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ABSTRACT. This paper presents a review of the Gauss-Kuzmin-Wirsing (GKW) operator.
The GKW operator is the transfer operator of the Gauss map, and thus has connections
to the theory of continued fractions – specifically, it is the shift operator for continued
fractions. The mathematical literature on this operator is fairly slim; even so, this text is
not a complete review; it is partly an exposition, and partly a diary of research results.

Connections to the Minkowski Question Mark Function are probed. In particular, the
Question Mark is used to define a transfer operator which is conjugate to the GKW. This
conjugate operator is solvable, and can be shown to have fractal eigenfunctions. However,
the spectrum of this operator is not at all the same as that of the GKW. This is because
the Jacobian of the transformation relating the two is given by (?′◦?−1)(x) , which is well-
known as the prototypical “multi-fractal measure”. Nonetheless, conjugacy allows the
eigenfunctions of the one to be used to construct eigenfunctions of the other; in this sense,
a “solution” of the GKW operator is undertaken.

The presentation given here assumes little math background beyond basic linear alge-
bra and analytic function theory. This paper is part of a set of chapters that explore the
relationship between the real numbers, the modular group, and fractals.

1. THE GAUSS-KUZMIN-WIRSING OPERATOR

This text is a diary of ongoing research results. As such, it may not always be coherent,
and can at times be somewhat disorganized. However, a fair amount of effort has been
expended to make the overall presentation as readable as possible, with care taken to define
all symbols and notation, and results presented in a clear, if sometimes verbose fashion.
There is little or no content that assumes familiarity with mathematics beyond a standard
undergraduate curriculum; this should make this text quite readable by anyone with a basic
schooling in math, and an interest in these topics. The text contains many, many graphs
illustrating the various results: this alone should provide considerable entertainment and
render an otherwise dry topic a good bit more fun to read.

The overall layout is to review basic ideas, and then move on to a series of original
results. This text does assume some familiarity with the ideas developed in [25, 26, 28],
which perform a similar analysis for the Bernoulli operator. The Bernoulli operator can be
taken as a simpler model for the GKW operator: it is more easily and directly analyzed,
and yet exhibits many of the same phenomena.

The similarity of results and definitions for the GKW and the Bernoulli map both fol-
low from the fact that these are shift operators on the Baire space and Cantor space, re-
spectively. Both spaces have a natural topology, the product topology. Both spaces can be
used to represent the real numbers, via the continued fraction expansion, or via the binary
digit expansion. The product topology as a countable basis, consisting of the so-called
“cylinders”. This basis can be then used to define maps from the product topology to the
complex plane; these maps can be organized into Banach spaces according to their con-
vergence properties. The Bernoulli operator/GKW operator are just the shift operator on
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the product topology; the continuous-spectrum eigenfunctions can then be easily specified.
Mapped to the real-number line, they are self-similar fractals. This paper then consists of
the definition of the above terms, and an exploration of some of the resulting structures.

Another companion piece is the text [31], which takes a more abbreviated look at the
connection between lattice models and the GKW operator. In particular, it shows that
the Minkowski Question Mark function provides the Haar measure on Baire space; that
is, it is invariant under the shift operator. There is also an interesting relationship to the
Riemann zeta function, presented in detail in [12, 27, 30]. More generally, there are many
numerous ties to classical analytic number theory, and, specifically, connections to the
modular group SL(2,Z), and to the modular functions and elliptic curves defined thereon.
This is developed in considerable detail in [26].

The overall layout of this text is as follows:
• Present the Gauss-Kuzmin-Wirsing (GKW) operator, including basic facts, theo-

rems, relationships, numerical studies. Explore an asymptotic expansion for the
GKW operator. Introduce the Ruelle-Mayer (transfer) operator.

• Show that the Minkowski Question Mark converts the GKW into a saw-tooth.
• Discuss how the Cantor set is a model for the unit interval, and is the appropriate

setting for discussing the question mark, fractals, dyadic monoid self similarity,
and also for solving the GKW.

• Solve the two saw tooth transfer operators (these are exactly solvable). Provide
a discrete spectrum of polynomial solutions. For dyadic saw tooth, provide a
complete set of fractal eigenfunctions, possessing a continuous spectrum.

• Show how to get GKW eigenfunctions from the dyadic saw tooth eigenfunctions.
• Demonstrate that GKW is the shift operator on Baire space; construct the continuous-

spectrum fractal eigenfunctions for the GKW operator.
• Show how the continuous solutions arise as the kernel of an operator; discuss

differentiability.
• Review the Farey Map
• Appendixes providing details for various results.

2. THE GAUSS-KUZMIN-WIRSING OPERATOR

The map that that acts as the shift operator for continued fractions is

(2.1) h(x) =
1
x
−
⌊

1
x

⌋
That is, if one writes out the continued-fraction expansion for x ∈ [0,1]:

(2.2) x =
1

a1 +
1

a2+
1

a3+···

≡ [a1,a2,a3, · · · ]

then one has that

(2.3) h(x) = [a2,a3, · · · ]

whence the name “shift operator”. This map is often called the Gauss Map. Note that shift
operators, as linear operators, are studied as a subtopic of Banach Space theory, and often
appear in applied mathematics texts devoted to the engineering topics of control theory,
stability theory and filter design[22]; they are studied in Operator Theory as a topic in pure
mathematics[23]. However, in these texts, shift operators are typically applied to sequences
of functions defined on Hardy spaces, or more generally on Hilbert spaces. It appears that
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the shift as applied to continued fractions is very nearly unstudied – and no wonder – it
appears nearly intractable when approached with standard analytic tools. The usual tools
and techniques seem inapplicable; thus, much of this paper is devoted to finding tools and
techniques that are relevant.

The Ruelle-Frobenius-Perron or transfer operator associated with the Gauss map is
known as the Gauss-Kuzmin-Wirsing (GKW)[18, 33] operator Lh. It is the pushback
of h, and as such, is a linear map between spaces of functions on the unit interval (topolog-
ical vector spaces)[31]. That is, given the vector space of functions from the closed unit
interval to the real numbers

F = { f | f : [0,1]→ R}
then Lh is a linear operator mapping F to F . Given f ∈F , it is represented by

(2.4) [Lh f ] (x) =
∞

∑
n=1

1
(n+ x)2 f

(
1

n+ x

)
This operator is bounded; its largest eigenvalue is 1.

The GKW operator Lh is a special case of what is sometimes called the Ruelle-Mayer
operator[14]

[Gs f ] (z) =
∞

∑
n=1

1
(n+ z)s f

(
1

n+ z

)
for general complex s and z. This operator, with a value of s = 4, occurs in the study of the
Gaussian reduction algorithm applied to modular lattices[14].

The GKW operator was recently solved by Alkauskas[4], who gives trace formulas
and expansions for its eigenvalues. The solution of the Mayer-Ruelle operator remains
open, in the sense that there is no known closed-form analytic solution expressing its all
of its eigenfunctions and eigenvectors. The GKW operator has one classically known
eigenvector, f (x) = 1/(1+ x), which corresponds to the unit eigenvalue; this solution was
given by Gauss.

Kuzmin considers iterating this operator, and shows that given any continuous, differen-
tiable function g(x) with bounded derivative on the unit interval, that the iterate converges
uniformly to f (x) =C/(1+ x). That is, by defining

gk+1(x) = [Lhgk] (x)

as the k’th iterate of g(x), then gk(x)→C/(1+x) uniformly, for all bounded, differentiable
g. Thus, as a corollary, this eigenvector is unique[16, section 15]. An alternative way
of understanding this result is via the Frobenius-Perron theorem, which asserts that the
eigenfunction associated with the maximal eigenvalue is unique.

The operator is not normal (i.e. LhL
T

h is not equal to L T
h Lh); this is typically the

case for transfer operators. Thus, the left and right eigenvectors are distinct, although they
share common eigenvalues. To use proper matrix algebra language, these should be called
“singular values”, although we will persist in calling them eigenvalues below; and likewise
diagonalization should properly be called “singular value decomposition”, and the left and
right eigenvectors are properly called the left and right singular vectors. Alternately, if one
considers the operator as acting on a Banach space, then right singular vectors form a basis
for for the Banach space, and the left vectors are the dual.

When the domain of the Mayer-Ruelle operator is restricted to certain Banach spaces,
then the operator is a nuclear operator – that is, it has a discrete spectrum, and its eigen-
vectors form a basis for Banach space. By considering the operator restricted to a Hardy
space, Daudé etal show that the spectrum is real when s is real[14].
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The first eigenvalue below 1.0 is approximately 0.3036, and is known as the GKW
constant [7, 13, 14, 4][xxx need Babenko ref for original discussion]. As is typically the
case for transfer operators, when the right eigenvectors are smooth functions, then the left
eigenvectors are linear combinations of derivatives of Dirac delta functions, located at 0
and 1. All of this is explored in greater detail, in the rest of this paper.

Aside from the analytic solutions, there is also large class of fractal, discontinuous-
everywhere functions associated with eigenvalue 1. The prototypical such solution is the
derivative of the Minkowski Question Mark function ?(x). That is,[

Lh?′
]
(x) =?′(x)

A proper construction for the everywhere-discontinuous function ?′, and the derivation of
the above identity, is given in [31], together with a construction of a class of other similar
solutions.

2.1. Relation to the Riemann Zeta Function. The Gauss map is connected to the Rie-
mann zeta function by a Mellin Transform:

ζ (s) =
1

s−1
− s
∫ 1

0
h(x)xs−1dx

The Riemann zeta can be written under a change of variable y = h(x) as

(2.5) ζ (s) =
s

s−1
− s
∫ 1

0
dx x

[
Lhxs−1]

and thus it seems possible that a better understanding of GKW may shed light on the
Riemann Hypothesis and/or the Berry conjecture[xxx need ref].

Curiously, the above equation can be understood to be a kind of linear equation spec-
ifying the Riemann zeta, because the operator Lh is a constant, independent of the inte-
gration variable, and can be pulled out of the integral. For a suitable basis, the integral
can become easy to evaluate, leaving a linear equation, albeit depending on a parame-
ter s in a non-linear way. Sketching this out briefly, suppose one has a basis {en} for
the unit interval, so that one can write f (x) = ∑n fnen (x). In this basis, the operator Lh
will have matrix elements L jk given by [Lh f ] (x) = ∑ jk L jk fke j (x). Supposing now that
f (x) is just xs−1, and that the order of summation and integration can be exchanged, this
leaves only the integral

∫
xe j (x)dx to evaluate, which can then be replaced in the sum:∫

dx x
[
Lhxs−1

]
= ∑ jk L jk fk

∫
xe j (x)dx. This last is then a linear equation, although the fk

depend on s in a non-linear way. The collection { fk} can be thought of as a vector in an
infinite-dimensional space; this vector depends on a single parameter s. As the value of s
is varied, there are special values of s where its product times the linear operator is equal
to 1/(s−1): these special values of s are nothing but the zeroes of the Riemann zeta.

The section 2.6 provides explicit expressions for the matrix elements L jk for the poly-
nomial basis en (x) = xn. In this case, the integral becomes trivial to evaluate, and one
discovers a series expansion for the Riemann zeta in terms of the falling factorial (equiva-
lently, binomial coefficients). This series has many interesting properties, and is explored
in greater detail in [27, 12]. The series generalizes; it can be used to formulate a class
of criteria on various number-theoretic series (such as those constructed from the Möbius
function, or the totient function of the Liouville series) that are equivalent to the Rie-
mann Hypothesis. This class of RH-equivalent hypothesis were already noted by Báez-
Duarte[5, 6], Maslanka[19], and Flajolet and Vallée[11], and are explored in detail in [30].

Far more promising, however, are basis functions derived from or structured on the
Cantor set. These are explored below, and in other related papers [xxx need ref].
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2.2. Lack of simple solutions. Aside from the classical solution, 1/(1+ x), there do not
seem to be any “easy” polynomial series solutions to the operator, where a “solution”
would be a closed-form specification of the eigenvectors.

The author performed a combinatorial search of simple combinations and summations
of rational functions and various classical functions, such as the exponential, the gamma,
the digamma, the dilogarithm, Bessel functions and the exponential integral. No eigenvec-
tors were found in this way, although, of course, various close approximations can be so
obtained.

The naivest approaches to solving the GKW operator, which is suggested by the eqn
2.4, is blocked by the next two theorems.

Theorem 1. There is no (non-trivial) polynomial f (τ) such that the equation

f
(

1
τ +n

)
= λn (τ +n)2 f (τ)

holds for all integer values of n and arbitrary values of λn.

Proof. Assume that there does exist such a solution. Then it could be written as

f (τ) =
∞

∑
k=0

akτ
k

for some unknown values of ak (which are independent of n). Inserting this into the hypo-
thetical form leads to the equation

λn

∞

∑
k=0

τ
k [ak−2 +2nak−1 +n2ak

]
=

∞

∑
k=0

τ
k (−1)k

nk

∞

∑
j=0

a j

(
j+ k−1

j−1

)
1
n j

Setting τ = 1 in the above allows it to be re-written as

λn (n−1)2
∞

∑
k=0

(−1)k ak = a0 +
∞

∑
k=1

n−k
k

∑
j=0

(
k
j

)
a j+1

Since the ak are independent of n by assumption, one must then have a0 = 0, and for each
term in the series on the right hand side, one must have, individually, that

0 =
k

∑
j=0

(
k
j

)
a j+1

or ak = 0 for all k. Thus the theorem is proved. �

Were it not for this theorem, a solution would have been provided by looking for quasi-
modular-form-like functions f . Another naive avenue is also blocked:

Theorem 2. There is only one series solution to

f
(

1
τ +n

)
=

(τ +n)(τ +1)
(τ +n+1)

λ f (τ)

and it is λ = 1 and f (τ) = a0/(1+ τ) for any constant a0.

Proof. As in the previous proof, assume a series solution. Substituting this into the above,
and performing a straightforward but tedious expansion in powers of τ , n, and then com-
paring terms, reveals that λ = 1, and that ak = (−1)k a0. �
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If the above had allowed solutions for something other than λ = 1, then one would have
also had that Lh f = λ f .

2.3. Assorted Algebraic Identities. This section lists an assortment of random algebraic
results, none particularly deep; some are vaguely suggestive of deeper relations. These
are listed here mostly for the sake of completeness. These are the sorts of identities one
obtains by means of knuckle-headed persistence in the hope that that maybe one little
algebraic twist will yield a closed-form solution. These were obtained by the author long
before he knew that Lh had a name or had been previously studied by others.

First, notice that adjacent terms in the series can be made to cancel by shifting the series
by one:

[Lh f ] (x)− [Lh f ] (x+1) =
1

(1+ x)2 f
(

1
1+ x

)
which holds for any function f (x). Thus, if ρ(x) is an eigenvector, so that Lhρ = λρ , then
it would also solve

1
(1+ x)2 ρ

(
1

1+ x

)
= λ (ρ(x)−ρ(x+1))

This can be solved easily to get the zeroth eigenvector

ρ0(x) =
1

ln2
1

1+ x

which satisfies [Lhρ0](x) = ρ0(x) and the normalization is given by requiring∫ 1

0
ρ0(x)dx = 1

There is a reflection identity: f (x) = 1− (1+ x)−2 satisfies Lh f = 1− f .
There is a hint of a relationship between period-doubling and the GKW in the identity

1
1+ x

=
∞

∑
n=1

1
2n

[
2

x+n
− 1

x+n+1

]
Acting on the monomial, one gets[

Lhxk
]
(x) =

∞

∑
n=1

1
(n+ x)k+2 =

(−1)k+2

(k+1)!
ψ

(k+1)(1+ x)

where ψ(k)(x) is the k’th derivative of the Gamma function. The true difficulty of find-
ing the solution to GKW becomes clear when the search leads one to start discovering
complicated identities, such as

∞

∑
m=1

1
m2 ψ

(1)
(

1+
1
m
+ x
)
=

∞

∑
n=1

1
(n+ x)2 ψ

(1)
(

1
n+ x

+1
)

or to finding curiosities such as f (x) = (1+ax)2 gives Lh f = ψ(1)(1+ x+a).
For f (x) = (1+nx)−2−1 one gets Lh f =−∑

n
k=1(x+ k)−2

Acting on a general power, the map gives the Hurwitz Zeta:

[Lhxs] (x) =
∞

∑
n=1

1
(n+ x)s+2 = ζH(s+2,x+1)
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FIGURE 2.1. The Minkowski Question Mark Function
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This allows eqn 2.5 to be written as

ζ (s) =
s

s−1
− s
∫ 1

0
dx xζH (s+1,x+1)

2.4. Non-differentiable Identities. The above identities involve smooth, differentiable
functions. In addition to these, there are a number of relations involving the Minkowski
Question Mark function[21]. This function is fractal, continuous everywhere, and differen-
tiable only on the rationals, where it’s derivative is zero. There are many ways to define the
Question Mark function ?(x); perhaps one of the easiest is as follows. Given the continued
fraction expansion x = [a1,a2,a3, · · · ] as defined in eqn 2.2, one has

(2.6) ?(x) = 2
∞

∑
k=1

(−1)k+1 2−(a1+a2+...+ak)

where the sum terminates after a finite number of terms when x is rational. A graph of the
function is shown in figure 2.4.

This function has many interesting properties and symmetries[31, 29, 26]. The self-
symmetry of the curve is generated by two relations, a halving:

?
(

x
1+ x

)
=

?(x)
2
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and a left-right reflection: ?(1− x) = 1−?(x). The full set of symmetries, generating the
dyadic monoid, can be exhibited by defining

(2.7) gC (x) =
x

1+ x
and gD (x) =

x
2

and noting that the symmetry relation above may be written as ? ◦ gC = gD◦?. Likewise,
letting r (x) = 1−x one has ?◦ r = r◦?. These two functions can be taken as the generators
of a monoid, whose general element is written as gm ◦ r ◦ gn ◦ r ◦ gp ◦ · · · . This monoid
forms an interesting subset of the modular group SL(2,Z). Elements of the monoid are in
1-1 correspondence with the Cantor set; alternately, they are in 1-1 correspondence with
the binary tree.

