3+...+aN

maps the unit interval into a dyadic sub-interval. Use of continued fractions gives another,
different interval map for γC.

2.2.3. Self-similarity again. Returning to the self-symmetries of the classical lattice mod-
els, one can write transformation properties of the probability distribution as

(2.19) (P◦gD)(x) = P
( x

2

)
= e−V (x/2)P(x) = e−(V◦gD)(x)P(x)

and

(2.20) (P◦ r)(x) = P(1− x)

One may now ask for, and provide, the self-similarity transformation that corresponds to
the interval map 2.18. The iterated application of the above two equations then provides a
formula that relates the probability distribution on a sub-interval to the probability distri-
bution on the entire interval.

The simpler case, treated first, occurs when the potential is symmetric under the ex-
change of +σk ↔ −σk; that is, when V (x) = V (1− x). One may then easily show that
P(x) = P(1− x).
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Consider, for example, the interval given by grg3(x) = 1
2−

x
8 . Then, repeatedly applying

the above, one obtains

P
(

1
2
− x

8

)
= P

(
grg3)

= e−V (grg3)P
(
rg3)

= e−V (grg3)P
(
g3)

= e−V (grg3)e−V (g3)e−V (g2)e−V (g)P(x)(2.21)

where the argument x was dropped to keep the notation simple. This formula relates in a
precise (and computable) way the probability distribution on a sub-interval to the whole
interval. The process can be repeated to obtain a relation joining any dyadic sub-interval
to the whole interval.

For potentials that are not symmetric, the development has some additional complica-
tions. Write the potential as in terms of even and odd parts V (x) = Ve(x) +Vo(x), with
Ve(x) = Ve(1− x) and Vo(x) = −Vo(1− x). It follows from equation 2.2 that the en-
ergy can be decomposed in the same way. The probability is multiplicative, so one has
P(x) = Pe(x)Po(x) with Pe(x) = exp(−He(x)) and similarly for Po. Under inversion , one
then has P(1− x) = Pe(x)/Po(x).

The point here is that the probability distribution has a self-similar structure, one might
say a “covariant” structure, under the action of the dyadic monoid. The generators of the
monoid correspond to a right-shift on the one-sided lattice, and the inversion of spins.

—————–
The Ising model interaction potential has the general form

(2.22) V (σ0,σ1,σ2, · · ·) = σ0 f (σ1,σ2, · · ·)
for some general function f of the lattice spins σ1,σ2, · · · . Using the dyadic mapping , this
condition implies that

(2.23) V
(

1+ x
2

)
=−V

( x
2

)
In addition, for M = 0, the Ising model potential has symmetry under the exchange of
+σk↔−σk.

2.2.4. An exact solution. Figure 2.2 is suggestive, hinting that there may be some inter-
action that gives a cumulative probability distribution that is exactly the question mark
function. This interaction is derived, in a rigorous fashion, in [9].

2.2.5. Physical interpretation. A physical interpretation can be given to the appearance of
the question mark function. In the limit of large N, any lattice configurations with long
runs of repeated spins will have a very large energy (when J is taken positive), and thus
the exponential give such cases an exponentially small probability. In the dyadic mapping,
long runs of repeated spins correspond to dyadic rationals: that is, numbers whose first
few bits may vary, but whose binary expansion eventually terminates. Thus, for example,
1/2 has the binary expansion 0.10000 . . . and the long string of zeros leads to a large
energy and a small probability; in the limit of large N this becomes an infinite energy and
a zero probability. This effect can be clearly seen in the graphs. Of course, strings such
as 0.100 . . .001 are also disfavored; in the dyadic mapping, such strings are located “near”
1/2, and account for the pronounced dip in that area. Similarly, strings near zero and one
begin with (rather than end with) long runs of zeros and ones, and are also seen to be
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dis-favored. (There is a possibility in principle, which does not occur here, of Anderson
localized states, which are states having only a finite extent but still having finite energy.
Viewed as a subshift of finite type, localized states would be identified with instantons. The
point is that the binary expansion for 1/2 need not have an a priori probability of zero.)

