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Abstract

The beta transformation is the iterated map βx mod 1; it generates the base-β
expansion of a real number x. Every iterated piece-wise monotonic map is topo-
logically conjugate to the beta transformation. For all but a countable subset of β ,
the orbits of x are ergodic; yet it is the finite orbits that determine overall behavior.

This is a large text; it splits into four parts. The first part provides a review
of general concepts and properties associated with the beta shift. The second part
examines the spectrum of the Ruelle–Frobenius–Perron operator, and gives ex-
plicit expressions for various classes of eigenfunctions, some forming a discrete
spectrum, others forming a continuous spectrum.

The third part examines the finite and the periodic orbits. These are in one-to-
one correspondence with monic integer polynomials. They are “quasi-cyclotomic”
and can be counted with Moreau’s necklace-counting function; curiously, they do
not have any obvious relation to other systems countable by the necklace function.
The positive real roots are dense in the reals; they include the Golden and silver
ratios, the Pisot numbers, the n-bonacci (tribonacci, tetranacci, etc.) numbers. The
beta-polynomials yoke all of these together into a regular structure. An explicit
bijection to the rationals is presented.

The fourth part of this text examines small perturbations. These introduce
Arnold tongues, which inflate the finite orbits, a set of measure zero, to finite size.

This text assumes very little mathematical sophistication on the part of the
reader, and should be approachable for any enthusiast with minimal or no prior
experience in ergodic theory. Most of the development is casual. As a side effect,
the introductory sections are perhaps a fair bit longer than strictly needed to present
the new results.

*This text is an extract of a diary of research notes, first published in December 2017, with major updates
published in February 2018, December 2018 and January 2024. The current version expunges all the unfin-
ished, boring and speculative parts of the diary, and prettifies the rest into a presentable format. MSC2020
Classification 37E05, 37G10.
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1 Introduction
Given a real number x, it can be written down in base-ten, decimal notation, as a string
of digits 0-9. Each successive digit is given by an iterated formula. Starting with y0 = x,
let

yn+1 = (10yn) mod 1

The n’th digit in the decimal expansion is dn = ⌊yn⌋. Here, mod is the modulo (or
remainder) function, so that a mod b is the remainder of a after dividing by b. The
bracket ⌊z⌋ is the floor function, returning the largest integer less than z. The decimal
expansion of x is then d0.d1d2d3 · · · with all digits dn (except for the first) running
between 0 and 9. The iteration has the form of a shift; it shifts over by one digit,
and repeats the process. The shift is ergodic over the reals: any and every decimal
expansion will occur.

The same idea can be applied by replacing ten by any number β ; this gives the
base-β expansion. The β does not need to be an integer; the rest of this text is focused
on exploring the expansions coming from 1 < β ≤ 2, so “base two or less”.

The beta transformation is the map

tβ (x) = βx mod 1

iterated on the unit interval [0,1] of the reals, and β taken to be a real positive con-
stant. For the special case of β = 2, this is the Bernoulli process, the ergodic process
of random coin flips. The Bernoulli shift is solvable in more ways than one; it is
well-understood, and provides a canonical model of ergodic behavior. The beta trans-
formation is less well-known and less carefully scrutinized. A full review of previous
results is presented at the end of this introduction. The goal of this text is two-fold: to
expand the collection of known properties, and to present them in the simplest, most
accessible fashion possible.

One primary driver of interest in iterated functions is that they generate fractals, and
that they provide simple models of chaotic dynamics. The β -transform is the simplest
possible map that exhibits all of the hallmarks of chaotic dynamical systems: a non-
trivial, nonuniform invariant measure, with both periodic and non-periodic orbits. It
is also “generic”, in that any other piecewise-monotonic map of the unit interval is
topologically conjugate to it. If one can understand the β -transform, one has gone a
long ways towards understanding iterated maps in general.