Given the above definitions, one may now derive various identities. Thus, one has

Lh[(1+?(x))/(1+ x)2] = 1−?(x)

Lh[?(x)x−2] = 2−?(x)

Lh

[
?(x)

(
1

(1+ x)2 −2
)]

=
?(x)−2
(1+ x)2

One may continue in this vein indefinitely, but this exercise does not seem to lead to any
sort of worthwhile recurrence relations.

The generating function for the moments of the Minkowski Question Mark[2, 1, 3]
participates in a curious identity. This generating function obeys the relation

1
z2 G

(
1
z

)
+

1

(z+1)2 G
(

1
z+1

)
=

1
z(z+1)

which holds for complex-valued z (such as, for example, z 7→ z+n), and also

1
z
+

1
z2 G

(
1
z

)
= G(z)−2G(z+1)

From this, one has the curious shift-over-by-one relationship

[LhG] (z) = G(1+ z)+ [LhK] (z)

where we’ve defined K (z) = G(1+ z).
One can define an object that behaves like the derivative of the Question Mark function;

properly speaking, it is a singular measure on the unit interval. For all practical purposes,
it can be called the derivative; and it does have one surprising property: it is an eigenvector
of the GKW, corresponding to eigenvalue 1. That is,

Lh?′ =?′

A proof of this relation, including all the required machinery to define and demonstrate
this result, is given in [31]. In simple terms, it follows from the self-symmetry relation on
the Question Mark:(

?◦gn−1
C ◦ r ◦gC

)
(x) =?

(
1

n+ x

)
=

1
2n−1 −

?(x)
2n =

(
gn−1

D ◦ r ◦gD◦?
)
(x)

which induces a relation on the measure:

?′
(

1
n+ x

)
=

(x+n)2

2n ?′ (x)
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This last is easily inserted into the definition 2.4 to obtain the desired result. A graph of
the measure is shown in figure 5.2.

2.5. Miscellaneous Series. Algebraic manipulations of the above algebraic relations leads
one to consider various conditionally convergent series, such as

∞

∑
k=0

(−1)k
(

k+m+1
m

)
ζ (k+m+2) = 1

which holds for any integer m. Additional series, similar to the form given above, are
possible, and are reported in [24]. Thus, for example, one has:

∞

∑
k=0

(−1)k
(

k+m+1
m+1

)
ζ (k+m+2) = ζ (m+2)−1

More generally, for integer n > 0, one has
∞

∑
k=0

(−1)k
(

k+m+1
m+1

)
ζ (k+m+2−n) =

n

∑
j=0

(−1) j
(

n
j

)
ζ (m+2− j)

There are also divergent series which can be evaluated by regulating them, and then
taking the limit. Examples include

lim
t→0

∞

∑
k=0

(−1)k e−tk =
1
2

lim
t→0

∞

∑
k=0

(−1)k (k+2)e−tk =
3
4

lim
t→0

∞

∑
k=0

(−1)k (k+2)(k+3)e−tk =
7
4

lim
t→0

∞

∑
k=0

(−1)k (k+2)(k+3)(k+4)e−tk =
45
8

lim
t→0

∞

∑
k=0

(−1)k (k+2)(k+3)(k+4)(k+5)e−tk =
93
4

These are readily obtained[9] by considering the binomial generating function. That is,
define

Am (x) =
∞

∑
k=0

Γ(k+m+2)
Γ(k+2)

(−x)k

=− Γ(m+1)
x

∞

∑
k=1

(
k
m

)
(−x)k

=
Γ(m+1)

x

(
1− 1

(1+ x)m+1

)
and so the above sums are given by

Am ≡ lim
x→1

Am (x) = Γ(m+1)
(

2m+1−1
2m+1

)
Similarly, let

Sm (x) =
∞

∑
k=0

(−)k (k+m+1)!
(k+1)!

[ζ (k+m+2)−1]xk
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and
Sm ≡ lim

x→1
Sm (x)

then one finds that S0 = 1/2, S1 = 1/4, S2 = 1/4, S3 = 3/8 and S4 = 3/4; the general
expression is given by Sm = Γ(m+1)/2m+1. This result can be obtained by simply by
examining the zeroth eigenvector of the GKW operator, as given below, in equations 2.8
and 2.9. Alternately, the general expression for Sm (x) can be obtained by working with the
expression for Lhxk.

The above sums appear when considering

ψ(1+ z) =
−1

1+ z
+1− γ +

∞

∑
m=0

(−)m [ζ (m+2)−1]zm+1

and then writing

zm+1 = (z+1−1)m+1 =
m

∑
k=0

(−)m−k
(

m
k

)
(z+1)k

2.6. Polynomial Representation. One can attempt to solve GKW by working in the poly-
nomial representation. One possible choice is to make one’s Taylor expansion about x = 0,
but this turns out to be a very poor choice; the resulting matrix is poorly conditioned.
Nonetheless, it is instructive as a first try.

Writing Lh f = g and substituting a Taylor’s expansion for f and g, so that

f (x) =
∞

∑
k=0

xk

k!
f (k)(0)

and likewise for g(x), one gets

g(m)(0)
m!

=
∞

∑
k=0

f (k)(0)
k!

(−)m (k+m+1)!
m!(k+1)!

ζ (k+m+2)

or, adopting the bra-ket notation introduced earlier[25], we have

〈m |Lh|k〉= Hmk = (−)m
(

k+m+1
m

)
ζ (k+m+2)

where the factorials were replaced by the binomial coefficient that they form. The formal
meaning of these matrix elements are that, if f (x) = ∑

∞
n=0 anxn, then

g(x) = [Lh f ] (x) =
∞

∑
m=0

xm
∞

∑
k=0

Hmkak

is the polynomial representation for Lh f .
It is useful to examine the matrix directly, as it has a dramatic visual form. It is

(−)m H =



ζ2 ζ3 ζ4 ζ5 ζ6 · · ·
2ζ3 3ζ4 4ζ5 5ζ6 6ζ7
3ζ4 6ζ5 10ζ6 15ζ7
4ζ5 10ζ6 20ζ7

5ζ6 15ζ7
. . .

...


where some visual clutter was avoided by writing ζk = ζ (k) and dropping the alternating
sign (−1)m in front of each row. This says nothing new, but dramatically illustrates how
the zeta shifts from row to row, and makes Pascal’s triangle equally manifest. It suggests
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a curious decomposition in terms of shift operators. Write T as the left-shift, so that Ti j =
δi, j−1 and powers of the shift are T n

i j = δi, j−n. It is a belabored way to shift the zeta vector:
ζi+n =∑ j T n

i jζ j so as to get each subsequent row of the matrix. Likewise, changing notation

on the binomial coefficient: K jk =
(

j+k+1
j

)
as well as for the zeta so that Z j = ζ j+2 then

allows a tensor-like decomposition:

(−)m Hmk =
∞

∑
j=0

KmkT m
k j Z j

which emphasizes that it “factors” into three parts: the binomial coefficient, the shift “ten-
sor”, and a vector. The questions worth posing are then: what happens if any of these
factors are replaced by a variation? One still has a transfer matrix; what is the correspond-
ing dynamical system?

As mentioned, H is a very poorly conditioned matrix. One way to apply brute-force
muscle is to replace it by H ′ with H ′mk = Hmk exp−t (m+ k) and eventually take the limit
t→ 0, but not before applying Levin-type sequence acceleration techniques. One can thus
find a number of curious identities, some of which were listed previously. However, the
difficulty of working with divergent sums seems to outweigh any advantages given by the
relatively simple form of the matrix elements.

There are other polynomial bases. The next most obvious one is a polynomial expansion
about x = 1. The resulting matrix elements are far more complex, but give a very well-
conditioned matrix. These are:

(2.8) Gmn =
n

∑
k=0

(−)k
(

n
k

)(
k+m+1

m

)
[ζ (k+m+2)−1]

satisfying

(−)m g(m)(1)
m!

=
∞

∑
n=0

Gmn(−)n f (n)(1)
n!

That is, if f (x) = ∑
∞
n=0 an (1− x)n, then

g(x) = [Lh f ] (x) =
∞

∑
m=0

(1− x)m
∞

∑
n=0

Gmnan

Other authors have chosen to expand about x = 1/2 [7] but it would appear that expan-
sion about x = 1 leads to the simplest tractable expansion. The general case, of a Taylor’s
expansion about some fixed point, is presented in appendix A.

The relation between G and H is that of a similarity transform. Suppose one has some
sequence of polynomials pn (x) of degree n; write matrix elements as pn (x) = ∑

n
k=0 xkPkn

then clearly P−1HP is the matrix operator for Lh in the polynomial basis P. Specializing
to pn (x) = (1− x)n yields G = P−1HP. Is there another polynomial basis that brings Lh
into a tractable form? Not obviously so; the “factorization” of H into a binomial, a shift
and a zeta vector suggests that the polynomials should be engaged in interesting identities
with the zeta. Although one can find such identities for the even orders ζ (2n), this is not so
for the odd values ζ (2n+1). There is a paucity of known sums involving ζ (n) even as the
related gamma and digamma functions are overwhelmingly rich in combinatoric relations.

2.7. Polynomial-basis eigenfunctions. The matrix operator G, identified with the GKW
operator in a polynomial basis, is presumably diagonalizable, having an eigenvector equa-
tion Gv = λv. It is commonly understood that this operator has only a discrete point spec-
trum (XXX TODO find a reference with a proof of this), and is not singular, nor is any part
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of it’s spectrum continuous or indeterminate. The well-behaved analytic combinatorics of
this matrix operator is thus often identified with “the” GKW operator. In later sections,
and in [31], it is shown that the GKW operator can be defined on spaces other than those
of analytic functions, where the spectrum appears to be quite different in structure.

Then eigenvector equation to be solved is then
∞

∑
n=0

Gmnvn = λvm

where v = {vn} is an eigenvector with components vn. As the spectrum is countable,
the eigenvalues and eigenvectors may be labeled with an integer label k. The k’th eigen-
equation is

(2.9)
∞

∑
n=0

Gmnvnk = λkvmk

The k’th polynomial eigenfunction of the GKW operator is then given by

ρk(x) =
∞

∑
n=0

vnk(1− x)k

The zeroth eigenfunction was given by Gauss as

ρ0(x) =
1

1+ x
and corresponds to the eigenvector vn0 = 2−n. Again, note the curious appearance of pow-
ers of two. The zeroth eigenvalue is 1, the first eigenvalue is known as the GKW constant,
and is approximately 0.3036. Additional eigenvalues, obtained numerically, are given in
table 1. Graphs of the first few eigenvectors are shown in figure 2.2.

Based on numerical explorations (reported below), the series appears to be easily con-
vergent even for x = 0. In particular, it appears that limn→∞ vnk = 0, and that furthermore,
that limn→∞ vnk/vn+1,k = 2. It is possible that vnk ∼ O(2−n) holds; but also the numeric
data does not exclude vnk ∼O(2−n log logn). It does appear that vnk ∼O(2−nns) for s 6= 0
is excluded, as is vnk ∼ O(2−n logn).

The coefficients are oscillatory, with k half-oscillations in the k’th eigenvector. That is,
for k = 0, all of the vn0 can be taken to be of the same sign. For k = 1, the vn1 change sign,
once, between n = 0 and n = 1. For k = 2, the coefficients change sign twice, and so on.
This is shown in the graph 2.3.

The left eigenvectors are given by
∞

∑
m=0

wkmGmn = λkwkn

and correspond to left eigenfunctions

`k(x) =
∞

∑
n=0

wkn(−1)n
δ
(n)(1− x)

where δ (n)(x) is the n’th derivative of the Dirac delta function. The zeroth left eigenvector
is given by w0n = 1/(n+1). Very curiously, this is the harmonic series. Thus, true to form,
it appears that yet again, we are in the presence of another manifestation of the duality
between the dyadic rationals and rationals, the duality between the Stern-Brocot tree and
the dyadic tree, the duality captured in the Minkowski Question Mark function.

In analogy to the right eigenvectors, the series again appears to be not only convergent
in that limn→∞ wkn = 0, but also that a strict ratio is maintained in the limit: limn→∞(n+
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FIGURE 2.2. GKW Right Eigenfunctions

This graph shows the right eigenfunctions of the GKW operator. These were computed
numerically, by truncating the GKW operator to a sub-matrix of 55 by 55 elements and

then solving for the eigenvectors of the matrix. The elements of the eigenvectors appear to
be well-behaved, being oscillatory for small values, and then converging to zero rapidly.

2)wkn/(n+ 1)wk,n+1 = 1, with strict equality holding for all n, and not just in the limit,
when k = 0. A similar oscillatory behavior is seen as well, as shown in figure 2.4.

2.8. Identity. We have the identity
∞

∑
n=0

Gmn p−n = p
[

ζ (m+1)−1−ζH

(
m+1,2+

1
p−1

)]
In particular, for p = 2, the right hand side equals p−m; this corresponds to the known
eigenvector. Note that for any value of p, the leading term on the right is 2−(m+1). A
simple way to arrive at this is to note that

∞

∑
n=0

p−n(1− x)n =
p

p−1+ x

and then evaluate this expression under the action of the GKW operator.

2.9. The Kernel. The spectrum of the polynomial eigenfunctions of the GKW operator is
discrete, and does not include zero. However, if one considers a larger set of functions, say,
the set of square-integrable functions, then the spectrum becomes continuous, and includes
zero.
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FIGURE 2.3. Right Eigenvector Coefficients

This figure shows a graph of the coefficients of the first eight right-eigenvectors of the
GKW operator. The red line corresponds to the zeroth eigenvector with components

vn0 = 2−(n+1). All of these were obtained numerically. The normalization used here is to
require that ∑

∞
n=0 vnk = 1.

The kernel of the GKW operator is defined as the set of functions f for which Lh f = 0.
The kernel of the GKW is readily demonstrated: let

kn(x) =


0 for 0≤ x < 1

n+2
1
x2 for 1

n+2 ≤ x < 1
n+1

−1
x2 for 1

n+1 ≤ x < 1
n

0 for 1
n ≤ x≤ 1

Then clearly, [Lhkn] (x) = 0 for all integer n ≥ 1. The kernel is in fact much larger. Con-
sider the set of functions

cn,l (x) =


0 for 0≤ x < 1

n+2
cos((2l+1)π/x)

x2 for 1
n+2 ≤ x < 1

n
0 for 1

n ≤ x≤ 1

Then [
Lhcn,l

]
(x) = cos((2l +1)π (x+n))+ cos((2l +1)π (x+n+1)) = 0
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FIGURE 2.4. Left Eigenvector Coefficients

This figure shows a graph of the coefficients of the first eight left-eigenvectors of the
GKW operator. The red line corresponds to the zeroth eigenvector with components

wn0 = 1/(n+1). All of these were obtained numerically. The normalization used here is
to require that wnk 1/(n+1) for large values of n.

and so cn,l belongs to the kernel for all integer l ≥ 1, as does sn,l when defined analogously
for sine instead of cosine.

2.10. Numeric Attacks. One can mount numeric attacks on the GKW operator. The ma-
trix elements in 2.8 are easily computed numerically, and the eigenvectors and eigenvalues
are easily obtained by applying standard matrix diagonalization software. For example,
using the LAPACK DGEEV eigenvalue-finding routine, and working with the upper-left
55× 55 entry block of the GKW operator, one obtains the eigenvalues shown in table 1
These compare well to previously published values (XXX TODO need reference for pre-
vious numerics - specifically Babenko)[13, 7, 14]. The ratio of successive eigenvalues
λn/λn+1 tends to the square of golden mean (3+

√
5)/2 = 2.61083398875 · · · , as given by

[13].
Eigenvectors can be guessed at in various ways. One can find, for instance, that the first

right-hand-side eigenvector ρ1 is approximated by

ρ1(x)≈
−3
4

+
7
4

1
(1+ x)5/2

with the approximation accurate to about one or two percent over the domain x ∈ [0,1].
This is the eigenvector associated with the eigenvalue λ1 ≈ 0.303663. Numerics suggest
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TABLE 1. GKW Eigenvalues

N Eigenvalue λn Ratio λn/λn+1

0 1 -3.29312425436788
1 -0.303663002898733 -3.0100062440358
2 0.100884509293104 -2.842124671335
3 -0.03549615904 -2.763682528286
4 0.01284379036244 -2.72242392332
5 -0.00471777751158 -2.69791537939
6 0.0017486751243 -2.6819312645
7 -0.0006520208580 -2.67077775
8 0.00024413145 -2.662606
9 -9.16889×10−5 -2.65651

10 3.45147×10−5 -2.6539
11 -1.3005×10−5

12 4.860×10−6

13 -1.7×10−6

This table lists the first dozen eigenvalues of the polynomial representation of the GKW
operator. The numbers are certain to about about the last figure or two quoted. They were
obtained by numerically inverting the 55 by 55 entry upper-right sub-matrix of the GKW

operator using ordinary double-precision floats.

that all of the eigenvectors have a pole at x = −1. Whether they might have poles at
other negative values is unclear; however, the idea that the eigenvectors might be linear
combinations of the Hurwitz zeta function suggests itself. Thus, for example, a slightly
better approximation is given by:

ρ1(x)≈ 3.078
[

ζH(2,1+ x)− 1.32
(1+ x)3/4

]
where ζH is the Hurwitz zeta function:

ζH(s,q) =
∞

∑
n=0

(n+q)−s

Graphs of the first seven right-hand-side eigenvectors are shown in figure 2.2. The general
oscillatory nature of the eigenfunctions is echoed in the numeric values of the eigenvector
coefficients themselves, shown in figures 2.3 and 2.4.

2.11. Gross structure. The GKW operator has a fairly simple coarse-grained structure,
which is explored in this section. The nature of this structure is best illustrated graphically.
The figure 2.5 shows the entries of the matrix Gmn in a color-coded fashion, using black to
code negative values, and varying colors to code positive values.