Now, the question mark function maps the rational numbers to the dyadic rationals;
in the Kac model, the dyadic rationals have a zero thermodynamic probability. In this
sense, we may understand why the derivative of the question mark function is necessar-
ily zero at all rationals. Conversely, one may see that the derivative of the question mark
function is necessarily non-zero in those places where the strings of letter alternate, ad
infinitum. A special case of alternating strings are periodic strings: strings that may be-
gin with some random pattern, but eventually settle down to a periodic pattern. Periodic
strings are interesting because their energy can be precisely computed even in the limit
of large N. Periodic binary strings correspond to those rationals that are not dyadic; for
example, 2/3 = 0.10101 . . . These are the only such periodic strings, as there are no ir-
rationals that have a periodic binary expansion. For the question mark function, periodic
strings also have a significance: they correspond to the quadratic irrationals. This result
was noted hundreds of years ago (by Gauss??), in the study of Diophantine equations: the
solutions to the Diophantine equations are the quadratic irrationals, which may be specified
as continued fractions with a periodic component in the continued fraction. The question
mark function maps such periodic continued fractions to periodic binary strings: thus the
quadratic irrationals and the rational numbers are in perfect one-to-one correspondence.

2.2.6. The two-sided lattice. The two-sided lattice is the lattice that stretches off to both
the left and the right. The state of the two-sided lattice may be represented by two numbers
0 ≤ x,y ≤ 1 with x given by equation 2.3, and y likewise, but instead being a sum over
the negative indexes, starting at k = −1. The energy is a simple sum of the energy of the
half-lattices to the left and to the right, plus an interaction term involving spins on both the
left and right. The probability density is a product of the probability densities on the left
and right, adjusted by the interaction between the left and right sides.

The shift operator τ can be understood to be an operator that pops a bit off the right-
hand half lattice, and pushes it onto the left half-lattice. In the dyadic notation, it can be
recognized as the so-called Baker’s map, a map from the unit square onto itself that cuts
the square into two pieces, and stacks and squashes them. That is, given a pair of numbers
(x,y) in the unit square, one has

(2.24) τ(x,y) =
(

x+ b2yc
2

, 2y−b2yc
)

The Baker’s map can be studied in its own right as a discrete-time dynamical system, in
that τ can be taken to define the time evolution of a unit square over a single time-step.
The time evolution is invertible, in that the inverse map τ−1 is uniquely defined, being

(2.25) τ
−1(x,y) =

(
2x−b2xc , y+ b2xc

2

)
The inverse map can be seen to be identical to the forward map with x and y interchanged:
that is, translation to the left on the lattice is identical to translation to the right, with left
and right exchanged. One may say the map is PT -symmetric, with P standing for the
“parity exchange” operation x↔ y and T being the “time inversion” operator τ ↔ τ−1.

The two-sided lattice may be studied either as a lattice model, or as a dynamical system
with time evolution given by τ . It is interesting to juxtapose these two viewpoints. As
a lattice model, one is typically only interested in lattices for which the energy and the
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FIGURE 2.3. Ising Tartan

This tartan-like graph shows the Ising model probability density P(σ) for the two-sided
lattice using the dyadic mapping. That is, the lattice configuration

σ = (σ−N−1, · · · ,σ−2,σ−1,σ0,σ1,σ2, · · · ,σN) is represented by two numbers 0≤ x,y≤ 1
with

x(σ) =
N

∑
k=0

(
σk +1

2

)
2−(k+1)

and

y(σ) =
N

∑
k=0

(
σ−k−1 +1

2

)
2−(k+1)

The energy of a given configuration σ is computed using 2.2, with the sum running from
−N to +N, of course. The probability density P(σ) is given by equation 2.4.