There are two broad approaches for studying iterated functions. One is to examine
the point dynamics and orbits: “where does the point x go, when iterated?”. The other
is in terms of distributions: “how does a scattered dust of points evolve over time?”.
Within the context of physics, these give two broad philosophical views of reality. The
first is of microscopic, time-reversible systems whose future is deterministic and known
with infinite precision. The second is of macroscopic, time-irreversible thermodynam-
ics, where time can only go forward, and the future is unknown and unknowable. Of
these two approaches, the first is commonplace and inescapable; the second remains
obscure, poorly-recognized and opaque. Thus, a large part of this text is devoted to this
second approach.
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If iterating a map x 7→ f (x) 7→ f ( f (x)) 7→ · · · pulls a point x through f , through
time, then the action of the map f on a distribution ρ is a pushforward:

ρ (A) 7→ ρ
(

f−1 (A)
)
7→ ρ

(
f−1 ( f−1 (A)

))
7→ · · ·

The proper definition of a pushforward requires a significant development of the con-
cepts of measurable spaces and Borel sigma algebras, topics that will be gently re-
viewed a bit further in this introductory section. For the present, it is enough to take
ρ : [0,1]→ R to be some function defined on the unit interval. In the above, A ⊂ [0,1]
is a subset of the unit interval, so that ρ (A) =

∫
A ρ (x)dx is an ordinary integral, the

“size” of the set A with respect to the distribution.
The challenge is to find an explicit expression for the pushforward ρ

(
f−1 (A)

)
.

This can be obtained as a change of variable y = f (x) under integration. Start with any
function h; it’s integral over the set A is as above: h(A) =

∫
A h(y)dy. Under the change

of variable, this becomes

h(A) =
∫

A
h(y)dy =

∫
f−1(A)

h( f (x))
∣∣ f ′ (x)∣∣dx

Writing the integrand as ρ (x) = h( f (x)) | f ′ (x)| and working backwards, one recovers

h(y) =
ρ
(

f−1 (y)
)

| f ′ ( f−1 (y))|

Plugging this back through gives the identity∫
A

ρ
(

f−1 (y)
)

| f ′ ( f−1 (y))|
dy =

∫
f−1(A)

ρ (x)dx = ρ
(

f−1 (A)
)

The right-hand-side is the desired pushforward; the left-hand side is an explicit expres-
sion for it. There was a minor sleight-of-hand in the above derivation: the map y= f (x)
may not be one-to-one. Thus, there may be several distinct points x = f−1 (y). In this
case, the above needs to be amended as

h(y) = ∑
x∈ f−1(y)

ρ (x)
| f ′ (x)|

As h depends only on ρ and f , the sum construction on the right-hand side can be
thought of as an operation L , defined by f , acting on ρ; in short-hand, h = L f ρ .

The symbol L is used to remind that this is a linear operator: L (aρ +bσ) =
aL ρ+bL σ for any pair of real numbers a,b and any functions ρ,σ . The pushforward
sequence now becomes

ρ (A) 7→
[
L f ρ

]
(A) 7→

[
L f L f ρ

]
(A) 7→ · · ·

Thus, we’ve defined a linear operator L f that depends only on the iterated function f ,
and has the property of mapping distributions to other distributions as it is iterated. It
is the result of commuting with function composition: L f ◦ ρ = ρ ◦ f−1; it’s a kind
of a trick with function composition. Indeed, one can define an analogous operator
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K f ◦ρ = ρ ◦ f , the “composition operator” or “Koopman operator”, that acts as a kind
of (one-sided) inverse to L f .

Formally, the pushforward L f is called the “transfer operator” or the “Ruelle–-
Frobenius–Perron operator”. As a linear operator, the full force of operator theory
comes into play. The primary task is to describe it’s spectrum (it’s eigenfunctions
and eigenvalues). Two aspects of this spectrum are interesting. The first is the so-
called “invariant measure”, the distribution µ : [0,1] → R that defines a density on
the unit interval that is invariant under the application of the pushforward: L f µ =
µ . An informal example of such an invariant measure are the rings of Saturn: an
accumulation of dust and gravel, orbiting Saturn, coupled by gravitation to both Saturn
and orbiting moons, yet in a stable dynamical distribution. This is the physical meaning
and importance of the invariant measure; more generally, it appears as the “ground
state” or “thermodynamic equilibrium state” in a vast variety of dynamical systems.