The hyperbola-like structure visible in 2.5 suggests that Gmn is approximately constant
when the product of the indexes mn is held constant, and oscillatory as a function of the
product mn. A closer numerical look shows that the curves are not quite hyperbolas, but
are roughly approximated by

(m+n)1.7−|m−n|1.7 ≈ const
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FIGURE 2.5. Color Coded Matrix Entries

This figure shows the 100 by 100 sub-matrix of the entries of Gmn, with row,column (0,0)
in the upper left. Each square pixel represents one entry in the matrix; this this picture is

100 by 100 pixels in size. Black areas represent negative values of Gmn while colored
areas are positive. The coloration is such that red corresponds to large values, moving
through the rainbow to smaller values. The color scale is logarithmic, so red-orange

represents values of Gmn ∼ 10−3, yellow-green to Gmn ∼ 10−20 and blue to Gmn ∼ 10−40.
Visually, the hyperbolic curves suggest that Gmn is approximately constant when the

product of the indexes mn is held constant. However, the curves are not true hyperbolas; a
closer numerical examination shows that a better fit is given by

(m+n)1.7−|m−n|1.7 ≈ const.

Furthermore, the limiting behavior for m� n and n� m doesn’t seem to be hyperbolic
either, as can seen in a pixel-aliasing/Moire type effect visible in the graph, at about m≈ 5n
and n≈ 4m. In particular, some of the contours appear to merge along the line n≈ 4m. As
will be shown in a later section, where the asymptotic expansion of the matrix elements
is considered, this corresponds to the non-trivial zeros of the Riemann zeta function in the
critical strip.

Note that there is a very superficial resemblance of the figure to the so-called “Hadamard
matrix” (sometimes also called the Walsh matrix), in that the Hadamard matrix also has a
prominent hyperbola-like structure in the sign changes of its matrix elements[32]. It differs
from the above, in that, for the GKW, the matrix elements alternate periodically, whereas
in the Hadamard matrix, the frequency along the diagonal increases exponentially. None-
the-less this begs the question of whether there exists some permutation-like reordering of
the GKW that might untangle the matrix in some way.

The behavior of the matrix elements along the diagonal is shown in figure 2.6.

2.12. Asymptotic Expansion. The asymptotic behavior of the matrix elements for large
m,n can be obtained by converting the Newton series 2.8 to Nörlund–Rice integral, and
then using saddle-point methods to obtain the large m,n behaviour. A detailed exposition
of this procedure is given in [12]; what follows is an abbreviated application of those
techniques.
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FIGURE 2.6. GKW along the diagonal
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Shown are the matrix elements Gnn of the GKW operator along the diagonal. As these are
exponentially vanishing, the figure re-scales these: thus, the red line shows the values of
Gnn2−n−1√πn. The matrix elements are also oscillatory: the overall structure is easily
accounted for, as shown by the green line, which graphs sin(πn/2+π/4). The period,

phase and amplitude of the oscillations appears to be exact: a numerical exploration out to
n = 1000 indicates that this oscillation holds very precisely.

There are several key steps to this process. The first is the observation that a Newton
series can be re-written as a Nörlund–Rice integral[10]:

n

∑
k=n0

(−1)k
(

n
k

)
φ (k) =

(−1)n

2πi

∮
c
φ (s)

n!
s(s−1) · · ·(s−n)

ds

where the contour c surrounds the poles at {n0, · · · ,n} and φ (s) is holomorphic in the
region ℜs > n0− 1

2 . Substitution of 2.8 into the above yields

(2.10) Gmn =
(−1)n

2πi
n!
m!

∮
C

(s+m+1)(s+m) · · ·(s+2)
s(s−1) · · ·(s−n)

[ζ (s+m+2)−1]ds

Written in this form, the zeros and poles of the integrand are clearly evident. It also be-
comes clear that the right-hand closure of the contour integral contributes nothing, since,
for ℜs→ ∞, one has that the integrand decays exponentially, viz. ζ (s+m+2)− 1→
2−s +O (3−s) which over-powers the polynomial numerator and drives the integrand to
zero. Thus, the closed contour can be replaced by a line integral running from c− i∞ to
c+ i∞ with ℜc to the left of the poles:
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FIGURE 2.7. Saddle Points of the Integrand

This figure illustrates the integrand of the integral 2.10 on the complex-s plane, for
m = n = 10. The real axis runs along the middle of the figure. Blue and black areas
represent small or zero values of the modulus, while yellow and red represent large
values. Thus, the exponential decay to the right is shown in blue-black, while the
exponential rise to the left is red. Arrayed along the real axis are eleven poles, at

s = 0, · · · ,10 and ten zeros, at s =−2, · · · ,−11. Some additional zeros, forming an
arrowhead, can be seen the the left. The saddle-points are located at s =±10i. The

illustration runs over the interval ℜs ∈ [−40,+20]. The integration contour can be taken
to run in the green region, to the left of the poles, and through the saddle points.

Gmn =
(−1)n+1

2πi
Γ(n+1)
Γ(m+1)

∫ c+i∞

c−i∞

Γ(s+m+2)Γ(s−n)
Γ(s+2)Γ(s+1)

[ζ (s+m+2)−1]ds

The integrand becomes exponentially large for ℜs→−∞ and this leads to a pair of saddle
points above and below the real axis: each saddle is situated between the exponential rise to
the left and the poles, and straddles a hump between the zeros and the exponentially decay
to the right. For m = n, it will be shown that the saddle points occur at s = ±in+O (1).
The integrand and its saddle points is illustrated in the figure 2.7.

The integral may be estimated for m,n→∞ by applying the method of steepest descent.
That is, one deforms the integration contour so that it passes through the saddle-point,
following the steepest path through it. There, on applies Laplace’s method to approximate
the integral as

(2.11)
∫

eN f (x)dx = eN f (x0)

√
2π

−N f ′′ (x0)

(
1+O

(
1
N

))
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with the integration contour running through the saddle point f ′ (x0) = 0. To be able to
apply this, the logarithm of the integrand, expanded in powers of N, is required. As men-
tioned, the saddle points will be discovered at s ≈ ±in, thus suggesting the change of
variable s = nx and an expansion in powers of N = n, while holding x fixed. To avoid a
concurrent expansion in powers of m, write m = Kn for some fixed constant K. One may
then proceed with the expansion. The zeta function terms expands as

log [ζ (s+m+2)−1] =− [n(x+K)+2] log2+O

((
2
3

)n(x+K)
)

The gamma functions are expanded by applying Stirling’s formula, in leading powers of n,

logΓ(ny) = ny log(ny)−ny− 1
2

log(ny)+
1
2

log(2π)+
1

12ny
+O

(
1
n3

)
which is applicable for ℜy > 0. This can be applied in a straightforward way, although to
do so, one must first write

Γ(s−n) =
π (−1)n

sin(πs)Γ(n− s+1)

which follows from the reflection formula Γ(z)Γ(1− z) = π/sinπz. For the saddle point
in the upper half-plane, that is, for ℑx > 0, one expands

logsinπxn = log
(
−e−iπnx

2i
+O

(
e−πnℑx

))
=− iπnx+

iπ
2
− log2+O

(
e−2πnℑx

)
Combining all of these elements, one then obtains the following asymptotic expansion in
n:

N f (x) =n(K−1) logn

+n [iπx− (x+K) log2−2x logx− (1− x) log(1− x)+(K + x) log(K + x)+1−K]

− logn

−2logx− 1
2

log(1− x)+
3
2

log(K + x)− log8π

+O

(
1
n

)
The first derivative is

N f ′ (x) =n
[

iπ− log2+ log
(1− x)(K + x)

x2

]
+

1
2(1− x)

+
3

2(K + x)
− 2

x
+O

(
1
n

)
while the second derivative is

N f ′′ (x) =n
[

1
K + x

− 1
1− x

− 2
x

]
+

2
x2 +

1

2(1− x)2 −
3

2(K + x)2 +O

(
1
n

)
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Solving for the saddle points f ′ (x0) = 0 gives

(2.12) x0 =
K−1

2
± 1

2

√
1−6K +K2 +

1
n

(
7Kx0−3x0−6K

2
(
K− x2

0

) )
+O

(
1
n2

)
For the special case of m = n, that is K = 1, one gets the simple form

x0,m=n =±i+
1
n

(
−3
2
± i
)
+O

(
1
n2

)
To obtain asymptotic expansion for Gmn, it is now enough to insert the saddle point 2.12
into 2.11. The algebra is considerably simplified by setting K = 1. The final result is
precisely that already discovered numerically:

Gnn =
1

2n+1
√

πn
sin

π

2

(
n+

1
2

)[
1+O

(
1
n

)]
This is an exact, analytic result for the asymptotic expansion of the GKW matrix elements
as n→ ∞, obtained by using the method of steepest descent applied to the Nörlund–Rice
integral of the Newton series of the GKW operator matrix elements 2.8.

3. A GENERALIZED OPERATOR

Observing that the Gauss shift map h(x) (eqn 2.1) is in the form of a Möbius transfor-
mation; it seems plausible to explore what happens for the general case

m(x) =
ax+b
cx+d

−
⌊

ax+b
cx+d

⌋
for a general unimodular transform, (that is, with integer values for a,b,c,d such that
ad−bc =±1) with denominator such that a pole appears in the unit interval: 0≤−d/c≤
1. This function is piece-wise continuous. Writing down the pieces is a bit fiddly. Defining
n = b(ax+b)/(cx+d)c allows m(x) to be written as

m(x) =
x(a−nc)+b−nd

cx+d
Choose a sign convention such that c > 0; this choice can always be made by multiplying
numerator and denominator by -1; the modular group is projective. The pieces are obtained
by imposing 0≤ m(x)< 1, from which one obtains an enumeration

d(n+1)−b
−c(n+1)+a

≤ x <
dn−b
−cn+a

case 1(3.1)

dn−b
−cn+a

≤ x <
d(n+1)−b
−c(n+1)+a

case 2(3.2)

where

case 1:

{
ad−bc = 1 when x < −d

c and n→+∞

ad−bc =−1 when −d
c < x and n→+∞

and

case 2:

{
ad−bc = 1 when −d

c < x and n→−∞

ad−bc =−1 when x < −d
c and n→−∞

This manifests two convergent sequences: one converging to −d/c from below; the other
converging to −d/c from above; which is which depending on the determinant.
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Specifying the start of each sequence is a bit fiddly. Taking case of the positive deter-
minant, the start of the first sequence is given by n0 = db/de; notice this uses the ceiling,
not the floor. When n0 6= b/d, the first sequence includes a segment

m(x) =
x(a− (n0−1)c)+b− (n0−1)d

cx+d
when 0≤ x <

dn0−b
−cn0 +a

which isn’t enumerated by eqn 3.1. Similarly, the second sequence starts at k0 = b(a+b)/(c+d)c
and continues in the negative direction. When k0 6= (a+b)/(c+d), the sequence includes
a segment

m(x) =
x(a− k0c)+b− k0d

cx+d
when

dk0−b
−ck0 +a

≤ x≤ 1

which isn’t enumerated by 3.2.
The corresponding transfer operator is then

[Lm f ] (x) = ∑
y=m−1(x)

f (y)
|m′(y)|

Expanding this out, ... a bit of a mess...

[Lm f ] (x) = ∑
n

1

(c(n+ x)−a)2 f
(

d(n+ x)−b
−c(x+n)+a

)
where the is implicitly understood to be over both sequences, starting at n0, k0 and includ-
ing the additional segments, as appropriate.

Not all of the generality is needed. Similarity transforms preserve eigenvalues. That is,
given

σ =

[
p q
r s

]
and M =

[
a b
c d

]
Then the system σ−1Mσ will have a different form but the same eigenvalue spectrum.
Some, but not most matrices M with detM =−1 can be brought to the form

σ
−1Mσ =

[
a 1
1 0

]
which then gives the Gauss map. This is trivial:

ax+1
x
−
⌊

ax+1
x

⌋
= a+

1
x
−
⌊

a+
1
x

⌋
=

1
x
−
⌊

1
x

⌋
Some M with detM =−1 can be brought into this form, but almost all cannot. Of course,
obviously, none of the detM = 1 can be. When is this the case?

A variant of the answer was previously seen when exploring the monoid: an element is
similar to another another if and only if one is a descendant of the other in the binary tree.

4. THE HARMONIC SAWTOOTH

The Gauss map h(x) = 1
x −
⌊ 1

x

⌋
has a distinctive saw tooth shape; the transfer operator

of the Gauss map is the GKW operator. This section presents the harmonic saw tooth,
which resembles the Gauss map, but with straight-line edges. The goal here is to develop
a model for the GKW, in order to better understand it. In this case. the transfer operator
is considerably simpler than GKW; it is solvable. The spectrum is similar, in that it is a
countable, discrete set of values, but is otherwise in-equivalent.

The harmonic saw tooth uses straight lines arranged between values of 1/n for integer
n:
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FIGURE 4.1. The Harmonic Sawtooth
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The Harmonic Sawtooth

The harmonic saw tooth function joins values of 1/n with straight lines.

w(x) =


2−2x for 1

2 < x≤ 1
3−6x for 1

3 < x≤ 1
2

4−12x for 1
4 < x≤ 1

3
n+1−n(n+1)x for 1

n+1 < x≤ 1
n

The saw tooth is singular at x = 0. This is pictured in figure 4.1.
The Frobenius-Perron operator for this saw tooth, acting on a general function f (x), is

given by

[Lw f ] (x) = ∑
y:w(y)=x

f (y)
|dw(y)/dy|

=
∞

∑
n=1

1
n(n+1)

f
(

n+1− x
n(n+1)

)
The spectrum for the polynomial basis Banach space is given below.

4.1. Relation to the Riemann Zeta function. The harmonic spacing of the saw tooth
edges implies that the harmonic saw tooth will be related to the Riemann zeta in much the
same way as the Gauss map is. Specifically, the Mellin transform gives:

ζ (s) =
s+1
s−1

[
1− s

∫ 1

0
w(x)xs−1dx

]
The above can be obtained in a very straightforward manner by direct substitution.
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4.2. The Polynomial Eigenfunctions. The polynomial eigenfunctions can be obtained in
a straight-forward manner, by means of Taylor’s expansion. Expanding f (x) as a Taylor’s
expansion about x = 0 gives

f (x) =
∞

∑
k=0

f (k)(0)
k!

xk

and likewise

[Lw f ] (x) =
∞

∑
m=0

g(m) (0)
m!

xm =
∞

∑
n=1

1
n(n+1)

∞

∑
k=0

f (k)(0)
k!

(
n+1− x
n(n+1)

)k

Rearranging the sums, and equating terms with the same power of x, on obtains matrix
elements Wmk so that

g(m) (0)
m!

=
∞

∑
k=0

Wmk
f (k)(0)

k!

with

Wmk =

 (−1)m
(

k
m

)
∑

∞
n=1 n−k−1(n+1)−m−1 for k ≥ m

0 for k < m

where
(

k
m

)
denotes the binomial coefficient. This matrix is upper-triangular, and thus

has its eigenvalues along the diagonal. These are

λk = (−1)k
∞

∑
n=1

1
nk+1(n+1)k+1

so that λ0 = 1 and λ1 = 3− 2ζ (2) where ζ (x) is the Riemann zeta. Numerically, one
finds that the first few eigenvalues are λ1 = −0.289868... and λ2 = 0.130396... and λ3 =
−0.0633278... and λ4 = 0.031383... and λ5 =−0.0156468... In the limit of large k, the first
term in the summation will dominate, and so λk → (−1)k /2k+1; the ratio of eigenvalues
settles down to λk/λk+1→−2 in the limit. The alternating sign of the eigenvalues, as well
as the ratio of successive eigenvalues, is quite unlike the GKW.

The function w(x) is singular at x = 0, and this might suggest that a polynomial ex-
pansion around a different point might be warranted, as it was for the GKW operator.
However, this is not needed: since the resulting matrix is solvable, a transformation to a
different point does not offer much, if anything. That is, performing the Taylor’s expan-
sion about a point other than x = 0 just amounts to multiplying W on the left and right by a
binomial transform; this will not make W somehow “more triangular” or “more solvable”.
It might be possible to improve numerical stability in this way, but there do not seem to be
any other gains.

The matrix elements of Wmk are easily computed by means of recurrence relations on
the indexes m,k. This is done by defining Zmk and observing that

Zmk =
∞

∑
n=1

1

(n+1)m+1 nk+1
=

∞

∑
n=1

1
(n+1)mnk

[
1
n
− 1

n+1

]
= Zm−1,k−Zm,k−1

These recursion relations are bounded on the edges by Z00 = 1, Z10 = 2−ζ (2) and thus

Zm0 = Zm−1,0− (ζ (m+1)−1) = 1−
m

∑
j=1

[ζ ( j+1)−1]
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and Z01 = ζ (2)−1 so that

Z0k = ζ (k+1)−Z0,k−1 = (−)k

[
1+

k

∑
j=1

(−) j
ζ ( j+1)

]
From these, one then has Wmk = (−1)m (k

m

)
Zmk for m≤ k .

The first few eigenfunctions are
e0(x) = 1

e1(x) = 2x−1
XXX double check e2 below, I think its wrong

e2(y) =
15−13ζ (2)−9ζ (3)+2ζ (2)[ζ (2)+3ζ (3)]

3(13ζ (2)−8ζ (3))(3−2ζ (2))
+

+
6ζ (2)+2ζ (3)−12

13−8ζ (2)
y+ y2

We see that although the eigenfunctions are polynomials and are exactly solvable, there is
no particularly simple way of writing down the closed-form solution.

XXX To Do: Double-check e2 Provide the closed-form finite-sum matrix elements.
Provide graphs of the first dozen polynomials. Discuss the similarity transform that takes
w(x) to h(x) and discuss why this fails to preserve the eigenvalues. What are the shift-states
of this operator? What are the continuous-eigenvalue (square-integrable) eigenfunctions?
Graph these eigenfunctions, see what kind of fractals they look like.

5. THE DYADIC SAWTOOTH

The dyadic saw tooth is given by the dyadic-space conjugate of the continued-fraction
shift function h(x) = 1

x −
⌊ 1

x

⌋
, that is,

c(x) =?
(

1
?−1(x)

−
⌊

1
?−1(x)

⌋)
= (?◦h◦?−1)(x)

where ?(x) is the Minkowski Question Mark, presented in earlier chapters. This map con-
sists of straight-line segments between values of 1/2k, as pictured in figure 5.1, and can be
written as

(5.1) c(x) = 2−2nx for
1
2n < x≤ 1

2n−1

Just as the Gauss Map is able to lop off the leading term of the continued fraction expansion
for x, so this map is able to lop off all of the leading zeros of the binary expansion for x.
The downward slope of the saw tooth just reflects the binary expansion, exchanging 1’s
for 0’s, so that the next iteration can chop of the next contiguous chunk of identical digits.
Thus, the orbits of points under this map are completely isomorphic to the orbits of points
under the Gauss Map. This is indeed the very idea of a “conjugate map”.