The graph here assumes the Ising potential, with J = 0.3 and M = 0 for a finite sized
lattice with N = 10. The color choices here are such that black represents values where
P(σ) = P(x,y) are zero, blue are small values, with yellow and red being progressively

larger values. This fractal tartan is invariant under the Baker’s map.
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probability density are invariant under the action of the translation operator. That is, one is
interested only in the classical Hamiltonians of eqn 2.2 which are translation-invariant:

(2.26) H (τn
σ) = H (σ)

for all n ∈ Z.
Considered as a dynamical system, one is typically interested in the time evolution of

densities on the unit square, that is, of real-valued maps ρ : [0,1]× [0,1]→ R. The time
evolution of a density can be simply understood as a physical model, where the density is
a local density of some “dust” of points (x,y), with the time evolution of each point given
by τ . Thus, the time evolution of this “dust” or density is given by the transfer operator L
as

(2.27) [L ρ] (x,y) =
(
ρ ◦ τ

−1)(x,y) = ρ

(
2x−b2xc ,

y+ b2xc
2

)
The transfer operator is thus a map L : F →F where F is the set of functions on the
unit square. Clearly L is a linear operator. One is interested in characterizing the eigen-
functions and eigenvalues of L . The general idea behind equation 2.2 can be immediately
appealed to, to construct some of the eigenstates of L . That is, on considers functions
f (x,y) of the form

(2.28) f =
∞

∑
k=−∞

λ
kg◦ τ

k

given some function g(x,y) and number λ . Formally, such an f is an eigenstate of L with
eigenvalue λ : that is, L f = λ f . In practical terms, it is evident that not all possible λ can
make the sum convergent, although one might expect that λ on the unit circle |λ | = 1 of
the complex plane might lead to a convergent sum. Thus immediately, one deduces that
L must surely be a unitary operator. The unitarity of L makes intuitive sense in a certain
way: the map τ is invertible, and one expects time-reversible evolution to be described by
unitary operators. The figure 2.3 shows a tartan-like distribution corresponding to λ = 1
and g(x,y) = VIsing(x) the Ising model potential. Some additional tartans, for other values
of λ , are shown in figure xx.

The proper analysis of the transfer operator L requires that the function space F be
pinned down more precisely. Classic results on time-symmetry breaking [4, 2, 1] indicate
that whether or not L is unitary depends on the function space F .

XXX develop more fully. Talk about Gibbs states, which are the stationary states of the
transfer operator. Also talk about the decaying states i.e. the eigenfunctions of the transfer
operator that have an eigenvalue of less than one. Possibly review time-symmetry breaking
in the spectrum of the decaying states (i.e. the time-reversed decaying state is a growing
state).

2.2.7. Gibbs states and fractal self-similarity. The physics of the Kac model provides
insight to why the question mark has flat spots at every rational, and why its derivative is
non-vanishing on the irrationals: only the irrationals are mapped to strings that don’t termi-
nate. In physics, such states are called “Gibbs states”: they are the states that are associated
with a finite thermodynamic energy. From the above presentation, we can deduce that the
Gibbs states are in some sense “dense” in the space of all configurations; conversely, so
are the non-Gibbs states. A rigorous notion of “dense”, however, requires a topology; a
topology for the lattice models is constructed in a later section.

The Gibbs states may also be used to “explain” the fractal self-similarity of the question
mark function. Both the Ising and the Kac potentials are translationally invariant, in that the
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total energy does not change as the shift operator is applied to the lattice. The translation
invariance is an explicit part of the construction: it is used in equation 2.2 to construct
the total energy. In a certain sense, the Gibbs states are precisely those states that are
translationally invariant. That is, if one chooses some Gibbs state, and then chops off the
leading binary digit, one must necessarily have another Gibbs state.

At first blush, the matching of real numbers to lattice model configurations given by
the dyadic map of equation 2.3 may seem arbitrary: one might imagine a large class of
maps that could connect these spaces. The seeming fractal nature of the problem may be a
trick of the mind, wrapped up in the mapping of equation 2.3 instead of being intrinsic to
the physics of the configuration space. This concern raises two important questions: does
there exist a non-fractal mapping from the space of configuration states to the real number
line, and how should the concept of “fractal” be expressed on spaces, such as the space of
states, whose topology is not naturally that of the real number line?

A reasonable requirement on a map from the configuration space to the reals would be
that it somehow preserves the translation invariance. Translation invariance is an impor-
tant physical requirement for a lattice model, and one would like to have this requirement
reflected in the mapping. That is, if f : Ω→ R is some map that assigns a real number to
each point σ ∈ Ω, the set of all possible states, then one might require that there exists a
non-trivial function g : R→ R such that

(2.29) ( f ◦ τ)(σ) = (g◦ f )(σ)

where τis the shift operator. This requirement that the mapping preserve translation invari-
ance is simply a requirement that there exists a commuting diagram:

(2.30)
Ω

f
−→ R

τ ↓ ↓ g
Ω

−→
f R

It should now be clear that the representation of translation invariance on the real number
line is a requirement that the mapping have a fixed point at which it is self-similar: that is,
one must have

(2.31) ( f ◦ τ
n)(σ) = (gn ◦ f )(σ)

for all positive integers n. Translation invariance implies iteration; it is well understood
that, in general, the iteration of functions of the real number line results in fractals. The
above result is general; it applies to all one-dimensional lattice models, and is not depen-
dent one the form of the interaction, or even on the number of states at a given lattice
location.

For the two-state model, there is another symmetry that one might expect to preserve:
this is the symmetry under the interchange of the two states. In the absence of a magnetic-
field-type interaction (so M = 0 in equation 2.1), one might expect an absolute symmetry.
Let ρ : Ω→ Ω be this reflection operator, the operator that, given a string of letters σ ,
exchanges letter A (or state -1) for the letter B (or state +1), and vice-versa. Corresponding
to this, one expects a function r : R→ R that makes the following diagram commute:

(2.32)
Ω

f
−→ R

ρ ↓ ↓ r
Ω

−→
f R

Clearly, one has ρ2(σ) = σ the identity function, and so r2(x) = x is the identity as well.
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Given such a translation-invariant homomorphism f , that has functions g and r acting
as representations of translation and reflection, one has in essence constructed everything
that is needed to have a fractal with dyadic symmetry. That is, one need only to recognize
that g and r generate the dyadic monoid of the modular group SL(2,Z). The elements of
this monoid are of the form

(2.33) γ = ga ◦ r ◦gb ◦ r ◦gc ◦ · · ·

where a,b,c, . . . are non-negative integers.
Thus, we have demonstrated a corollary, of sorts: no matter what the form of the func-

tion f , if it preserves the translation invariance of the lattice, then the Minkowski question
mark will inevitably appear in the theory.

This construction holds for essentially all two-state lattice models. That is, let f be the
translation-invariant homomorphism as above, and let h : Ω→ X be just about any function
to some space X which commutes with the reflection operator ρ . Then (h◦ f−1) : R→ X
is necessarily a fractal, having elements γ of the dyadic monoid giving the set of self-
symmetries of the fractal. (The details on why anything having dyadic monoid symmetry is
a fractal are voluminously and excruciatingly detailed in my other writings). In particular,
the result here is independent of the details of the interaction between spins (barring the
magnetic interaction, which can also be taken care of). We conclude: all such lattice
models have a fractal self-symmetry. (xxx ToDo: cavalierly used f−1in the above, without
justifying its existence. Baaad. Fix that.)

2.2.8. Free monoids and the self-symmetries of lattices. The set of strings generated by
g,r is the free monoid N×Z2, the monoid analog of a free group. The notation here is that
the exponent on g is any element of the natural numbers N while Z2 indicates that exponent
on r is 0 or 1 because r2 = e. The Cayley graph of this monoid is the infinite binary tree,
and, as mentioned above, it is shared by the monoid N×N when interpreted as sequences
of left-right moves walking the tree. That is, the monoid generated by N×N is the set of
all strings in two letters.