Aside from the invariant measure, there is also the question of the rest of the spec-
trum. These are described by the eigenfunctions ρ satisfying L ρ = λρ . By the theo-
rem of Frobenius–Perron, all these other solutions have eigenvalue |λ |< 1. In physics,
these correspond to the decaying modes, to the distributions that disappear over time.
For the example of Saturn, these are anything not orbiting in the plane of the rings:
tidal forces and perturbations from the moons will force such orbits either into the ring,
or crash into the planet, or possibly fly away to infinity. The other orbits are not stable.
Thus, a characterization of the decaying spectrum is of general interest.

A much stronger conception is that the decaying spectrum has something to do
with the irreversibility of time. In the macroscopic world, this is plainly obvious. In
the microscopic world, the laws of physics are manifestly time-reversible. Somehow,
complex dynamical systems pass through a region of chaotic and turbulent motion, cul-
minating in thermodynamic equilibrium. The decaying spectrum provides a conceptual
framework in which one can ponder this transition.

This is where the mathematical fun begins. The spectrum is not a “fixed thing”, but
depends strongly on the space of functions on which L f is allowed to act. If one limits
oneself to ρ drawn from the space of piece-wise continuous and smooth functions, i.e.
polynomials, then L f will in general have a discrete spectrum. If instead, ρ ∈ L2 [0,1]
the space of functions that are square-integrable on the unit interval, then the spectrum
will often be continuous, and perhaps may have a large kernel. Larger spaces exhibit
even wilder behavior: if one asks only that ρ be L1-integrable (not square-integrable),
then it is possible for continuous-nowhere functions to appear as eigenfunctions of L f .
An explicit example of the latter is the Minkowski measure for the transfer operator
of the Minkowski Question Mark function: it vanishes on the rationals, but can be
integrated just fine; it’s integral is the Question Mark function. In short, a rich variety
can often be found. In the present case, it seems, nothing quite this rich, but getting
there.

1.1 Summary
This text is quite long and large, as it is a summary of the results from a multi-year
investigation into the β -transform. It ranges over a variety of disparate topics.
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Part one continues with a general overview of basic concepts, including the Bernoulli
shift, the definition of shift spaces in a relatively abstract fashion, some basics about
the β -shift, and a collection of pretty visualizations to anchor and motivate. Part one
concludes with a short review of prior research into the β -shift.

Part two defines and works with the transfer operator Lβ for the β -shift. The con-
cept of “analytic algorithmics” is introduced, by analogy to the idea of “analytic combi-
natorics”. The Heaviside theta function Θ(x) can be viewed as the algorithmic snippet
“if x > 0 then 1 else 0”; eigenfunctions of the transfer operator are series summations
over Θ(β tn −1) for a sequence of iterates tn. A countable number of eigenvalues λ of
Lβ are shown to accumulate on the circle |λ |= 1/β in the complex plane.

The series summation can be extended to piecewise polynomial segments. In this
representation, the spectrum of Lβ is reflected by the polynomial, factoring into com-
ponents for each monomial term. The resulting spectrum remains discrete, and extends
into the region β− j−1 < |λ | ≤ β− j for generating polynomials of degree j. In the lim-
iting form of this construction, the piecewise components are coherent states, of the
form ∑k λ kgk for generating functions gk. These form a continuous spectrum, valid for
any |λ | < 1. There are a lot of these: for any fixed λ , there appears to be a countable
number of orthogonal eigenstates.

Yet, the description is incomplete; a comprehensive understanding is elusive. For
example, iterating Lβ shows that there are almost-resonances: distributions that are
almost, but not quite stable under repeated application of Lβ . These remain uncharac-
terized. The stability of the spectrum under perturbations is an entirely opaque topic.

Part three takes a close look at those β values which are characterized by finite
orbits. These β values have the curious property of being “self-describing”: they occur
as roots of a polynomial generated by the orbit of x= 1 under the iteration of tβ (x)= βx
mod 1. The orbit produces a bit-string b0b1 · · ·bk−1 of binary bits. When these are
arranged into a polynomial pn (z) = zk+1 −b0zk −b1zk−1 −·· ·−bk−1z−1, the unique
real positive root of pn (z) is then the β that generated the orbit: thus, “self-describing”.
That is, β generates a bitstring for which pn (β ) = 0.