The transfer operator of this function provides a second model of the Gauss-Kuzmin-
Wirsing operator. It can be solved exactly; unfortunately, it is not trivially conjugate to
the GKW operator, as one might naively hope. Normally, when there exists a smooth
function φ such that α = φ−1 ◦ β ◦ φ , then there is a similarity transform that connects
the transfer operator for α with that for β , as developed in the appendix B. However, the
Question Mark function is not smooth. With some effort, one can define it’s derivative in
a rigorous way[31], but one finds that the derivative is continuous no-where – vanishing
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FIGURE 5.1. Dyadic Sawtooth
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The Singular Sawtooth of the Second Kind

This figure illustrates the second kind of saw tooth, given by equation 5.1. It consists
entirely of straight-line segments between reciprocal powers of two.

FIGURE 5.2. The Derivative of the Question Mark
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Distribution of Farey Numbers

This figure shows the derivative of the Minkowski Question Mark; or, more precisely, the
weight distribution of a measure on the real-number line, whose integral is well-defined

and is exactly equal to ?(x).
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on the rationals, infinite on “most” reals. The similarity transform is given by the Jacobian∣∣(?′◦?−1
)
(x)
∣∣ of the Question Mark, pictured in figure 5.2 – which can be seen to be

terribly singular. Put another way, although the point dynamics of this saw tooth map are
completely isomorphic to the point dynamics of the Gauss Map, the distribution of these
orbits, with respect to the natural measure on the unit interval, is not isomorphic by means
of any differentiable function. The spectra of the associated transfer operators are not
identical.

However, with suitable tools, it is possible to construct functions on the Cantor set for
which one can obtain similarity transforms which render these operators conjugate. Insofar
as the Cantor set is “very nearly” the unit interval, these functions pass over to functions
on the unit interval, and thus allow solutions to the GKW operator to be obtained. The
development of these tools and their application take up most of what follows.

The transfer operator for the dyadic saw tooth can be easily seen to be

(5.2) [Lc f ] (x) =
∞

∑
n=1

1
2n f

(
2− x

2n

)
The following sections develop this operator in different function spaces.

5.1. The Polynomial Basis Eigenfunctions. The polynomial eigenfunctions of Lc may
be found in the same way as before. Write the Taylor’s expansion as

f (x) =
∞

∑
k=0

f (k)(0)
k!

xk

and likewise for h = Lc f . Substituting and matching monomial terms gives

h(m) (0)
m!

=
∞

∑
k=0

Cmk
f (k) (0)

k!

where the matrix elements are given by

(5.3) Cmk = (−1)m
(

k
m

)
2k−m

(2k+1−1)

for k≥m and zero otherwise. This matrix is upper-triangular and thus solvable. Because it
is solvable, there is no advantage gained by performing the polynomial expansion at points
other than x = 0; the matrix cannot become “more solvable”. A quick exploration at x = 1
does not suggest that the matrix becomes “more diagonal” (i.e. more heavily weighted
near the diagonal).

As is the case for upper-triangular matrices, the eigenvalues lie along the diagonal. The
first few are λ0 = 1, λ1 = −1/3, λ2 = 1/7, etc. with the ratio of successive eigenvalues
tending to -2. The first few eigenvectors are

e0 = 1

e1 = 2x−1

e2 = 4−18x+15x2

e3 =−7+48x−84x2 +44x3

(5.4) e4 = 16− 5400
37

x+
14280

37
x2− 15300

37
x3 +

5865
37

x4

which solve the eigenvector equation Lcen = λnen. These are illustrated in figure 5.3.
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FIGURE 5.3. Dyadic Sawtooth Polynomials
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This figure shows the eigenvectors of the dyadic saw tooth, as given by equation 5.4. The
normalization is such that en (x = 0) = 1.

Because the matrix is upper-triangular, the eigenvectors can be solved for directly, sim-
ply by making the Ansatz

en (x) =
n

∑
k=0

e(k)n
xk

k!

substituting directly into eqn 5.3, and solving. The result is a recursion relation

e(k)n

k!
=

(−1)n

2k

(
2n+1−1

)(
2k+1−1

)(
(−1)k (2k+1−1)− (−1)n (2n+1−1)

) n

∑
p=k+1

(
p
k

)
2p

2p+1−1
e(p)

n

p!

5.2. The Failure of the Similarity Transform for the Polynomial Basis. Under nor-
mal circumstances, whenever one has a pair of maps α(x) and β (x) that are conjugate to
each other through a smooth, invertible function φ(x) such that β (x) = (φ ◦α ◦ φ−1)(x),
then there exists a similarity transform Sφ such that the Frobenius-Perron operators are
also conjugate; that is, Lβ = Sφ Lα S−1

φ
with S−1

φ
= Sφ−1 . The transform Sφ is given by

Sφ f =
(

f ◦φ−1
)
/
∣∣φ ′ ◦φ−1

∣∣, where the prime denotes differentiation: φ ′(x) = dφ(x)/dx.
A detailed derivation of this is given in appendix B. Since the continued-fraction shift func-
tion is conjugate to the saw tooth, one might hope that GKW would be conjugate to Lc,
that is, Lc = S?LhS−1

? . Unfortunately, the Minkowski Question Mark is highly singular
and is not traditionally differentiable, and so we cannot build such a similarity transform
using the polynomial function basis. Another way to deduce this is to note that the sim-
ilarity transform Sφ , working as an ordinary, bounded operator, normally preserves the
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eigenvalues of a nuclear operator; that is, the eigenvalues of Lα equal those of Lβ . In
the current case, we see trouble in that the eigenvalues of Lc are not those of GKW. They
are not even ’close’, in that for large k, the ratio of the eigenvalues λk/λk+1 tends to -2,
whereas, for the GKW, the ratio is 2.61803... (the square of golden mean, see [13]).

Although the manipulations required to construct eigenfunctions by means of similarity
transforms break down when one insists on working in the polynomial basis, this is not the
case if one considers a larger basis of functions. By properly defining the derivative, one
can validly obtain solutions to the GKW eigen-equation from solutions to the dyadic saw
tooth. This is developed in the next section.

5.3. Constructing GKW Eigenfunctions. The manipulations required to define the con-
jugacy operator that makes GKW and the dyadic saw tooth conjugate require manipulation
of the derivative of the Minkowski question mark function. This derivative is not well-
defined if one sticks to the natural topology on the real number line, but it can be given a
precise expression by working on the Cantor set. Insofar as the Cantor set is in many ways
nearly equivalent to the real number line, and that there are many operations that can be
“safely” carried over from one to the other, one can thus have a workable set of tools for
operating on an object that, for all “practical purposes” can be identified with the derivative
of the question mark.

The primary theorem and mechanics establishing this is given in [31], and briefly re-
capitulated here. The Cantor set can be written as the infinite product {0,1}N of the set
{0,1} of two elements. As such, points in this product space are naturally identified with
real numbers expanded in base-2 or binary – a real number may be written as an infinity
long string of zeros and ones. So:

(5.5) x =
∞

∑
n=1

bk

2k

where bk ∈ {0,1} is the k’th binary digit in the expansion of the real number x. The natural
topology for a Cartesian product space is the so-called “product topology”; it’s open sets
are called “cylinder sets”. For the Cantor set, a basis for the topology is just given by
the standard Rademacher functions[8] of Banach Space theory. That is, let σ ∈ {0,1}Nbe
an infinite string of binary digits; let bk, or, alternately, σk be the k’th digit in this string.
Consider the set of all possible strings, but with one digit held constant. There are two such
sets,

Ck,0 = {σ |σk = 0} and Ck,1 = {σ |σk = 1}

These two sets are open in the product topology, and are complementary: Ck,0∩Ck,1 = ∅
and Ck,0∪Ck,1 = {0,1}N. The collection of these sets form a basis for the product topology;
the topology itself is the set of all finite intersections and arbitrary unions of these sets.
It is not hard to see that the indicator functions for these sets are (up to a constant) the
Rademacher functions. Thus, for example:

idCk,0 (x) =

{
0 if bk = 1
1 if bk = 0

=
1+ sgn

(
sin
(
2kπx

))
2

is just a square wave.
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The open sets of the product topology on the Cantor set form a sigma algebra on the
real-number line; they are Borel sets, and are suitable for constructing measures on the real-
number line. Let A denote this sigma algebra, and consider a set function µ : A → [0,∞].
When this function µ obeys certain properties, such as sigma-additivity, it becomes a mea-
sure. The above collection of definitions and maps allow the construction of a measure
?′ on the unit interval, that, for “all practical purposes”, behaves as the derivative of the
Minkowski question mark. This measure is constructed by considering the one-to-one cor-
respondence between the dyadic binary tree and the tree of Farey fractions. These trees
are identical in structure, and differ only in the labels assigned to their nodes: in the one
case, dyadic fractions, and in the other, rationals. As they differ only by labels, then the
extension theorem for measures applies. The function that maps the labels from the one
tree to the other is just the Minkowski question mark; resulting measure is the definition of
?′. It is illustrated in figure 5.2.

That this measure deserves to be identified with, or thought of as the “derivative” of
the question mark becomes apparent when one switches over to classical notation: one has
that ∫ b

a
?′ (x)dx =?(b)−?(a)

The above skims over a fair amount of machinery from measure theory; the upshot, how-
ever, is to defend the use of the simpler, classical notation. Thus, in what follows, we will
write ?′ (x) as if it were well-defined for a real number x. It is not. However, by always
reverting to the language of measure theory, and always working with the cylinder sets
formed on the Cantor set, and then considering a filter of cylinder sets converging to the
point x given by equation 5.5, then one always has an object ?′ (x) that behaves more or
less as if it were a classical function, and can be more or less safely manipulated as one.

For what follows, the most important property of this measure is that it too has a set
of self-similarity properties, induced by the action of the dyadic monoid on the question
mark. Of the various self-similarities, the most important one is

?′
(

1
n+ x

)
=

(x+n)2

2n ?′ (x)

which follows from

?
(

1
n+ x

)
=

2−?(x)
2n

This may be directly employed with the GKW operator to great effect. Suppose that f
is an eigenfunction of the transfer operator Lc of the dyadic saw tooth with eigenvalue
λ ; that is, Lc f = λ f . Then q =?′ · f◦? is an eigenfunction of the GKW operator Lh, so
that Lhq = λq. The functions f and q that can be manipulated in this way are in general
functions on the Cantor set, and not, strictly speaking, functions on the unit interval, except
insofar as equation 5.5 allows the Cantor set and the unit interval to be confused with one-
another. That is, rather than imagining that f : [0,1]→ R, one should instead keep in
mind f : {0,1}N → R or even possibly that f is a set function on the product topology
(equivalently, a set function on a sigma algebra), as needed. Considered as functions on
the unit interval, these will typically be non-differentiable on the rationals or the dyadic
fractions; or they may even be discontinuous at these points. Although one is tempted to
say them, it is important to avoid phrases like “differentiable nowhere” or “discontinuous
everywhere”, as these are misleading: the discontinuities happen only on the rationals,
and the rationals are simply not that big a set. Many examples of such eigenfunctions are
developed in the sections that follow.
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By using either a sigma algebra or a topology as the base space for a function space, the
notion of the transfer operator changes as well. That is, when one focuses on point dynam-
ics, then one might define a function space as F = { f | f : [0,1]→ R}, that is, as the set of
all functions on the unit interval. Lets call this space Fp with the subscript p emphasizing
that the base space is a point-set. The “ordinary” transfer operator is then a map between
such spaces Fp, as previously defined. However, the measure-theoretic approach instead
requires that the function space be defined as Fσ = { f | f : A → R} where A is a sigma
algebra. Here, the subscript σ is a reminder that the base space for this F is a sigma al-
gebra. Note that, in a certain sense, the elements of Fp are “derivatives” of corresponding
elements of Fσ , and that the space Fσ is much “larger” than Fp. In particular, the ele-
ments of Fσ can be thought of as integrals, over some set U ∈A , of the elements of Fp.
The elements of Fσ are sometimes called “generalized functions”, in that the Dirac delta
function finds a comfortable home there: δ (x) is simply the indicator function for all sets
U that contain the point x. To relate these two spaces, one then typically uses the language
of topological filters to establish a many-to-one mapping of elements of Fσ to Fp. One
curious thing happens to the transfer operator when working with Fσ instead of Fp: the
transfer operator is now nothing more than a pushforward. This interpretation gives a nice
theoretical grounding; pushforwards are fairly well understood category-theoretic objects.
This preceding paragraph is again a whirlwind review of some concepts from topology
and measure theory; more concrete details can be found in textbooks such as [17], while
theorems that recast the transfer operator ass a pushforward are given in [31, 25].

Keeping in mind that the proper setting for both the transfer operator and for the Minkowski
measure ?′ is on sigma algebras, we none-the-less revert to classical point-set notation to
supply a proof that a similarity transform connects solutions of the dyadic saw tooth and
the GKW operator:[

Lh?′ · f◦?
]
(x) =

∞

∑
n=1

1

(x+n)2 ?′
(

1
x+n

)
( f◦?)

(
1

x+n

)
(5.6)

=?′ (x)
∞

∑
n=1

1
2n f

(
2−?(x)

2n

)
=?′ (x) · [Lc f ] (?(x))

=λ?′ (x) f (?(x))

=λ
(
?′ f◦?

)
(x)

The above point-set notation “works”, in that, at each step, there is a corresponding measure-
theoretic expression for which the equality holds. Notationally, this classical point-set no-
tation is simply easier to read for a wider audience, without loosing the overall fidelity of
the argument. Given an eigenfunction f of Lc, the practical way to work with this will be
to work with the quantity ∫ b

a

(
?′ f◦?

)
(x)dx =

∫ ?(b)

?(a)
f (y)dy

The quantity on the left may be understood to denote an element of Fσ valued on the set
U = [a,b] ∈A , while that on the right can be taken as an ordinary, college-calculus inte-
gral, for which the usual manipulations are allowed. Both sides of the above equality are
understood to give an eigenfunction of the GKW operator. In general, this eigenfunction
will, in practice, be found to be discontinuous on the rationals. However, suppose instead
one now had not just a single eigenfunction, but in fact a complete set of them, spanning a
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suitable function space. One may then ask if there are linear combinations of these that are
continuous, or even differentiable, with regards to the natural topology on the unit interval.
This last question then spells out the program for the subsequent sections.

A practical method for picking out the continuous eigenfunctions out of the haystack
of all possible eigenfunctions is to look for the bounded eigenfunctions. Specifically, one
would look for those f which satisfy

lim
b−a→0

1
b−a

∫ ?(b)

?(a)
f (y)dy < ∞

This is harder than it seems, because, as a approaches b, then ?(a) approaches ?(b) expo-
nentially fast when a and b straddle a rational number, while ’staying apart’ exponentially
fast when a and b straddle a quadratic irrational. Thus, f has to be very “badly behaved”
in order for ?′ f◦? to be well-behaved.

5.4. Axiom of Choice. A few words are in order about the axiom of choice. First, recall
its definition. Given an indexed family of sets {Eα}α∈A, with each of the sets Eα non-
empty, the axiom states that the Cartesian product ∏α∈A Eα is also non-empty, or more
specifically, that one can choose an element that belongs to the product. If we take each
Eα to be the set {0,1}, then the Cartesian product can be understood to be a real number;
selecting a specific real number requires the exercise of the Axiom of Choice. Similarly,
if we take each Eα to be N, then the Cartesian product can be understood as a continued
fraction – again, a specific point on the real number line. By contrast, employing the
cylinder set topology can avoid an appeal to the Axiom of Choice: to define a cylinder set,
one need only pick a finite number of explicit elements (which can always be done); the
rest of the Cartesian product is left indefinite, and does not require an infinite number of
choices.

5.5. The Kernel of the Dyadic Sawtooth. The kernel of the dyadic saw tooth is defined
as the set of functions k such that Lck = 0. It is clear that none of the polynomial eigen-
functions belong to the kernel; the polynomial spectrum is discrete, and zero is not a part of
the spectrum. However, if one considers a larger set of functions, say the square-integrable
functions, then the kernel is readily demonstrated. Let

kn (x) =


1 for 0≤ x < 1

2n+1

−1 for 1
2n+1 ≤ x < 1

2n

0 for 1
2n ≤ x≤ 1

then clearly one has that Lckn = 0 for all n≥ 0. Clearly, each kn is linearly independent of
the others. Note that the kn shift under a doubling of the argument: kn (2x) = kn+1 (x), or
alternately, kn ◦gD = kn−1 where gD is as defined in 2.7.

5.6. Fractal Eigenfunctions of the Dyadic Sawtooth. The Takagi curve can be used to
build an alternate set of eigenfunctions for the dyadic saw tooth, possessing continuous-
spectrum eigenvalues. These eigenfunctions are not differentiable, and thus cannot be
obtained through polynomials, and thus are not visible when working with the operator in
a polynomial-basis Hilbert Space. They can be used to build an alternate function space,
in which the dyadic saw tooth remains exactly solvable.

The Takagi curve has a set of self-similarities generated by the dyadic monoid[28]; this
monoid was already introduced above, in the paragraph surrounding eqn 2.7. One of the
elements from the monoid is
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FIGURE 5.4. Takagi Curve

(5.7)
[
gk−1

D rDgD

]
(x) =

1
2k−1 −

x
2k

and it appears in the definition 5.2 of the transfer operator:

[Lc f ] (x) =
∞

∑
n=1

1
2n f

([
gn−1

D rDgD
]
(x)
)

From this, one may surmise that functions f (x) that are self-similar under the dyadic
monoid might be used to construct solutions to the operator LC. In this case, the can-
didates are of course the family of Takagi curves.