It should be clear from the above construction that the K-state lattice model, of which
the Potts model is an example, would have a set of symmetries that are the free monoid of
N×ZK . (Properly, the symmetries are isometries, although the K-adic metric has not yet
been defined here.) The point here is that the “ordinary” Euclidean translations are not the
only symmetries that occur naturally in the studies of lattice models.

Now, in general, when some function on a topological space has some self-resemblance
after some action, one says that this function is self-similar. When there are a count-
able number of such self-resemblances, one might say that the function is “translation-
ally invariant”, or so, or show that a fixed point results. When the number of such self-
resemblances is dense in some way, or tends to the uncountable, or is characterized by a
free group or free monoid, one says the function is a fractal. This motivates the following
definition of a fractal:

Definition: Let X and Y be topological spaces, and f : X →Y be some map between
them. Let ρ : X → X and τ : X → X be two isomorphisms of the spaces. The
map f is said to preserves these isomorphisms, if there exist maps r : Y → Y and
g : Y → Y such that f ◦ρ = r ◦ f and f ◦ τ = g ◦ f . If such an f exists, and if ρ

and τ together generate some free monoid, then we say that f has the structure of
a fractal.
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This definition seems almost silly, because after a bit of reflection, one realizes that there
are many, many systems in physics and mathematics that would have the structure of a
fractal according to this definition. For example, every Lie group has a discrete lattice
that acts freely on the Lie group, and thus one may find maps that have the structure of
a fractal. On the other hand, this is perhaps not unexpected: the Anosov flow on the
tangent space of a Lie group typically has expanding and contracting directions, making
the tangent manifold hyperbolic, and the flow ergodic. Ergodicity is typically associated
with fractal behaviour, and hyperbolic structures typically admit ergodic flows, and so the
above definition of a fractal structure is perhaps not ludicrous.

The requirement that ρ and τ generate some free monoid can be loosened to a monoid
with a presentation, as long as the monoid is hyperbolic. Clearly, if ρ and τ had a presen-
tation ρτ = τρ then the generated monoid would be flat Euclidean space, which is clearly
not fractal.

2.3. Measure Theory. ToDo This is what needs to be done for the following sections.
Several questions arise. First, can the relation ?? be formally derived? Can the left-

hand side of this equation be given a precise meaning? A strict derivation should provide
a topology on the configuration space 2N in the limit of N → ∞, and then clarify how
the topology of that space maps to the natural topology of the real numbers, as well as
its relationship to the topology of the Cantor set. In particular, the derivation should make
clear what aspects of the fractal behavior can be attributed to the mapping of the topologies,
and what aspects depend on the choice of some particular translation-invariant long-range
interaction.

Notable is the appearance and importance of the exponential function. In the normal
study of number theory, rationals, modular forms, the question mark function, and the like,
the exponential function makes almost no appearance ever. Thus, it’s appearance here
should be more than just curious; it begs for a deeper explanation.

It may be immediately intuited that this function gives a preferential weight to config-
urations with aligned spins, but why this was not inherently incorporated into the Hamil-
tonian deserves a review.

The next section begins a more formal development, starting with a a review of a topol-
ogy for lattice models, and the sigma algebra that may be built on it.

2.3.1. Measure theory and sigma-algebras on a lattice. From the above discussion, it is
clear that taking the N → ∞ limit of a one-dimensional lattice model will require a way
to promote the sums over configuration space into integrals. As pointed out in the intro-
duction, this is not a trivial matter, because the cardinality 2N of the configuration space
changes from finite to uncountable in the limit. In particular, it is known from measure
theory that it is impossible to define integration on a point set with the cardinality of the
continuum. To properly define integration, one must define a topology and a sigma-algebra
first. A general presentation of this idea is given here.

The machinery of measure theory forces a radical shift in the language, notation and
concepts used to discuss the problem. First of all, one can no longer employ the idea that
the space consists of a set of points. There is a reason for this: not every subset of of
an uncountably-infinite set is "measurable". In fact, almost all subsets of an uncountably-
infinite set are not measurable. So the very first step of measure theory is to throw away
almost all subsets of the total space. One keeps only the measurable sets. The collection
of measurable sets is countable, and to each such set one assigns a (non-negative) size or
“measure”. This collection forms a topology, in the sense that the intersection or union
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of any two measurable sets is also a measurable set, and has a size. Such a collection of
sets, equipped with a size, and obeying an additional axiom, (that of sigma-additivity, to
be defined), is called a sigma algebra.

In this new language, the Hamiltonian takes on a new and very different appearance.
It is no longer a function from points to the reals, but a function from elements of the
sigma algebra to the reals. Intuitively, this "new" Hamilton can be visualized or intuited as
the "average" of the old, classical Hamiltonian, the average taken over a certain subset of
points. However, this intuition is dangerous, and can lead to errors: in particular, one has
the chicken-and-egg problem of how to define the "average" of the old, classical Hamilton-
ian. The new Hamiltonian is different, and cannot be constructed from the old Hamiltonian.
However, there is a way to prove that the new Hamiltonian is a faithful representation of
the old one. If one has chosen one’s sigma algebra wisely, then for every possible point in
the old set, there is a sequence or filter or net of elements of the sigma algebra that contain
the old point, and the measure of the elements in this sequence decreases to zero.

Suppose that the elements of this net are denoted by an for integer n, and have a measure
µ(an) The net is ordered so that µ(an) < µ(ak) whenever n > k. The "new" Hamiltonian
is some function that assigns a real value to each an. We can then say that the new and the
old Hamiltonians are equal or equivalent when, for the "classical" point p, the following
are satisfied:

p ∈ an ∀n ∈ Z+

and
lim
n→∞

µ(an) = 0

and

lim
n→∞

H(an)
µ(an)

= Ep

where Ep is the classical energy of the point p which the net is converging to. Again: to
be clear: the point p is a possible configuration of the lattice model; each and every point
p corresponds to an infinite string in two letters, and vice-versa, in one-to-one correspon-
dence. If a net can be found for all points p, and the above relationship holds for all points
p, and it holds for all possible nets to the point p, then one may honestly and truthfully
insists that the "new" and the "old" Hamiltonians "are the same".

More generally, this sort of a measure-theoretic reformulation of integration over an
uncountable set of points is referred to as “second quantization” in physics, and the inte-
gration is referred to as “functional integration”. A word of caution: standard treatments
of second quantization in physics texts do not follow the above construction. This ap-
proach only becomes apparent in mathematical treatments of second quantization (need
ref), where the aim is to construct a topological space over which integration can be per-
formed. In the following, the “old” Hamiltonian shall be called the “classical Hamilton-
ian”, as it deals with points. The “new” Hamiltonian will be called the “quantum Hamil-
tonian”, because the sigma algebra may be used to define functional integrals.

2.3.2. The cylinder set topology. The natural topology for the configuration space of one-
dimensional lattice models has a sub-base that consists of cylinder sets. It is “natural” in
the sense that there is a simple and natural action of the shift operator on the cylinder sets,
and that there is a natural way to assign a size to the cylinder sets.

The sub-base of a topology is a collection of sets such that any finite intersection or
union of such sets belongs to the topology, and that furthermore, every set in the topology
can be written as a finite intersection or union of sets in the sub-base.
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A sigma algebra then consists of the topology, together with a function, the measure,
that assigns a non-negative, real value to every element of the topology. The measure
must satisfy a property called “sigma-additivity”: the measure of the union of a number of
disjoint sets must equal the sum of the measures of each set. Notationally, sigma-additivity
requires that:

(2.34) µ

(⋃
i∈I

ai

)
= ∑

i∈I
µ (ai)

where each of the sets ai are pairwise-disjoint from the other sets, and I is a (countable)
collection of indexes of the sets being considered.

The cylinder sets may be defined as follows. Let the positions on the lattice be labeled
by an integer n. The elements of the sub-base of the sigma algebra can be completely
enumerated by ordered pairs (n,s) where s is a string in two letters of finite length k, for
integer k < ∞. The pair (n,s) is to be visualized as the set of all states where the lattice
values between location n and n + k− 1 are equal to the string s. Let C(n,s) denote an
element of this sub-base.

The sub-base of a topology is a collection of sets, which, by intersection and union,
generate the rest of the topology. A brief review of intersection and union is in order. The
intersection C(n,s)∩C(m,t) is the set of all configurations that match s at n AND match t at
m. The union C(n,s)∪C(m,t) is as above, with OR taking the place of AND.

Let the two letters that occur in the string be A and B. Then, for example,

C(n,A)∩C(n,B) = ∅
and

C(n,AAA)∩C(n,AAB) = ∅
and

C(n,A)∪C(n,B) = Ω

with Ω representing the entire space. One noteworthy aspect of this topology is the some-
what intuitively "backwards" relation between the string labels and the sets, in that when
two strings overlap, its is likely that the intersection of the corresponding sets will be
empty, whereas when the strings don’t overlap, the intersection will never be empty. Thus,
for example,

C(n,s)∩C(m,t) 6= ∅
whenever m > n+ len(s) where len(s) is the length of the string.

2.3.3. Measures on cylinder sets. The measure is a function µ that assigns to each ele-
ment C(n,s) a real, non-negative value. It is convenient to normalize the measure such that
µ(∅) = 0 and µ(Ω) = 1. The requirement of sigma-additivity implies that all other values
will be less than one. A measure will be said to be translation invariant if µ(C(n,s)) =
µ(C(m,s)) for all m,n.

ToDo XXX finish this section.
We can use sigma additivity to construct a collection of translation invariant measures

as follows. Let µ(C(n,A)) = x for some 0 ≤ x ≤ 1. Then sigma-additivity requires that
µ(C(n,B)) = 1− x which follows from the fact that the union of these two disjoint sets is
the entire space. One may readily deduce that

(2.35) µ(C(n,s)) = x#A(s)(1− x)#B(s)

where #A(s) is the number of times the letter ’A’ occurs in the string ”s”, and likewise for
#B(s). In most physics applications, the canonical and symmetric choice would be x = 1/2,
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but it should be clear that this is not mathematically constrained. One might even be able
to make physical arguments to have ”x” be something other than one-half, if, for example
(and maybe a bad example), some external force is causing there to be more spins pointing
in one direction than the other, on average.

Lets pursue this idea just a bit further. Let σk = {s : len(s) = k} be the set of all strings
of length ”k”. Then, ∀s, t ∈ σk,s 6= t one has C(n,s) ∩C(n,t) = ∅, that is, this set of strings
defines sets that are pair-wise disjoint. One has⋃

s∈σk

C(n,s) = Ω

and, from sigma additivity, we deduce

1 = µ

(⋃
s∈σk

C(n,s)

)
= ∑

s∈σk

µ
(
C(n,s)

)
= ∑

s∈σk

x#A(s)(1− x)#B(s) =
k

∑
j=0

(
k
j

)
x j(1− x)k− j = 1

2.3.4. ToDo. To-do list:
– Define the measure on the cylinder sets that the Kac model induces (to be copied from

wikipedia page)
– review: the “natural” measure on the real-number line maps to the “natural” measure

on the cylinder sets via the question mark.
– use the transfer matrix to move out of the measure into to the potential: the Ruelle-

Frobenius-Perron operator to compute the partition function.
– lather rinse repeat .
– addition and subtraction
– multiplication
– The topology is second countable, since the cylinder sets are countable.
– Its not first countable: can use the cantor-slash argument on any listing of the neigh-

borhood bases of a point.
– clarify use of base vs. subbase in above: the intersection of cylinder sets is a cylinder

set, to its a base, not a subbase.
– it’s Hausdorff, its essentially the topology of the real number line.

3. CONCLUSION

In conclusion, we conclude ???
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