The polynomial pn (z) is an odd beast. It is “quasi-cyclotomic”, in that the (com-
plex) roots are approximately evenly distributed in an approximately circular fashion
on the complex plane. It is a generator of number sequences that generalize the Fi-
bonacci numbers; indeed, the first polynomial in the series, p1 (z) = z2 − z−1 has the
Golden mean ϕ =

(
1+

√
5
)
/2 as the (real, positive) root. The assortment of popular

“generalized Fibonacci numbers” are all special cases of this class. There seems to be
a rich associated number theory to go with this, but it does not seem to align with any
known “conventional” combinatorics. For example, the pn (z) vaguely resemble poly-
nomials over the field F2, but that is as far as things seem to go: a vague resemblance. It
is tempting to guess that concepts and theorems from Galois theory might go through,
but they don’t: the polynomials don’t fit that mold in any obvious way. It seems to be
a large class, but there is no existing theory that it maps to.

Such self-describing β values are dense in the reals, and can be placed in one-to-
one correspondence with the dyadic rationals. This is not as easy as it sounds: not all
possible bit-sequences occur, and thus much of the work is to describe the “valid” bit-
sequences. An explicit formula is presented: it provides a bijection between the set of
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valid bit-sequences and the set of all bit-sequences. This bijection is articulated; since
the bit-sequences are countable and dense, and the reals are seperable, the mapping
extends to a monotonically increasing continuous, nowhere-differentiable function on
the reals.

The non-terminating orbits fall into two classes: the ultimately-periodic orbits, and
the ergodic orbits. The ultimately-periodic orbits correspond to rationals, but again, not
all rationals are “valid”; they don’t form self-describing orbits. The above-mentioned
bijection saves the day: it maps all rationals to valid rationals.

Part four explores perturbations of the β -map. The exploration is driven by the
idea that the periodic orbits re-materialize as the “islands of stability” in other iterated
systems. In the β -map, the periodic orbits are dense in β , but they form a set of measure
zero: they are countable. Small perturbations of the β -map give rise to Arnold tongues.
These are now finite-sized regions occupied by the periodic orbits: these are the “mode-
locked” regions. As noted earlier, the β -map is topologically conjugate to all piece-
wise continuous maps of the unit interval; but this is a very abstract statement. Explicit
examples of mode-locking and Arnold tongues illustrates exactly what this conjugacy
actually looks like. Literally; this section is filled with pretty pictures.

1.2 Bernoulli shift
The Bernoulli shift, also known as the bit-shift map, the dyadic transform and the full
shift, is an iterated map on the unit interval, given by

b(x) =

{
2x for 0 ≤ x < 1

2
2x−1 for 1

2 ≤ x ≤ 1
(1)

It can be written much more compactly as b(x) = 2x mod 1. The symbolic dynamics
of this map gives the binary digit expansion of x. That is, write

bn(x) = (b◦b◦ · · · ◦b)(x) = b(b(· · ·b(x) · · ·))

to denote the n-fold iteration of b and let b0(x) = x. The symbolic dynamics is given
by the bit-sequence

bn (x) =

{
0 if 0 ≤ bn(x)< 1

2
1 if 1

2 ≤ bn(x)≤ 1
(2)

Attention: n is a subscript on the left, and a superscript on the right! The left is a
sequence, the right is an iteration. Using the letter b one both sides is a convenient
abuse of notation. Notation will be abused a lot in this text, except when it isn’t. The
symbolic dynamics recreates the initial real number:

x =
∞

∑
n=0

bn (x)2−n−1 (3)

All of this is just a fancy way of saying that a real number can be written in terms of
it’s base-2 binary expansion. That is, the binary digits for x are the bn = bn (x), so that

x = 0.b0b1b2 · · ·

is a representation of a real number with a bit-string.
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1.3 Bijections
A variety of mathematical objects that can be placed into a bijection with collections of
bit-strings, and much of this text is an exploration of what happens when this is done.
There will be several recurring themes; these are reviewed here.

The collection of all infinitely-long bit-strings {0,1}ω = {0,1}× {0,1}× ·· · is
known as the Cantor space; ω denotes countable infinity, so this is a countable product
of repeated copies of two things. Closely related is the Cantor set, which is famously
the collection of points y = ∑

∞
n=0 bn (x)3−n−1 that results from taking the binary ex-

pansion of a real number, and re-expressing it as a base-three expansion. The Cantor
set can also be constructed by repeatedly removing the middle-third. If one is careful
that the middle-third is always an open set, what remains after a single subtraction is
a closed set. What remains after infinite repetition is a “perfect set”, and a key theo-
rem is that this perfect set is identical to the collection of points obtained with the sum
above. Bouncing between these two distinct constructions requires the definition of the
product topology on Cantor space, and thence the Borel sigma algebra, so that one can
work in a consistent way with set complements. These ideas will be reviewed as the
need arises.

Associated with Cantor space is the infinite binary tree. Any given location in the
tree can be specified by giving a sequence of left-right moves, down the tree, starting
at the root. Such left-right moves can (of course) be interpreted as bit-strings. After
a finite number of moves, one arrives at a node, and under that node extends another
infinite binary tree, just like the original. If one has a function f (b) that is defined on
every node b of the binary tree, then one can compare this function to f (Lb) and f (Rb)
that result from a left move and a right move. If these are equal to each other, or scale
in some way when compared to the original, or if there exist two other functions gL and
gR such that f (Lb) = gL ( f (b)) for all b, and likewise, that f (Rb) = gR ( f (b)), then
one has fractal self-similarity. More explicitly, whenever one has a pair of commuting
diagrams, f ◦ L = gL ◦ f and , f ◦ R = gR ◦ f , then one has a dyadic monoid self-
symmetry. This is the symmetry of a large class of fractals.

1.3.1 Formalities

The last paragraph is a bit glib, and so some formalities and examples are in order.
These are all very straightforward and conventional, almost trivial, belaboring the ob-
vious. Despite the seeming triteness of the next handful of paragraphs, these formal
definitions will be needed, so as to avoid future ambiguities and confusions.

Let M = {L,R}<ω denote the collection of finite-length binary strings. These can
be graded by the length ν of the string, so that

M= {L,R}<ω =
∞⋃

ν=0

{L,R}ν = ε ∪{L,R}∪ ({L,R}×{L,R})∪·· ·

with ε denoting the empty (zero-length) string. This can be turned into a monoid
by defining multiplication as string concatenation: given γ ∈ {L,R}n some sequence
of L,R moves of length n, and γ ′ ∈ {L,R}m some other sequence of length m, then
γγ ′ ∈ {L,R}n+m is some other string of length m+n.
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This set is in bijection to the integers in a straight-forward way. This bijection,
written as κ : {L,R}<ω → N, can be defined recursively, by a simple commuting dia-
gram. Define κ (ε) = 1 and ask that κ (Lγ) = 2κ (γ) and that κ (Rγ) = 2κ (γ)+ 1 for
every γ ∈ {L,R}n. Thus, κ (L) = 2 and κ (R) = 3 and LL,LR,RL,RR map to 4,5,6,7
respectively.

This bijection commutes with the canonical L,R moves on the natural numbers.
Write these as a pair of functions L : N→N and R : N→N, defined as L : m 7→ 2m and
R : m 7→ 2m+ 1. Interpreting these as strings, one promptly has a pair of commuting
diagrams κ ◦L = L◦κ and κ ◦R = R◦κ . True formality would have required writing
κ ◦Ls = LN ◦κ or even that κ (Lsγ) = LN (κ (γ)) in order to remind us that Ls is a string
(of length one) concatenated onto some other string γ , while LN is a map of the natural
numbers. It is convenient to drop these labels, as they mostly serve to clutter the text.
The intended meaning is always clear from context.

Associated with the set {L,R}<ω is a binary tree B. It can be defined as a graph
of vertexes v j and edges ei j connecting vertex vi to vertex v j. Formally, it is the graph
B=

{
vi,ei j : i ∈ N, j ∈ {2i,2i+1}

}
. Every vertex vi ