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Abstract

This short note provides a numerical exploration of the entropy of the Gauss-
Kuzmin distribution, confirming that it seems to have a value of 3.432527514776...
bits. Some information-theoretic questions regarding the distribution of rationals
are explored. In particular, one may define a “de facto” entropy for fractions with
a small denominator; it is not clear that this de-facto entropy approaches the above
in the limit of large denominators.

1 Introduction
Let x be a real number, 0≤ x≤ 1. Let

x = [a1,a2,a3, · · · ] =
1

a1 + 1
a2+ 1

a3+···

be the continued fraction expansion of x. Given the uniform distribution of the reals on
the unit interval, the Gauss-Kuzmin distribution gives the probability Pr(an = k) of an
integer k appearing in any given place an of the expansion. This probability distribution
has been famously studied by Kuz’min, Levy, Khinchin and Wirsing; it is given by[4]

Pr(an = k) = pk =− log2

[
1− 1

(k +1)2

]

The continued fraction expansion can be viewed as a discrete random variable,
which may be sampled; the n’th sampling giving the value an. Given a discrete ran-
dom variable with N possible discrete states, the (information-theoretic) entropy[1] is
defined as

H =−
N

∑
k=1

pk log2 pk

where pk is the probability of the k’th state occurring in a measurement of the random
variable. The entropy is measured in bits; and so log2 p = log p/ log2 is the base-2
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logarithm. For continued fractions, one has an infinite number of possible states, and
so N = ∞ and so

H =−
∞

∑
k=1

pk log2 pk

Here, the probability pk is given by the Gauss-Kuzmin distribution. This entropy shall
be termed the “Gauss-Kuzmin entropy”, as it is uniquely fixed by the Gauss-Kuzmin
distribution. It appears to have been first defined and calculated by N. M. Blachman in
1984[2]. The numerical value of H may be obtained by computation; it is

H = 3.432527514776 · · · bits

or alternately, in terms of the natural logarithm,

H loge 2 = 2.379246769061 · · · nats

These numbers are not obviously related to any previously known constants, according
to Plouffe’s Inverter[5].

The above values were computed with the GNU MP multiple precision library[3],
and should be accurate to approximately the last two digits. They were obtained by
means of brute-force summation, together with quadratic extrapolation, up to values of
k = 4.09×1010. The quadratic extrapolation may be performed as follows: let

t = 1−
N

∑
k=1

pk

and

H(t) =−
N

∑
k=1

pk log pk

It can be readily seen that limN→∞ t = 0. An explicit form for t as a function of N is
given in the next section. It is also straightforward to observe that H(t) is very nearly
a linear function of t. Thus, one can readily estimate the value of H = limt→0 H(t) by
means of a quadratic extrapolation in t to the limit t = 0. Such extrapolation offers
several additional decimal digits of precision over the raw value of the sum, terminated
at a finite N.

There does not appear to be any simple or straightforward way to rewrite the sums
to allow high-precision (more than 10 decimal places) calculation.

2 Analytic results
It is strightforward to sum the cumulative distribution function. The cumulative distri-
bution is the partial sum

C(N) =
N

∑
k=1

pk

Note that

1− 1

(k +1)2 =
k (k +2)

(k +1)2
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and so

C(N) =−
N

∑
k=1

log2

[
k (k +2)

(k +1)2

]

=− log2

[
N

∏
k=1

k (k +2)

(k +1)2

]

=1− log2

[
N +2
N +1

]
The extrapolation parameter t is then

t = 1−C(N) = log2

[
N +2
N +1

]
= log2

[
1+

1
N +1

]
and so, to first order in N,

t =
1

(N +1) loge 2
+O

(
1

N2

)

3 Typical Sequences
Given any particular value of x = [a1,a2,a3, · · · ], one may ask just how representative
the sequence is of a “typical” sequence, where a “typical” sequences is one which
has a distribution of an close to that of the Gauss-Kuzmin distribution. It is of some
interest to see whether the rational numbers are “typical” continued fractions, or not.
The question is important, as many numerical explorations of continued fractions must,
by necessity, work with either finite-length, or periodic continued fraction expansions.
Also of some curiosity is whether well-known transcendental constants, such as π of
the Euler-Mascheroni constant γ are “typical” or not.

The standard techniques of discussing typical sequences[1] are not directly appli-
cable, as the Gauss-Kuzmin distribution has infinite mean and mean-square variance.
Let p/q be a rational, with a continued-fraction representation of length M. Let mk be
the number of times that the integer k occurs in the continued fraction expansion of
p/q. Normalizing, one has a frequency of occurrence:

fk =
mk

M

and clearly, ∑k fk = 1. One may define a relative entropy as

∆H
(

p
q

)
=−

∞

∑
k=1

( fk− pk) log2 pk (1)

This relative entropy is shown in figure 3.
The relative entropy has an obvious self-similarity, with two generators. By exam-

ining the graph, one may guess that one of the generators might be:

∆H
(

p
q

)
≈ ∆H

(
p

p+q

)
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Figure 1: Relative Entropy
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Gauss-Kuzmin entropy of small rationals

This graph shows the relative entropy, given by eqn. 1, for all of the rationals p/q for
q≤ 128. Notice an obvious self-similarity.
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Figure 2: De facto entropy for small rationals
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This figure shows the de facto entropy, given by eqn. 2. The graph extends to all
rationals with denominators q≤ Q = 4×105. As can be seen, the convergence is very
slow. The limiting value might possibly be H=3.43..., but this is hardly clear simply by
gazing at the graph.

The form of the other generator is not clear.
Another standard interpretation of entropy is that, given a length `, there are 2`H

“typical” sequences of length `; other sequences are possible, but unlikely. For small
rationals, this interpretation can be reversed. Consider, instead, the set of all (irre-
ducible) rationals p/q up to a maximum denominator q ≤ Q. There are N(Q) such
rationals, which, expressed as continued fractions, have an average number of terms
`(Q). One then defines a de facto entropy as

H (Q) =
log2 N (Q)

`(Q)
(2)

For small rationals, the de facto entropy is considerably smaller than the Gauss-Kuzmin
entropy. This is illustrated in figure 3.
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