The Takagi curve, shown in figure 5.4, may be defined as

tw(x) =
∞

∑
k=0

wk
τ

(
2kx−

⌊
2kx
⌋)

where τ(x) is the triangle wave:

τ(x) =
{

2x when 0≤ x≤ 1/2
2(1− x) when 1/2≤ x≤ 1

This curve is self-similar to itself under the dyadic monoid generated by the two ele-
ments g and r. The specific self-similarity is given by a 3-dimensional matrix representa-
tion of this monoid. Writing tw as a part of a 3-vector: 1

x
tw (x)
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one finds that the monoid acts on the vector with the matrix transformations

(5.8) g3 =

 1 0 0
0 1

2 0
0 1 w

 and r3 =

 1 0 0
1 −1 0
0 0 1


The self-similarity may be expressed as a monoid action isomorphism: tw ◦gD = g3tw and
likewise tw ◦ rD = r3tw. To obtain the behaviour of tw when inserted into eqn 5.2, one
needs the action of the element gk−1rg so as to obtain the monoid action isomorphism
twgk−1

D rDgD = gk−1
3 r3g3tw. This can be assembled in pieces. First, note that

gn
3 =

 1 0 0
0 2−n 0
0 qn(w) wn


where qn(w) is the polynomial

qn(w) =
1

2n−1

n−1

∑
k−0

(2w)k =
1

2n−1

(
1− (2w)n

1−2w

)
Multiplying by r3 and g3and applying to the vector, one obtains

tw

(
1

2k−1 −
x
2k

)
= qk−1(w)+ x

(
wk−1−qk−1(w)/2

)
+wktw(x)

Inserting the above back into the definition 5.2 for the saw tooth operator, and performing
the sum, one obtains

[Lctw] (x) =
4

3(2−w)
+

x
3(2−w)

+
wtw(x)
2−w

From this, we can immediately read off the eigenvalue as w/(2−w). To get the eigen-
function, we need to complete the diagonalization by using [LC1] (x) = 1 and [LCx] (x) =
(2− x)/3 to get the eigenfunction

E2(x) =
2−w

2(w+1)(w−1)
+

x
2(w+1)

+ tw(x)

The above is not the only fractal solution that transforms under the three-dimensional
representation of the dyadic monoid. A complete set of linearly independent solutions
spanning the space are constructed from

tw,l (x) = tw ((2l +1)x)

Theorem: above provide a complete set spanning the space. Proof: XXX details to be done.
The proof is special case/variant from theory of shift operators: take the kernel, apply the
shift ad infinitum, the union of the resulting spaces is the full space (this holds true in
general for shifts). More narrowly: Sketch of proof is that these can be re-expressed as
unique linear combinations of cosine waves; the specific linear combinations being given in
[25]. The transform is invertible: cos2πnx can be expressed as a unique linear combination
of tw,l . By contrast, certain linear combinations of sin2πnx are used to construct the kernel
of Lc. Since sine and cosine span the space L2 of square-integrable functions on the unit
interval, the above do likewise. An alternate way of reaching the same conclusion is to
consider the Haar basis functions for Banach spaces on the unit interval, which are known
to form a complete set. One then notes that the triangle wave is just an integral of the Haar
basis functions. QED.

It should be clear, from the above presentation, that results are possible for other Takagi
curves, constructed from piece-wise polynomials, are possible. In general, a Takagi curve
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constructed from a polynomial of order n transforms under an n+1 dimensional represen-
tation of the dyadic monoid[28]. The next section develops some the general framework
for these solutions.

5.7. Practical Tools. Practical computations with the complete set of fractal eigenfunc-
tions require additional tools. These are developed here. If f (x) is a function possessing
dyadic self-similarity, then given γD as some product of gD and rD, and f self-similar under
the action of g f and r f , then one has the commuting diagram γ f f = f ◦ γD. Computations
with Lc require the evaluation of expressions of the form f ((2l +1)(2− x)2−n). If the
argument is re-expressed in terms of the transforms gD and rD, analogously to eqn 5.7, then
one may use the the commutation relation γ f f = f ◦ γD to easily compute eigenvectors of
Lc. This motivates the development of the machinery below.

To perform this re-write, it is sufficient to re-express (M− y)2−n in terms of gD and rD.
We begin by noting that (M− y)2−n = (M−1+ rDy)2−n since rDy = 1− y. Next, one
needs the binary expansion for M−1; so write

(5.9) M−1 =
∞

∑
k=0

βk2k

with βk ∈ {0,1} the k’th bit in the base-2 representation. Of course, all βk = 0 for k >
log2 (M−1). The desired expression is

M− y
2n = BnBn−1 · · ·B1B0rDy

where each Bk is given by

Bk =

{
L for βk = 0
R for βk = 1

and L and R are left and right sub-trees of the dyadic tree, respectively:

L(x) = gD (x) =
x
2

and R(x) = (rDgDrD)(x) =
1+ x

2
Functions written next to one-another are understood to mean function composition: pqrx=
(p◦q◦ r)(x) = p(q(r (x))). For a fixed value of M−1, the transfer operator for the dyadic
saw tooth may then be written as

Lc f =
1
2

f B0r+
1
4

f B1B0r+
1
8

f B2B1B0r+ · · ·

If the function f is self-similar under the dyadic monoid, i.e. if it commutes with L, R then
the above provides a convenient, relatively simple way of explicitly computing the action
of Lc. i.e. one has

Lc f =
[

1
2

B0r+
1
4

B1B0r+
1
8

B2B1B0r+ · · ·
]

f

which is straight-forward to evaluate when the Bk are square matrices, such as, for example,
those of eqn 5.8.

Several examples can help ground and clarify this. Consider, for example (6− y)/8.
The binary expansion for 6−1 = 5 is 101 and so one has

6− y
8

= RLRry = rgr g rgr ry = (rg)3 y

The bits to the left are all zero, and so one has
6− y
2n+3 = LnRLRry = gn (rg)3 y
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FIGURE 5.5. Cantor Function
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Two examples of the Cantor function bw (x). The figure on the right shows the
“canonical” cantor function obtained by removing middle-thirds, and so shows b1/3 (x).

The figure on the left shows b−0.6 (3x).

For readability, the subscript D was dropped above two equations.
Consider then the action of Lc on fl (x) = f ((2l +1)x) for l = 1 and 0≤ x≤ 1/3. One

then has

[Lc f1] (x) =
1
2

f
(

6−3x
2

)
+

1
4

f
(

6−3x
4

)
+

1
8

f
(

6−3x
8

)
+ · · ·

=
1
2

f Rr 3x+
1
4

f LRr 3x+
1
8

f RLRr 3x+ · · ·+ 1
2n f Ln−3RLRr 3x+ · · ·

while, for l = 1 and 1
3 ≤ x≤ 2

3 , one uses RLL:

[Lc f1] (x) =
1
2

f

(
5−3

(
x− 1

3

)
2

)
+

1
4

f

(
5−3

(
x− 1

3

)
4

)
+

1
8

f

(
5−3

(
x− 1

3

)
8

)
+ · · ·

=
1
2

f Lr 3
(

x− 1
3

)
+

1
4

f LLr 3
(

x− 1
3

)
+

1
8

f RLLr 3
(

x− 1
3

)
+ · · ·

· · ·+ 1
2n f Ln−3RLLr 3

(
x− 1

3

)
+ · · ·

So, for example, if f = tw,l the Takagi function defined in the previous section, one then
has, for k ≥ 3, l = 1 and 0≤ x < 1/3, that

tw,1

(
2− x

2k

)
= tw

(
3
(

2− x
2k

))
= gk−3 (rg)3 tw (3x) = gk−3 (rg)3 tw,1 (x)

This method is applied in earnest in the next section.

5.8. The Two-Dimensional Representation. The Cantor function transforms under a
two-dimensional representation of the dyadic monoid. It is constructed from the step func-
tion

b(x) =

{
0 for 0≤ x < 1

2
1 for 1

2 ≤ x < 1

and a weight w (equal to 1/3 for the canonical Cantor function):

bw (x) = (1−w)
∞

∑
n=0

wnb(2nx−b2nxc)
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This function is shown in figure 5.5. It is self-similar under the action of the dyadic monoid:
the generators are bw (x/2) = wbw (x) and bw (1− x) = 1−bw (x). As a matrix representa-
tion, one has

1→ e1 =

[
1
0

]
tw→ e2 =

[
0
1

]
so that

gb =

[
1 0
0 w

]
rb =

[
1 0
1 −1

]
are the generators of the dyadic monoid in this representation. Applying the previous
developments, one then has that

[Lcbw] (x) =
∞

∑
n=1

1
2n bw

(
2− x

2n

)
=

∞

∑
n=1

1
2n gn−1

b rbgbbw (x)

Since

gn−1
b rbgb =

[
1 0

wn−1 −wn

]
one promptly obtains that

[Lcbw] (x) =
∞

∑
n=1

1
2n

(
wn−1−wnbw (x)

)
=

1−wbw (x)
2−w

From this, one can then promptly obtain an eigenfunction ew = bw−1/2 which satisfies

Lcew =
−w

2−w
ew

Additional eigenfunctions transforming according to the same representation are given by
bw,l (x) = bw ((2l +1)x). Applying the techniques above, one finds that

Lcbw,l =
1

2−w
cw,l−

w
2−w

bw,l

where cw,l is piecewise-constant depending on w and l . Eigenfunctions are then given by

ew,l =
−cw,l

2
+bw,l

which satisfy

Lcew,l =
−w

2−w
ew,l

We’ve already seen that cw,0 = 1. For l = 1, one has

cw,1 (x) =


5−w

4 for 0≤ x < 1
3

1+3w
4 for 1

3 ≤ x < 2
3

3−w
2 for 2

3 ≤ x < 1
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For l = 2 one has

cw,2 (x) =



9−w
8 for 0≤ x < 1

5
1+7w

8 for 1
5 ≤ x < 2

5
7−3w

4 for 2
5 ≤ x < 3

5
3+w

4 for 3
5 ≤ x < 4

5
5−w

4 for 4
5 ≤ x < 1

The general expression is given by the piece-wise flat function

cw,l (x) = w+(1−w)
∞

∑
k=0

βk

2k for
4l +1− (M−1)

2l +1
≤ x <

4l +2− (M−2)
2l +1

where M−1 and the binary bits βk are related as given in eqn 5.9. The above formula may
be derived by applying the techniques from section 5.7, commuting so as to use the 2×2
matrices Lb = gb and Rb = rbgbrb, and expanding in powers of w, and tracking each power
separately. Note that the sum has the effect of “reversing” the order of the bits in the binary
expansion for M−1. Note that

∫ 1
0 cw,l (x)dx = 2l +1. In computing the above, it is useful

to have a certain polynomial: let γ be a product of L and R, so that

γ = Lm0Rm1Lm2 · · ·LmN−1RmN

Then one has that

γb (w) =
[

1 0
qγ (w) wM

]
where M = m0 +m1 + · · ·+mN and qγ is the polynomial

qγ (w) = wm0 −wm0+m1 +wm0+m1+m2 −·· ·+(−1)N wM

Since the mk are counting the number of repeated digits in a binary expansion, we once
again see the insidious presence of integer series (and thus the connection to continued
fractions, these being given by integer series).

5.9. The three dimensional representation. As noted above, the Takagi curve trans-
forms under a 3D representation of the dyadic monoid. A few more factoids about this
are below. Under the action of Lc, the Takagi curves transform as[

Lctw,l
]
(x) =

1
2−w

[
αl (w)+ xβl (w)+wtw,l (x)

]
where αl (w) and βl (w) are polynomials in w. The l = 0 case was already given above; for
l = 1 and 0≤ x < 1/3, one has

α1 (w) =
3
4

and β1 (w) =
19
24

which is obtained using the methods above. The corresponding eigenfunctions are given
by

Ew,l (x) =
−1

1−w

[
αl (w)

2
+

1
3

]
+ x

3
2

βl (w)
1+w

+ tw,l (x)

so that [
LcEw,l

]
(x) =

w
2−w

Ew,l (x)

Since the eigenvalue is w/(2−w) as before, the general solution may be written as a linear
combination of these solutions.

Previously, we saw that the Takagi Curves served as basis vectors for a space of degen-
erate eigenfunctions of the Bernoulli Map, associated with arbitrary eigenvalue. We saw
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FIGURE 5.6. Walsh Functions
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The above figures show the Walsh functions sm, in red, and the self-similar fractals ρm
(defined in eqn. 5.10), in green, for m = 1,2,3,7. The value of w = 0.6 was used in the

sum for the fractal curves.

that this space could also be spanned by the Hurwitz Zeta, through a change of basis. Thus,
we expect that we can extend these results to this map as well. That is, there is a linear
combination of the Ew,l that is differentiable in x for each w.

5.10. Walsh functions. The Walsh functions provide an orthonormal basis for the Banach
space L2 [0,1] of square-integrable functions on the unit interval[8]. These can be used to
construct eigen-solutions to Lc. This section defines the Walsh functions, and constructs a
set of self-similar functions from them, transforming under a finite-dimensional represen-
tation of the dyadic monoid. These are in turn used to construct the eigen-solutions.

The Walsh functions are built from the Rademacher functions. Define the step function

s1 (x) =

{
+1 for 0≤ x < 1

2
−1 for 1

2 ≤ x≤ 1

and extend it to the whole real-number line by making it be periodic (i.e. so that its a square
wave). The Rademacher functions rn (x) are defined as rn (x) = s1 (2nx). Given a finite
sequence of positive integers n1 < n2 < n3 < · · · < nk, the corresponding Walsh function
is defined as the product of Rademacher functions rn1rn2rn3 · · ·rnk . It is not hard to see that
these are orthonormal on the unit interval; indeed, the rn themselves are orthonormal, in
that ∫ 1

0
rm (x)rn (x)dx = δnm
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These may be parameterized by means of an integer. Let m be an integer with the binary
expansion

m =
∞

∑
k=1

βk2k−1

with each βk ∈ {0,1}. Implicit is that there is some upper bound k above which all the βk
are zero. Then define the m’th Walsh function sm as

sm (x) =
∞

∏
k=0

rβk
k (x)

In essence, if βk = 1, then rk appears in the product; if βk = 0, then rk does not. These are
orthonormal, in that s2

m = 1, and ∫ 1

0
sm (x)sn (x)dx = δnm

and these form a complete basis for the space of square-integrable functions on the unit
interval[8]. The Walsh functions have many curious properties; among those relevant here
are that sm (2x) = s2m (x) and that smsn = sm⊕n where m⊕ n denotes the bit-wise XOR of
the binary expansion of the two integers m and n, and s0(x) = 1 for all x. That is, the non-
negative integers form an abelian group under bit-wise XOR, and the Walsh functions are
isomorphic, as a group. Treated as a product operation, it means that the Walsh functions
can form not just a Banach space, but also a Banach algebra; but this algebra is just the
usual ring of functions on the unit interval. The scaling property commutes with the XOR
operation as well: 2(m⊕n) = 2m⊕2n. A sampling of these functions are shown in figure
5.6.

A set of fractal functions, corresponding 1-1 to the Walsh functions, and transforming
under the dyadic monoid, are built as usual. Let

(5.10) ρm (x) =
∞

∑
j=0

w jsm
(
2 jx
)

It is not hard to see that

ρm

( x
2

)
= sbm

2 c (x)+wρm (x)

where bvc denotes the floor of v (largest integer less than or equal to v). Under the action
of reflection r (x) = 1− x, the ρm is even or odd, depending on whether the number of 1
bits in m is even or odd. Let N be the smallest integer such that m < 2N (N is the length, in
bits, of m, ignoring the infinite string of zero bits to the left; N = blog2 mc+ 1). Then ρm
transforms under an N +1 dimensional representation of the dyadic monoid, given by the
basis

1→ e1

s⌊ m
2N−1

⌋→ e2

s⌊ m
2N−2

⌋→ e3

· · ·
sbm

2 c → eN

ρm→ eN+1
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FIGURE 5.7. Integrals of Eigenfunctions
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Figures showing integrals of the dyadic saw tooth eigenfunctions 5.11, for w = 0.6.
Specifically, these figures show

∫ x
0 vk (y)dy for k = 1,3,5,7. These integrals are easily

computed, as the integrals of the Walsh functions are simply a sequence of upward or
downward-pointing triangles or tents. Thus, the first figure is just an iterated triangle,

leading to the blancmange or Takagi curve (corresponding to that shown in figure 5.4, but
for w = 0.3; a factor of 1/2 resulting from integration). In general one has

∫ 1
0 vk (y)dy = 0,

which follows since the integral of any Walsh function is zero over the unit interval, and
the vk are simply linear combinations of the Walsh functions.

In this basis, the two monoid generators are

g =



1 0 0 · · · 0 0
1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · 1 w


and r =



1 0 0 0 · · · 0
0 σ1 0 0 · · · 0
0 0 σ2 0 · · · 0
0 0 0 σ3 · · · 0
...

...
...

...
...

0 0 0 0 · · · σN


where σk =±1 depending on the number of 1 bits in the binary expansion for

⌊
m/2N−k

⌋
.

To be precise, let ck = ∑
N
j=N−k+1 β j count the number of 1 bits in

⌊
m/2N−k

⌋
; then σk =

(−1)ck . Note that σ1 = −1 always. This even/odd sign-changing behaviour is vaguely
reminiscent of the Möbius function.

To obtain the action of Lc on ρm, one needs an expression for the matrix elements
gn−1rg. These are easily obtained, because of the simple, bi-diagonal, shift form of g. The
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most relevant one, for n≥ N is

gn−1rg =



1 0
...

1 0 · · · 0 · · ·

1 0
...

...
...

1 0 0 · · · 0 0 0
pn−N (w) σ2wn−N+1 σ3wn−N+2 · · · σN−1wn−2 σNwn−1 σNwn


Here, pk is a polynomial of degree k, given by pk (w) =

(
1−2wk +wk+1

)
/(1−w). Note

that p1 (w) = 1−w and p0 (w) =−1. It is given by the recurrence relation pk+1 = 1+wpk.
Making use of the property that

∞

∑
n=1

pn−N (w)
2n = 0

for all N, one can find that

Lcρm =
1

2−w

(
σ2s1

2N−2 +
σ3sm2

2N−3 +
σ4sm3

2N−4 + · · ·+
σN−1smN−2

2
+σNsmN−1 +σNwρm

)
Here, we’ve made use of the notation

mk =
⌊ m

2N−k

⌋
=

N

∑
j=N−k+1

β j2 j−N+k−1 = m� (N− k)

where� denotes the bit shift-right operator. Observe that mN = m and that m1 = 1 always.
From the above, it is immediately clear that eigenfunctions of Lc can be constructed

from linear combinations of ρm and the smk , and that the eigenvalues will be σNw/(2−w).
To obtain these, one needs the action of Lc on sm. This is given by

Lcsm = σN
smN−1

2
+σN−1

smN−2

4
+ · · ·+σ2

sm1

2N−1 =
N−1

∑
k=1

σk+1
smk

2N−k

The eigen-equation is then
Lcvm = λmvm

with λm = σNw/(2−w) and

(5.11) vm (x) = ρm (x)+
N−1

∑
k=1

aksmk (x)

Here, the ak are just numbers, and are given by a recurrence relation:

(5.12) aN−k =
σNσN−k+1

2k−1w

[
1+(2−w)

k−1

∑
j=1

2 j−1aN− j

]
The first few of these are

aN−1 =
1
w

aN−2 =
σNσN−1

w2

aN−3 =
σN−2

w3

[
σN−1 +

w
2
(σN−σN−1)

]
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FIGURE 5.8. Coefficient a1
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This figure shows a graph of the coefficient a1 as a function of m; that is a1 for the m’th
eigenvector vm, at a value of w = 0.6. It is readily computed by using the recursive

equation 5.12. Note that, for each power of 2, there is a pattern, repeated 4 times: twice
right side up, and twice upside-down.

and, written in this “reduced” way, these expressions become progressively more compli-
cated. The coefficient a1, as a function of m, is shown in the graph 5.8. Putting this all
together, the first few eigenfunctions are

v1 (x) = ρ1 (x)

v2 (x) =
s1 (x)

w
+ρ2 (x)

v3 (x) =
s1 (x)

w
+ρ3 (x)

v4 (x) =
s1 (x)

w2 +
s2 (x)

w
+ρ4 (x)

v5 (x) =
−s1 (x)

w2 +
s2 (x)

w
+ρ5 (x)

v6 (x) =
s1 (x)

w2 +
s3 (x)

w
+ρ6 (x)

v7 (x) =
−s1 (x)

w2 +
s3 (x)

w
+ρ7 (x)

Because all of these are constructed from step functions, they are easily integrated over:
the integrals are composed of triangle waves.
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FIGURE 5.9. Integrals of GKW eigenfunctions
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These figures show the integrals of GKW eigenfunctions φk =?′vk◦? for w = 0.6.
Specifically, these figures show

∫ x
0 φk (y)dy =

∫ ?(x)
0 vk (z)dz for k = 1,3,5,7. These

integrals are easily computed, as the integrals of the vk are easily computed, as noted in
the caption to the previous set of graphs, and the computation of the Question Mark is

equally straight-forward.

Several properties of these functions should be noted. First, because the Walsh functions
sm formed a complete orthonormal set for L2 [0,1], it follows that the ρm also span L2 [0,1]
(because each ρm contains sm as a term). The ρm are also linearly independent (no ρm
can be written as a sum of the others, because each contains a term sm that cannot be
canceled out). They are not, however, orthogonal: in general, one has

∫ 1
0 ρm (x)ρn (x)dx 6=

0 whenever m = n2k for some (positive or negative) integer k.
By contrast, the vm are not linearly independent. Indeed, one readily verifies that v2 =

v1/w, that v4 = v1/w2, and so on. Likewise, v6 = v3/w. In general, one has that v2km =

vm/wk so that the vm are linearly independent of one-another if and only if m is odd. Since
Lc has a non-trivial kernel, it follows that the vm cannot span L2 [0,1].

5.11. Fractal Eigenfunctions of the GKW Operator. To recap: the motivation for all
of the preceding mechanics is to find solutions to the GKW operator, by means of the
similarity transformation described in section 5.3. By construction, the vk are, by similarity
transform, the desired eigenfunctions. Unfortunately, they are not even continuous under
the natural topology on the reals (they are discontinuous at all dyadic rationals). However,
since they do span (XXX span what, precisely?), and one may assume that certain linear
combinations of these may be continuous, or even differentiable.
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FIGURE 5.10. Fractal Eigenfunctions of GKW

-8

-6

-4

-2

 0

 2

 4

 6

 8

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

GKW Eigenfunction phi_1

-30

-25

-20

-15

-10

-5

 0

 5

 10

 15

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

GKW Eigenfunction phi_3

-50

-40

-30

-20

-10

 0

 10

 20

 30

 40

 50

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

GKW Eigenfunction phi_5

-50

-40

-30

-20

-10

 0

 10

 20

 30

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

GKW Eigenfunction phi_7

These figures show the fractal GKW eigenfunctions φk =?′vk◦? for w = 0.6 and
k = 1,3,5,7. Although these functions are discontinuous at all rationals, they are

none-the-less easily approximated by taking numerical differences of
Φk (x) =

∫ x
0 φk (y)dy =

∫ ?(x)
0 vk (z)dz. As discussed in the captions to the previous graphs,

these integrals are easily computed, and taking numerical differences is straight-forward.
Presumably, one may find certain linear combinations of these that are continuous

everywhere, or even differentiable everywhere.

That is, for any sequence of real numbers ck, the sum

f (x) =
∞

∑
k=1

ckv2k+1 (x)

is an eigenfunction of the dyadic saw toothLc f = λ f and likewise, φ =?′ f◦? is an eigen-
function of the GKW, Lhφ = λφ with the same eigenvalue λ . There must exist certain
sequences of {ck} for which φ is continuous, and, of these, some for which φ is differen-
tiable, or even a polynomial series, although, clearly, the last is not possible for just any
value λ , as the spectrum of the GKW is discrete when the eigenfunctions are infinitely
differentiable.

The continuous ones are the ones for which the filters are bounded:

lim
a→b

1
b−a

∫ b

a
φ (x)dx = lim

a→b

1
b−a

∫ ?(b)

?(a)
f (x)dx < ∞

This condition, derived in section 5.3, is required of continuous solutions to the GKW,
and is explored in the next sections. A sampling of some of the eigenfunctions, and their
integrals, is shown in figures 5.7, 5.9 and 5.10.
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6. LATTICE MODELS; TRACE AND DETERMINANT

The operator Lh−λ I should have a pole whenever λ corresponds to a discrete eigen-
value of the GKW operator Lh. The characteristic equation is then det(Lh−λ I) = 0, and
the identity detA = exp tr log A suggests that the operator log(Lh−λ I) is worth explor-
ing. To that end, we consider lattice models...

7. THE SHIFT OPERATOR ON BAIRE SPACE

The GKW operator corresponds to the shift operator on Baire space Nω . This can be
used to construct the continuous spectrum of the GKW operator. We begin with prelim-
inaries, by defining Baire space and endowing it with the product topology. The prod-
uct topology then drags with it all of the usual baggage, previously explored here and in
[26, 31]. In particular, the space of maps from Baire space to the complex plane has a nat-
ural basis, analogous to the Rademacher functions. The product topology has an obvious
shift operator; it is easily seen that the this shift operator is just the GKW operator. The
eigenfunctions of the shift operator have a continuous spectrum on the unit disk; these are
constructed explicitly, below.

By “Baire space” it is meant the Cartesian product Nω = N×N× ·· · of a countable
infinity of copies of the natural numbers N. This is not to be confused with the non-meagre
spaces discussed by the Baire category theorem. The continued-fraction expansion given
by2.2 provides a map [ ] : Nω → R from Baire space and the unit interval. This mapping
is onto (surjective), but not one-to-one (injective), since the rational numbers have two
ambiguous expansions as continued fractions. That is, [a1,a2, · · · ,an] = [a1,a2, · · · ,an−
1,1]. There is no such ambiguity when the continued fraction does not terminate.

Since Baire space is defined as a product, it has a natural topology, the product topology.
The basic open sets or generators of the product topology are the so-called “cylinders”
Cn(b) given by

Cn(b) = {(a1,a2, · · ·) ∈ Nω : an = b}
That is, the cylinder Cn(b) is the set of all continued fractions that have the integer b in
the n’th position. The cylinders generate the topology, in that the basis of the topology is
given by all intersections of a finite number of cylinders; such finite intersections are called
“cylinder sets”.

Consider now the space

(7.1) { f : Nω → C}
of (continuous) maps fromNω to the complex plane C. Continuity here is given with
respect to the product topology on Baire space, which must not be confused with the natural
topology on the reals, which is very very different. This space has a basis given by the
indicator functions on the cylinders; these are the Baire equivalents of the Rademacher
functions. Explicitly, we can write

(7.2) rn,b(x) =

{
1 if x ∈Cn(b)
0 otherwise

We can get a sense of these by employing the continued fraction expansion to express these
as functions on the unit interval. Thus, for example, by abusing the notation and taking x
to be a real number, one has that, one has that

r1,b(x) =

{
1 if 1/(b+1)< x < 1/b
0 otherwise
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FIGURE 7.1. Baire Rademacher functions
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The above illustrate two different cylinders on Baire space. On the left is a graph of
r2,1(x) and on the right, a graph of r3,1(x) for the Baire-Rademacher functions defined by

eqn 7.2, projected onto the unit interval.

and likewise

r2,b(x) =

{
1 if ∃m ∈ N such that 1

m+ 1
b
< x < 1

m+ 1
b+1

0 otherwise

and so on. Observe that r2,b(x) has the form of a comb, with an accumulation point at 0.
Similarly, r3,b(x) is a countable collection of combs, each accumulating at each rational
1/n. These are shown in figure 7.1.

The cylinders defined in eqn 7.2 can be used to define the Banach space subsets of the
set of continuous maps 7.1. Thus, one may consider the series

f (x) =
∞

∑
n=1

∞

∑
b=1

cn,brn,b(x)

for complex-valued constants cn,b ∈ C such that

∞

∑
n=1

∞

∑
b=1

∣∣cn,b
∣∣p < ∞

Such series belong to the lp Banach space. By abuse of notation, we can take these as
functions on either the Baire space, or on the unit interval of the reals. The Banach space
l1 gives the functions that are continuous on Baire space (point-wise continuity follows
from convergence); of course, these functions are discontinuous on the unit interval, as is
obvious from figure 7.1.

The Gauss map 2.1 is clearly the shift operator on Baire space; this is the content of eqn
2.3. This shift acts as an operator on the space of maps 7.1, and is easily given a concrete
form on the cylinders. Thus, writing Lh for the shift, one has that it acts on the cylinders
as

LhCn(b) =Cn−1(b)

for n > 1 and LhC1(b) = /0 the empty set for n = 1. Likewise, on the basis functions, it
acts as

Lhrn,b = rn−1,b

for n > 1 and Lhr1,b = 0 for n = 1. The fractal eigenfunctions can now be trivially written
down: choose a complex number λ ∈C such that it lays within the unit disk: |λ |< 1. Then



THE GAUSS-KUZMIN-WIRSING OPERATOR 48

FIGURE 7.2. Fractal Eigenfunctions
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An illustration of two fractal eigenfunctions of the GKW operator. The figure on the left
shows φ0.5,1(x) and the one on the right shows φ0.5,2(x) where φλ ,b is as defined in eqn

7.3. Both figures take λ = 0.5. The highest point on the graph follows from the fact that
∑

∞
n=0 λ n = 1/(1−λ ). The red lines in each figure illustrate the Rademacher basis

functions r1,1(x) and r1,2(x), respectively.

write

(7.3) φλ ,b =
∞

∑
n=1

λ
n−1rn,b

Clearly, these are eigenfunctions of the GKW operator:

Lhφλ ,b = λφλ ,b

The requirement that |λ |< 1 merely ensures that φb is an element of Banach space, i.e. so
that it has well-behaved convergence properties; otherwise, the formal relation holds just
fine without this restriction. Two such eigenfunctions are illustrated in figure 7.2.

The eigenfunctions constructed here appear to form a complete set (XXX right? need
a proof of this!?), in that they span the entire space of eigenfunctions for a fixed λ . Thus,
we expect these to be a linear combination of the fractal eigenfunctions defined in section
5.11, although the precise form is unclear. By analogy to that section, one expects that the
functions φλ ,b◦?−1 can be used to construct eigenfunctions of the dyadic saw tooth, as a
reversal of the relation given in 5.6.

7.1. Symmetries. It is worth pondering the action of the dyadic monoid on Baire space.
The equation 2.7 defines a generator gC which acts on continued fractions as

gC [a1,a2, · · · ] = [a1 +1,a2, · · · ]
Its action on the total Baire space is to remove the cylinder C1(1), as no continued fraction
beginning with 1 can ever occur:

gNω = Nω\C1(1)

Thus, it follows that it’s action on a cylinder set is

gCn(b) =Cn(b)∩ (Nω\C1(1))

for n > 1, while for n = 1, one has that

gC1(b) =C1(b+1)

Likewise, it acts on the basis functions as

grn,b = rn,b · (1− r1,1)
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for n > 1. Here, the dot reminds us that this is just ordinary multiplication. For n = 1, one
has

gr1,b = r1,b+1

The reflection operator r(x) = 1− x acts on continued fractions as well; unfortunately,
the notion used here conflicts a bit with the above definitions. Thus, r without subscripts
denotes reflection, while rn,b with subscripts denotes the basis functions. It is easiest to
give the general form of its action as

rgn [a1,a2, · · · ] = [1,a1 +n−1,a2, · · · ]

that is, rg acts as a right-shift operator:

rgNω =C1(1)

Acting on a single cylinder, it gives

rgCn(b) =Cn+1(b)∩C1(1)

and its action on the basis functions is

rgrn,b = rn+1,b · r1,1

The reflection operator r(x) = 1− x acting on continued fractions all by itself can be
expressed as

r [a1,a2, · · · ] = [1,a1−1,a2, · · · ]
when a1 > 1, and, for a1 = 1,

r [1,a2,a3, · · · ] = [a2 +1,a3, · · · ]

The fractal eigenfunctions defined in eqn 7.3 fail to transform nicely under the g and
r maps; this is obvious from figure 7.2 which are manifestly not left-right reflection sym-
metric. It is interesting to build forms that do transform nicely under r and g.

Continuous and even differentiable eigenfunctions can be built up, by considering the
integrals of the basic Rademacher square-wave: that is, by considering the triangle-wave
analogs, and so on. An open question remains: some linear combination of these should
yield a smooth C∞ eigenfunction when the eigenvalue corresponds to one of the classical
discrete-spectrum GKW eigenvalues. What construction gives this linear combination?
More generally, how does one show that the imposition of differentiability fractures the
continuous spectrum into a discrete one?

8. THE PRODUCT TOPOLOGY

The above developments present an insight that leads to a question. Basically, we’ve
seen an operator that has a discrete spectrum when one considers only functions that are
infinitely differentiable. However, it has a continuous spectrum when one considers func-
tions that are differentiable only a finite number of times (e.g. the fractals on the Cantor set
or on Baire space). Somehow, by forcing a function to be infinitely differentiable (on the
natural topology for the reals) causes the continuous spectrum to collapse into a discrete
spectrum. How, exactly, does this happen? What tools can be employed to explore this
transition more carefully?

To coherently discuss this, a more abstract formalism needs to be developed. The dis-
cussion that follows aims to review the product topology a bit more generally, to define a
suitable measure on the product topology, and to use this to generalize the notion of dif-
ferentiability so that it can be used in the product topology setting. A fair amount of effort
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will be devoted to bridge this back to the topology of the unit interval of the real number
line, and to the established concepts of integrability and differentiability in that setting.

That is, we want to be able to say that the unit interval [0,1] ⊂ R can be obtained as a
quotient space of the Cantor set [0,1] = 2ω/ ∼, where the equivalence ∼ glues together
the gaps in the Cantor set (the gaps occurring at the dyadic rationals, which have two in-
equivalent representations in the Cantor set; for example, 0.01111 · · · = 0.1000 · · · ), or,
similarly, [0,1] = Nω/∼, where the equivalence ∼ glues together the gaps in Baire space
(the gaps occurring at the rationals, which have two inequivalent representations as contin-
ued fractions, viz. [a1,a2, · · · ,an] = [a1,a2, · · · ,an− 1,1]). But it is not enough to simply
define these quotient spaces and remark that they are isomorphic to the reals; we also want
to establish some sort of equivalence between functions on the Cantor/Baire spaces, and
functions on the unit interval, and furthermore, promote the concepts of integrability and
differentiability on the reals to equivalent operations on the product spaces. That is, given
a differentiable function on the reals, what might its equivalent look like on the Cantor set
or Baire space? If we impose the condition of smoothness (infinite differentiability) on the
unit interval, what is the equivalent condition on the Cantor/Baire set?

8.1. The Measure as a Pullback. Let us begin by reviewing, one again, the definition of
the product topology on a countable product Xω of identical sets X . Of specific interest is
X = 2 = {0,1} so that ∆ = 2ω is the Cantor set, or X = N so that Nω is Baire space. The
generators of the topology are the cylinders

Cn(b) = {(a1,a2, · · ·) ∈ Xω : an = b}

and the cylinder sets are the intersections of a finite number of these cylinders. The cylinder
sets form the basis of the topology; the open sets of the topology are obtained as countable
unions of cylinder sets. The points topology are the infinite strings of symbols chosen from
X . Clearly, the number of points is uncountable. For the most part, the notion of a point is
irrelevant for what follows.

Denote by T the topology, that is, T is the collection of the open sets in the topol-
ogy. The primary topic of discussion in what follows will involve the set of functions
F (T → R) that assign a single real number to some open set in T . There are several
things we wish to accomplish: first and foremost, we wish to limit the discussion to func-
tions f ∈F that have equivalent functions (or possibly ’generalized functions’) [ f ] on the
unit interval, with equivalence arrived at by applying the map 2.2 (for the Baire space) or
5.5 (for the Cantor set). It should be clear that not every f ∈F has such an equivalence,
so establishing such a criterion is important.

One necessary ingredient is that the functions F (T → R) must be “integrable”, that
is, one should only consider those functions f : T → R such that f (A∪B) = f (A)+ f (B)
whenever A∩B = /0. We also want to define the class of measures that assign to each
open set in T a positive real number, its size. The goal is to have this class of measures
be consistent and equivalent with the normal definition of a measure on the reals; this is
needed so that discussions about integrability make sense, and are well-defined.

The definition of differentiability seems to require the replacement of classical defini-
tions that employ Cauchy sequences by definitions that employ the notion of filters. This
means defining operators sup : F →F and inf : F →F that find the suprenum and in-
fenum of values on sets. These may be defined as follows: given any f ∈ F and any
A ∈T , let

(sup f )(A) = sup{ f (B) |B⊂ A}
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Intuitively, we expect this suprenum to be finite whenever the equivalent function [ f ] is
Borel-measureable on the unit interval. Thus, for example, a generalized function, such as
the Dirac delta function centered on a point x ∈ [0,1] corresponds to an indicator function
f that has a value of f (A) = 1 whenever x ∈ A and zero otherwise. Clearly, one also has
(sup f )(A) = 1 in this situation as well. As another example, consider a function f whose
equivalent [ f ] is positive and is Riemann-integrable. In this case, with appropriate measure,
we want to be able to write (sup f )(A) =

∫
A[ f ]dx. We wanted [ f ] to be positive for this

example, so that we could arrive at strict equality; else the example gets complicated.
Similarly, define inf f as

(inf f )(A) = inf{ f (B) |B⊂ A}
In this case, when [ f ] is positive, we expect (inf f )(A) = 0 in general: if f is measurable,
we expect f (A)→ 0 whenever the measure µ(A)→ 0. Even in the example of a Dirac
delta, any set A that contains x also contains a subset B⊂ A that does not contain x and thus
f (B) = 0 and so (inf f )(A) = 0 even for the Dirac delta.

This now allows us to define differentiability in terms of the topology, a measure µ in
such a way that it corresponds to classic differentiability. Define

(d f )(A) = ((sup f )(A)− (inf f )(A))/µ (A)

Consider then a filter, that is, a sequence of sets A1 ⊃ A2 ⊃ ·· · that contain a point x and
having the property that limn→∞ µ(A) = 0. We then expect this derivative to converge to
the classical (Cauchy) derivative:

lim
n→∞

(d f )(An) =
d[ f ]
dx

For a Riemann-integrable function [ f ], the above should be intuitively obvious; similarly,
for the Dirac delta located at x, its clear that the above limit is infinite. The above is a
kind-of twisted way of defining the Radon-Nikodym derivative, in such a way as to be able
to perform practical computations with it.

So far, the above definitions were made by appealing to intuition; a bit more rigorous
development is needed (XXX do this). The notion of the derivative being developed here
follows from a similar notion from algebraic geometry: we take Xω to be a locally-ringed
space. For every open set in T , we attach a ring of (continuous) R-valued functions
(what are the coherence conditions that we want to impose? Is a sheaf enough, or is more
needed?) As we follow the sheaf down to a single point x, we get a local ring, a ring with
only one maximal ideal. The derivative is then the ring modulo the maximal ideal (err...
the tangent space is the ring module the maximal ideal). This must be fleshed out in some
simple way.

For the Cantor set, we have a mapping m : ∆→R given by eqn 5.5, and for Baire space,
the continued fraction mapping m : Nω → R given by eqn 2.2. These are maps of points to
points; we wish to now construct a push-forward, that maps sets to sets.

Outline: to-do:
• define the set mapping above.
• take the natural measure on the reals and pull it back to a measure on product

spaces

8.2. Cantor stuff. Let ∆ denote the Cantor set. Consider the space of functions F (∆→ R)
from the Cantor set to the real numbers. Since the Cantor set ∆ = 2ω has the cardinality
of the continuum, this space is clearly very large, a bit too large to work with, and doesn’t
match the characteristics of the systems studied above. Most notably, we’ve constructed ?′
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so that it is explicitly integrable; thus, we should consider the space of integrable functions
on the Cantor set. The Cantor set has a topological basis that is countable. One may con-
sider real-valued functions on this basis; a subset of these are integrable, as shown below.
Eventually, we want to limit these further, and consider the further subsets of continuous
and then differentiable functions.

8.3. Integrability. Begin by defining a basis B for a topology on the Cantor set. The
basis can be visualized as being given by the infinite dyadic tree. The topmost node in the
tree stands for the the unit interval I1 = [0,1]. The two child nodes on either side should
be understood to stand for I2 =

[
0, 1

2

]
and I3 =

[ 1
2 ,1
]
. Continuing in this fashion, one

has I4 =
[
0, 1

4

]
and I5 =

[ 1
4 ,

1
2

]
and so on for the next row. The basis is countable: the

nodes in the infinite dyadic tree are countable. There is a natural way of numbering the
nodes: the top node may be called 1, the left and right children are 2 and 3, respectively,
the next row being 4,5,6,7, and so on. The intervals are numbered likewise, and so one has
B = {Ik|k ∈ N}. The full topology T on the Cantor set is given by the finite intersections
and countable unions of the elements of this basis. This topology is one and the same
as the standard product topology of cylinder sets on Cartesian products; in this case, the
Cartesian product is simply 2×2×2×·· ·= 2ω .

Consider the vector space of functions F (B→ R) from this basis to the real numbers.
Because B is countable, we can equate this with the space of sequences from N to R. We
are interested in a subspace of these functions that could be considered to be “integrable”.
Loosely speaking, we are interested in those sequences {ak} which can be interpreted as
integrals over the corresponding {Ik}, so that

(8.1) ak =
∫

Ik
f (x)dx

for some real-valued function f : [0,1]→ R on the unit interval. Thus motivated, define
the subspace of integrable functions I ⊂F (B→ R) as the set

I = {ak ∈ R|k ∈ N,a1 = a2 +a3,a2 = a4 +a5, · · · ,an = a2n +a2n+1, · · ·}

The summation constraint is meant to be natural: so that, for example, the constraint a1 =
a2 +a3 is meant to be understood to be∫ 1

0
f =

∫ 1
2

0
f +

∫ 1

1
2

f

and so on, for each of the basis elements in B. Any integrable function on the unit interval
gives rise to a sequence in I . This is easy to see: given the definite integral F(x) =∫ x

0 f (y)dy, the corresponding sequence is just

(8.2) ak = F
(

k+1−2N

2N

)
−F

(
k−2N

2N

)
with N = blog2 kc, so that, for example, a3 =

∫ 1
1
2

f (y)dy.
Now, the lemma to establish here is that the space of such sequences is isomorphic to

the space of integrable functions on the unit interval; that the two may be taken to be the
same thing. We’ve already established one direction above. For the other direction, given a
sequence {ak}, one must show that there exists a unique, corresponding f . But this follows
primarily from the fact that the intersections and unions of elements of B are very nearly
trivial, and from the fact that the dyadic rationals are dense in the reals. We make no effort
to be more rigorous, as this is essentially an old theorem from Banach Theory: the Walsh
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functions provide a basis for the Banach space L1 [8]. A bit of addition and subtraction
provides the lemma above.

Note that, as a sequence space, I is not bounded: the values ak may get arbitrarily
large (positive or negative) for large k, as long as the constraint ak = a2k +a2k+1 is obeyed.
This means that I cannot be a subspace of the classical Banach space l∞ of bounded
sequences. A more interesting case is the subspaceM ⊂ I of measures. This is given
by those sequences {ak} for which ak ≥ 0, and a1 = 1. Thus, it follows that ak < 1 for
all k > 1 and so M ⊂ l∞. In general, measures may be delta-function-like; for example
f (x) = 0.2+0.8δ (x−1/3) yields a sequence {ak} such that for any n ∈ N there exists a
k > n such that ak > 0.75. This example shows that nothing smaller than the full space l∞
can contain such sequences. More generally, even for f ∈ Lp with p < ∞, one can still find
sequences (derived from p’th roots of the delta function) that are not convergent, and thus
properly live only in l∞. However, if f is bounded, i.e. if f ∈ L∞, then obviously one has
that the sequence {ak} ∈ l2. One can do slightly better.

Recall the standard definition of the Banach space lp: it is the set of sequences {ak} ∈ lp
which satisfy ∑

∞
k=1 |ak|p < ∞.

Lemma. If f ∈ L∞, then the sequence {ak} ∈ lp for any p > 1.

Proof. If f ∈ L∞, then ‖ f‖ ≤C for some constant C < ∞. That is, | f | is bounded on the
unit interval. As a result, one has that |ak| ≤C2−N where N = blog2 kc. One can use this
to bound the sum:

∞

∑
k=1
|ak|p =

∞

∑
N=0

2N+1−1

∑
k=2N

|ak|p

≤
∞

∑
N=0

2N+1−1

∑
k=2N

∣∣∣∣ C
2N

∣∣∣∣p
=Cp

∞

∑
N=0

(
1

2p−1

)N

<Cp ∀p > 1

The last line showing the desired result. �

The bound is strict:

Lemma. There do not exist any sequences a ∈ I which are also in l1, other than the
trivial sequence {ak|ak = 0}.

Proof. One has a1 = ∑
2N+1−1
k=2N ak for all N. If the sequence isn’t trivial, then there must

exist some M for which ∑
2M+1−1
k=2M |ak| = C > 0. Since ak = a2k + a2k+1, one must have

|ak| ≤ |a2k|+ |a2k+1|. It follows that ∑
2N−1
k=1 |ak| ≥ (N−M)C and so as N→∞, the series is

bounded below by an ever-larger number. That is, the sequence is summable only if C = 0,
that is, if ak = 0 for all k. �

In practice, none of the sequences we will deal with are in L∞, nor are they obviously
in any Lp for any p > 1. Yet they all appear to be in I ∩ lp for p > 1. The function ?′ is
a measure; an explicit proof of this is given in [31]. All of the eigenfunctions constructed
above are integrable; these are shown in figures 5.7 and 5.9. As these integrals are bounded,
we may conclude the corresponding sequences are elements of I ∩ lp for p > 1.
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8.3.1. Incidence algebra. The constraint of working only with integrable functions on B
leads to the curious relation that the elements a ∈I satisfy an operator equation: Wa = a
with

W =


0 1 1 0 0 · · ·
0 0 0 1 1 0 0 · · ·
0 0 0 0 0 1 1 0 · · ·

· · ·


or, equivalently, that the elements of I lie in the kernel of M = I −W . Clearly W is
bounded and thus continuous. However, it is not a projection; W 2 6= W ; it seems to be
’weakly nilpotent’ (nilpotent, but of infinite order); and M is unipotent. Neither I nor M
are complemented; that is, given a sequence x, there is no unique way of writing x = a+ y
with a ∈ I . Indeed, any a with a1 = x1 will do. This means that there is no projection
operator from the space of sequences to either I or M .

The operator M = I−W corresponds to the Möbius function of the incidence algebra
of the infinite dyadic tree taken as a poset; the corresponding zeta function is Z = 1+W +
W 2 +W 3 + · · · . To see this, recall the definition of an incidence algebra on a poset, and
specifically, of the zeta and Möbius functions of the incidence algebra. Let S be a partially
ordered set, and let Z : S×S→ N be the function

Z (a,b) =

{
1 if a≥ b
0 otherwise

For convenience, one orders all of the elements of S = {s1,s2, · · ·} such that if si > s j,
then i < j. This ordering is easily done by choosing s1 to be a maximal element of S,
and s2 to be a maximal element of S\s1, etc. Then writing Zi j = Z (si,s j), one sees that
Zi j is upper-triangular, with all 1′s on the diagonal, and thus unipotent. Define N = I−Z
and define M = I +N +N2 + · · · . For a finite set S (so that M, N and Z are all finite
dimensional matrices), one then has MZ = ZM = I. This M is called the Möbius function
of the incidence algebra of the poset. To see that this is exactly the M as given above for the
infinite dyadic tree, one needs only to make the association that the si are just the intervals
Ii given at the beginning of this section.

The relationship between M and Z in the infinite-dimensional case, however, is more
subtle, and depends on the space of sequences.

Theorem. On l1, the operators are well-behaved and invertible: MZ = ZM = I.

Proof. From 8.3, we conclude that ker M is trivial on l1; thus ZM = I. For the other case,
note that the matrix elements Z1 j = 1 for all j. Since l1 consists of summable sequences,
this implies that Z is bounded; indeed, ‖Z‖= 1 on l1. �

By contrast, the set I is defined as ker M, thus ZM 6= I on I . The lemma 8.3 estab-
lishes that Z cannot be bounded on sequences in I (since I ∩ l1 is trivial.) . Thus, for the
domain of interest, one must conclude MZ 6= I.

The correspondence here between the Möbius function on (semi-)lattices and its ker-
nel being used to define a notion of an integrable function is new to this author. Is this
correspondence accidental, or can it be used to define integrability in general?

8.4. Continuity. Given the space I of integrable functions (as defined above), how does
one isolate the subspace of continuous functions? In part because we’ve chosen to work
with a basis for the Cantor set topology, the mechanics of traditional limits and delta-
epsilon proofs appear to be inappropriate and not (easily) modified for the current vocabu-
lary. Thus, some alternative tools need to be developed. This is done here.
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Given the interpretation of the ak as integrals over the intervals Ik, we are then motivated
to find a function F (x) such that ak are given by equations 8.1, 8.2. Then, very roughly
speaking, we wish to have

f (x) = lim
ε→0

F (x+ ε)−F (x)
ε

as the function being integrated. We are interested in those functions f (x) that are contin-
uous in x. However, the above limit is not really well-defined or practical in the current
situation; for as we saw, when F =? then this is not sufficient to rigorously define ?′ on the
real unit interval. This is indeed the whole reason why the setting and manipulations are
performed on Cantor set, rather than the reals; why the tools use the language of intervals
and cylinder sets.

Consider the problem of continuity at x. We wish to have the left and right limits be
equal, in other words, for limε→0 f (x+ ε)− f (x− ε) = 0, or, writing ε = 1/2n, for

lim
n→∞

2n
(

F
(

x+
1
2n

)
−F

(
x− 1

2n

))
= 0

For x = 1
2 , one has that the interval I3·2n =

[
1
2 ,

1
2 +

1
2n+1

]
and so continuity at x = 1/2 is

obtained by admitting only those sequences for which

lim
n→∞

2n+1 (a3·2n −a3·2n−1) = 0

The above is both a necessary and sufficient condition for continuity. It may be replaced
by a weaker, sufficient condition that

(8.3)

∣∣∣∣∣ ∞

∑
n=0

2n+1 (a3·2n −a3·2n−1)

∣∣∣∣∣< ∞

This may be strengthened by demanding that, for all p > 0, that
∞

∑
n=0

2n+1 |a3·2n −a3·2n−1|p < ∞

The above is readily generalized to a continuity condition at any dyadic rational. The
midpoint for interval Ik is given by

mk =
k+1−2N

2N+1

where, as before, N = blog2 kc. Continuity at mk is given by

lim
n→∞

2n+N+1 (a(2k+1)2n −a(2k+1)2n−1
)
= 0

The condition 8.3 may be generalized into an operator relation. Consider the operator
B given by matrix elements Bk j

Bk j = 2n+N+1 (
δ j,(2k+1)2n −δ j,(2k+1)2n−1

)
where δ is the Kronecker delta function. Then, in order for a series a = {ak} to represent
a function continuous at mk, it is sufficient to have

∣∣∣∑∞
j=1 Bk ja j

∣∣∣< ∞. Define

‖Ba‖=
∞

∑
k=1

∣∣∣∣∣ ∞

∑
j=1

Bk ja j

∣∣∣∣∣
Clearly, any a for which ‖Ba‖ < ∞ represents a function that is continuous at the dyadic
rationals. In fact, this condition is sufficient to guarantee that it is continuous everywhere.
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Theorem. If a ∈ I and ‖Ba‖ < ∞, then the function represented by a is continuous ev-
erywhere.

Proof. To see this, consider a function f (x) that is discontinuous at a point x, and define
ak =

∫
Ik

f (y)dy as usual. If x is equal to the dyadic rational mk, then the arguments above

have already shown that
∣∣∣∑∞

j=1 Bk ja j

∣∣∣ would be unbounded. Consider x that is not a dyadic
rational. If mk is a midpoint that is near x (and f (x) is continuous at mk), then the sum
ck =

∣∣∣∑∞
j=1 Bk ja j

∣∣∣ is bounded. However, for any finite constant C, one can always find a
value of k such that ck > C. One does so simply by considering values of k such that mk
is ever closer to x. Thus, the sum ∑k ck cannot be finite. Thus, it is impossible to find a
discontinuous function f (x) for which ‖Ba‖< ∞ and so the theorem is proved. �

This motivates the definition of a space C of sequences that contains only continuous
functions. This is the space where B is a bounded operator:

C = {a ∈I |‖Ba‖< ∞}

Many, but perhaps not all, continuous functions are contained in C ; it is not entirely clear
if one can construct continuous functions f for which the corresponding sequence a fails
to satisfy the above.

9. STERN-BROCOT CONVERGENT

The goal of this section is to examine the measure ?′ in greater detail. In order to avoid
the difficulties associated with examining ?′ at a point, it is far more convenient to study
the integral

(9.1) I (a,b) =
1

b−a

∫ b

a
?′ (x)dx =

?(b)−?(a)
b−a

in the limit of a→ b. It is straightforward to verify that, when b is a rational number, that
in this limit, I vanishes: the Minkowski question mark has zero derivative on the rationals.
In fact it is very, very flat, exponentially so, with all derivatives vanishing, on the rationals:
this is easily seen by recalling the definition 2.6 of the question mark: given a continued
fraction expansion of a rational number [a1,a2, · · · ,aN ], that one has that the flat part goes
as 2−aN as aN →∞. By contrast, the derivative is “infinite” on the quadratic irrationals; the
rate of divergence is explored in figure 9.1.

The measure can be given a simple, exact expression on dyadic intervals, through its
relation to the Stern-Brocot tree. In this case, write

∆

(
b+a

2

)
=

?(b)−?(a)
b−a

and consider the values a =?−1(m/2n) and b =?−1((m+ 1)/2n). These can be written
recursively in terms of the Farey fractions in the Stern-Brocot tree; namely

(9.2) ?−1
( m

2n

)
=

p(m,n)
q(m,n)

where p(m,n)/q(m,n) is the m’th fraction in the n’th row of the tree. These are given by
the explicit recursion relation

p(m,n) =

{
p
(m

2 ,n−1
)

if m even
p
(m−1

2 ,n−1
)
+ p

(m+1
2 ,n−1

)
if m odd
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FIGURE 9.1. Convergence at the Golden Mean
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The above figures show rescaled graphs of the integral 9.1 at the Golden Mean
φ =

(√
5−1

)
/2, for which ?(φ) = 2/3. Specifically, the graphs show

hi(ε) = ε
0.2798I (φ ,φ + ε) and lo(ε) = ε

0.2798I (φ − ε,φ)

for two different ranges: 10−5 < ε < 10−2 and 10−203 < ε < 10−200. Note the
logarithmic scale. The oscillatory behaviour is given by cos(1.040π logε) to a good

approximation. That the oscillations are very regular should be apparent by comparing the
left and right figures. Qualitatively similar behaviors can be seen at other quadratic

irrationals, although with different growth amplitudes and periods of oscillation.

and likewise for q(m,n), the two differing only in the initial conditions:

p(0,0) = 0
p(1,0) = 1
q(0,0) = 1
q(1,0) = 1

The partial convergents have the unit determinant; that is

p(m+1,n)q(m,n)− p(m,n)q(m+1,n) = 1

Combining all these together, one obtains the explicit expression

∆

(
b+a

2

)
=

q(m+1,n)q(m,n)
2n

Rather than using (b+ a)/2as the midpoint, it is convenient to shift this slightly; this can
be done because ?−1 is strictly increasing, and thus, midpoints are bounded by their edges.
Thus, since

?−1
( m

2n

)
<?−1

(
2m+1
2n+1

)
<?−1

(
m+1

2n

)
we may alter the definition of ∆ and write

∆

(
?−1
(

2m+1
2n+1

))
= ∆

(
p(2m+1,n+1)
q(2m+1,n+1)

)
≡ ∆(m,n) =

q(m+1,n)q(m,n)
2n

which gives a fully recursive definition for ∆ valued on the rationals (since every rational
occurs somewhere, uniquely, in the Stern-Brocot tree.
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FIGURE 9.2. Stern-Brocot Convergent
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This figure shows D(x;n), as defined in 9.3, for n = 5,6,15. Here, the x coordinate is
given by 9.2, graphed on intervals. That is, ∆(m,n)/∆(tn,n) is graphed as a constant in the

interval ?−1(m/2n)≤ x≤?−1((m+1)/2n). Observe how D forms an upper bound one
some but not other intervals. The places intervals it does form an upper bound is a fractal

palindromic sequence. An upper bound can be taken simply by employing the max
function on an interval.

The divergence at the golden mean can be seen here, at the convergent, from below, to
1/3. That is, for n even, let tn = 0+1+4+16+ · · ·+2n−2 so that tn/2n→ 1/3 from below.
One then has that (for n even)

q(tn, n) = Fn+2

q(tn +1, n) = Fn+1

with Fn being the Fibonacci numbers. Using Binet’s formula for the Fibonacci numbers,

Fn =
ϕn−ψn

ϕ−ψ

where ϕ = (1+
√

5)/2≈ 1.618 · · · and ψ =−1/ϕ ≈−0.618 · · · , then one readily obtains
an exact expression for the growth rate at 1/3 :

∆(tn,n) =
ϕ2n+3 +ϕ−ψ +ψ2n+3

5 ·2n

To leading order, this gives

∆(tn,n) =
(

ϕ2

2

)n
ϕ3

5
+O

(
2−n)≈ ϕ3

5
ecn

with the constant c = log
(
ϕ2/2

)
≈ 0.26927646955926 · · ·
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FIGURE 9.3. Upper bound
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The upper bound B(x;5,7) = B(x;5,∞). This bound consists of slightly less than
27 = 128 piece-wise constant segments.

Its clear that, due to the self similar nature of the thing, the growth of the entire function
is bounded by this same value; that is

∆(m,n)
∆(tn,n)

≤ 1

for all values of m,n. This is shown in figure 9.2. It is convenient to define a piece-wise
constant version of the above; so let

(9.3) D(x;n) =
∆(m,n)
∆(tn,n)

∣∣∣∣
?−1(m/2n)≤x≤?−1((m+1)/2n)

A bounding function can be defined; let

B(x;n,k) = max
n≤p≤k

D(x; p)

That is, by definition, B is a bound, so that for all n ≤ p one has that D(x; p) ≤ B(x;n,∞)
by definition. In fact, the bound is much sharper; one has that

D(x; p)≤ B(x;n,n+2) = B(x;n,∞)

for all n≤ p. That is, fix n. Then B(x;n,n+2) is a piece-wise constant function consisting
of at most 2n+2 constant segments. Any D for large p is bounded by this. An example
bound is show in figure 9.3.
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This bound can be used to define an upper box-counting dimension for the function.
Define

C(n) =
∫ 1

0
B(x;n,n+2)dx

Note that this is written as an integral for notational convenience; in fact, this is just a finite
sum over the 2n+2 constant segments that comprise B. Numerical exploration suggests that

C(n)≈ 1.27304e−cn

That is, this (pseudo-)boxcounting dimension is c = log
(
ϕ2/2

)
.

10. THE ISOLA MAP

Stefano Isola proposes studying a map of deceptive simplicity[15]. Given by

F(x) =
{

x/(1− x) if 0≤ x≤ 1/2
(1− x)/x if 1/2≤ x≤ 1

it is symmetric about x = 1/2: that is, F(x) = F(1− x), and has a very simple tent-like
shape, and this is the source of the deception. One wants to hastily conclude that it is
topologically equivalent to the standard tent map

τ(x) =
{

2x if 0≤ x≤ 1/2
2−2x if 1/2≤ x≤ 1

and thus that the spectrum of its Frobenius-Perron Operator is identical to that of the
Bernoulli Map, and that this map can be trivially brushed aside as belonging to that con-
jugacy class. Nothing could be farther from the truth. In fact, it is conjugate, but the
conjugating function is the Minkowski Question Mark:

F(x) = (?−1 ◦ τ◦?)(x)

and so the relationship is anything but trivial. The easiest way to see this is to note that we
can write F and τ are combinations of the modular group element g−1:

F(x) =
{

g−1
C (x) if 0≤ x≤ 1/2

(g−1
C ◦ r)(x) if 1/2≤ x≤ 1

following the notation of earlier chapters, and

τ(x) =
{

g−1
D (x) if 0≤ x≤ 1/2

(g−1
D ◦ r)(x) if 1/2≤ x≤ 1

Just as we saw with the second saw tooth, the point dynamics of the Isola Map and the
Tent Map are isomorphic to each other, but the eigenvalue spectra are inequivalent. The
Ruelle-Frobenius-Perron operator for the Isola Map is

[P f ] (x) =
1

(1+ x)2

[
f
(

x
x+1

)
+ f

(
1

x+1

)]
Isola shows how the Gauss-Kuzmin-Wirsing operator can be constructed through some
simple operator relationships on P and so it is a worthwhile goal to attempt to solve P .
As we will see below, this seems to be an even harder task.

Closely related is a modular variant of the Bernoulli shift, given by

(10.1) A(y) =?−1 (frac(2?(y))) =

{
y

1−y for 0≤ y≤ 1
2

2y−1
y for 1

2 ≤ y≤ 1
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The associated transfer operator is

[LA f ] (y) =
1

(1+ y)2 f
(

y
1+ y

)
+

1

(2− y)2 f
(

1
2− y

)
which again has the curious relationship

LA?′ =?′

as given in [31].

10.1. The (Lack of a) Polynomial Basis. Based on our previous luck, we attempt to
define the operator P in the polynomial basis. First, we attempt an expansion at x = 0.
This leads to

Pnk ≡〈n |P|k〉

=(−)n
[(

k+n+1
k+1

)
+Θk≤n(−)k

(
n+1
k+1

)]
This matrix is not triangular, and is thus not directly solvable. It is also very ill-conditioned,
making it not numerically tractable, at least, not in any simple fashion. As n gets large,
the matrix elements grow exponentially on the diagonal. This is easily seen by applying
Stirling’s asymptotic formula for the factorial to the binomial; one easily gets(

n
k

)
≈ 2n+1
√

2πn
exp
(
−(2k−n)2

2n

)
when n and k get large. Thus, along the diagonal, Pnn ≈ 4n+1/2

√
πn, and the matrix is

not tractable numerically, and would be painful to work with analytically, without defining
some sort of regulator. Thus, we are motivated to look at the expansion at x = 1/2. Here,
however, the situation is not much better. Defining y = x−1/2 so that

[Q f ] (x) =
1

(y+3/2)2

[
f
(

y+1/2
y+3/2

)
+ f

(
1

y+3/2

)]
we work through the same set of steps to obtain

Qnk ≡〈n |Q|k〉

=

(
−2
3

)n+2
[(

2
3

)k( k+n+1
k+1

)
+

(
1
3

)k min(n,k)

∑
p=0

(−3)p
(

n+ k− p+1
k+1

)(
k
p

)]
which is far more complex, and only marginally less divergent: Qnn ∼ (16/9)n+1. There is
hardly any hope that a Taylor’s expansion around any other value of x will give a tractable
result; the trick of using the Taylor’s expansion to obtain polynomial eigenstates fails in
this case. Indeed, it seems likely that the eigenstates will not be analytic, although it is not
clear to me what theorem would establish or disprove this conjecture.

The polynomial-basis matrix elements for this operator are much better behaved. They
are given by

Mnk ≡ 〈n |LA|k〉=
1

22+n+k

(
n+ k+1

k+1

)
+Θn≥k (−1)k+n

(
n+1
k+1

)
(Notice the direction of the Heaviside function is reversed, is this correct, or an error? XXX
Needs double-checking).
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The leading factor of two in the above makes all the difference in the world for this
operator. This time, applying Stirling’s formula to evaluate the matrix elements on the
diagonal gives

Mnn ≈ 1+
0.76√

n
thus implying that this operator, at least, is not hopelessly badly behaved.

The difference between the two is, perhaps, due to the former not being diagonalizable
except in Jordan block form.

11. CONCLUSIONS

Apologies for the format of this paper. It’s a veritable candy store of goodies; there are
all these yummy toys to play with, which one first?

ToDo list:
• show why Kolmogorov entropy is in trouble, desired for the Ornstein isomorphism

theorem. Need Koopman to do this.
• show Koopman operator, desired for Wold decomposition. Clarify kernel

APPENDIX A. EXPANSION ABOUT ARBITRARY LOCATION

This appendix provides expressions for the polynomial-basis matrix elements for the
GKW and Mayer-Ruelle operators. Specifically, they provide expressions for the Taylor’s
expansions about points other than 0 or 1. Several relations to the hypergeometric series
are also provided.

Consider f (x) = ∑
∞
n=0 f (n)(a)(x−a)n/n! and g(x) likewise expanded about x = b. With

this expansion, the operator relation Lh f = g becomes

g(m)(b)
m!

=
∞

∑
n=0

L
(b,a)

mn
f (n)(a)

n!

which is taken to define the meaning of L
(b,a)

mn . Without much difficulty, one discovers that
the matrix elements are given by

(A.1) L
(b,a)

mn = (−1)m
n

∑
k=0

(−a)n−k
(

n
k

)(
k+m+1

m

)
ζH(k+m+2,1+b)

where ζH(s,q) is the Hurwitz zeta function:

ζH(s,q) =
∞

∑
n=0

1
(n+q)s

Substituting a = b = 1/2, one obtains the expansion of [7], which is

L
(1/2,1/2)

mn =(−1)m
n

∑
k=0

(
−1
2

)n−k( n
k

)(
k+m+1

m

)
×[

2m+k+2 (ζ (k+m+2)−1)−ζ (k+m+2)
]

All of these expressions for the matrix elements for the GKW operator have a common
form. It consists of two summations: the outer summation, and the summation defining
the Hurwitz zeta function. Exchanging the order of summation, one finds terms consisting
of a series of polynomials, which are most simply expressed in terms of Gauss’s hyperge-
ometric series:
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Γmn(x)≡ (m+1)2F1

[
−n m+2

2 ; x
]
=

n

∑
k=0

(
n
k

)(
k+m+1

m

)
(−x)k

These have a curious superficial resemblance to the shifted Legendre polynomial

P̃n(x)≡
n

∑
k=0

(
n
k

)(
k+n

n

)
(−x)k

Switching the order of summation in equation A.1 gives the following:

L
(b,a)

mn = (−1)m+nan
∞

∑
j=1

1
( j+b)m+2 2F1

[
−n m+2

2 ;
−1

a( j+b)

]
Curiously, the above is in the form of the Mayer-Ruelle operator. This operator is a

slightly generalized form of the GKW operator given by Dieter Mayer[20],[
M (s) f

]
(x)≡

∞

∑
n=1

1
(n+ x)s f

(
1

n+ x

)

Then, taking s = m+ 2, x = b and f (x) =2 F1

[
−n m+2

2 ; −x
a

]
, one has that the

GKW matrix elements are just specific values resulting from the application of the Mayer-
Ruelle operator to the hypergeometric series:

L
(b,a)

mn = (−1)m+nan
[
M (m+2) f

]
(b)

The simplicity of this form can be further reinforces by setting a = b = 1 so that

Gmn =
[
M (m+2) f

]
(1)

where, of course, Gmn are the matrix elements of the GKW operator as defined in eqn 2.8.
Following the same procedures and definitions as above, the matrix elements of the

Ruelle-Mayer operator M (s) may be written as

(A.2)
[
M (s)

](b,a)
mn

= (−1)m
n

∑
k=0

(−a)n−k
(

n
k

)(
m+ k+ s−1

m

)
ζH(m+ k+ s,1+b)

The above gets a bit easier to read if one sets a = b = 1 to obtain[
M (s)

]
mn

= (−1)m+n
n

∑
k=0

(−1)k
(

n
k

)(
m+ k+ s−1

m

)
[ζ (m+ k+ s)−1]

which obviously reduces to the GKW operator for s = 2:

Gmn = (−1)m+n
[
M (2)

]
mn

The corresponding hypergeometric identity that comes into play is
n

∑
k=0

(−x)k
(

n
k

)(
m+ k+ s−1

m

)
=

(
m+ s−1

m

)
2F1

[
−n m+ s

s ; x
]

As a final note, recall that the Hurwitz zeta may be expressed as the polygamma func-
tion for integer arguments, where the polygamma functions are the chain of logarithmic
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derivatives of the gamma function. Thus, one may also expresses the matrix elements of
L in the curious form

L
(b,a)

mn =
(−a)n+1

m!

n

∑
k=0

(
n
k

)(
1
a

)k+1 1
(k+1)!

dk+1

dxk+1 ψ
(m)(1+b)

Here, the curious operator making an appearance is

[Pn,y f ] (x) =
n

∑
k=0

(−y)k
(

n
k

)
f (k)(x)

k!

where f (k)(x) is the k’th derivative of f at x. The operator Pn,yis upper-triangular, with all
eigenvalues equal to 1, and all eigenvectors being polynomials (or analytic series for n not
an integer).

APPENDIX B. SIMILARITY TRANSFORMS

This appendix demonstrates the behaviour of the transfer operator under the action of
a similarity transformation. The demonstration proceeds using the simplest, most basic
manipulations possible, so as to be easy to verify.

Given a differentiable function α : X → X , the transfer operator (Perron-Frobenius-
Ruelle operator) Lα : F (X)→F (X) is a bounded linear operator acting on a space of
functions F (X) on X . One possible, simple definition for this operator is

[Lα f ] (x) = ∑
y∈α−1(x)

1
|α ′ (y)|

f (y)

where x ∈ X and f ∈ F (X), while α ′ denotes the derivative of α . The derivation of
the similarity transform proceeds by substituting the similarity relation α = φ−1 ◦β ◦ φ ,
with φ : X → V being one-to-one and onto (and so being uniquely invertible), and being
differentiable, so that φ ′ can be defined. Thus, β : V →V is a function conjugate to α, and
is differentiable as well. Substituting, one then has:

[Lα f ] (x) = ∑
y∈(φ−1◦β◦φ)

−1
(x)

1∣∣(φ−1 ◦β ◦φ)′ (y)
∣∣ f (y)

= ∑
φ(y)∈(β◦φ)−1(x)

1∣∣(φ−1 ◦β ◦φ)′ (y)
∣∣ f (y)

Let w = φ(y) and v = φ(x) so that

[Lα f ]
(
φ
−1 (v)

)
= ∑

w∈β−1(v)

1∣∣(φ−1 ◦β ◦φ)′ (φ−1 (w))
∣∣ f
(
φ
−1 (w)

)
= ∑

w∈β−1(v)

f
(
φ−1 (w)

)
|(φ−1′ ◦β )(w) ·β ′ (w) · (φ ′ ◦φ−1)(w)|

Observe that, for all values of w ∈ β−1 (v), one has that
(
φ−1′ ◦β

)
(w) = φ−1′ (v) and

so this term can be brought out of the summation. Next, one has that 1 =
(
φ ◦φ−1

)′
=(

φ ′ ◦φ−1
)
·φ−1′ and so one has

1
|(φ ′ ◦φ−1)(v)|

[Lα f ]
(
φ
−1 (v)

)
= ∑

w∈β−1(v)

1
|β ′ (w)|

( (
f ◦φ−1

)
(w)

|(φ ′ ◦φ−1)(w)|

)
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Define an operator Sφ : F (X)→F (V ) that acts on f ∈F (X) as[
Sφ f

]
(v) =

(
f ◦φ−1

)
(v)

|(φ ′ ◦φ−1)(v)|
Then the previous equation can be written as[

Sφ Lα f
]
(v) =

[
Lβ Sφ f

]
(v)

Since this holds for all f and v, one must have

Lβ = Sφ Lα S−1
φ

where clearly, S−1
φ

= Sφ−1 . Thus, the two transfer operators are conjugate to one-another
when the functions generating them are similar. The primary ingredient for the above
derivation was that the similarity transform φ needed to be differentiable, in order to make
the manipulations legitimate.

In fact, the conjugacy transformation leaves the spectrum of the operators unchanged.
To see this, one must switch to slightly more abstract language: first, one must establish
that the transfer operator is bounded (as, indeed, it is) and that it is expressible as a nuclear
operator, so that it can be written as a countable sum of (bounded, summable) eigenvalues
and basis vectors.
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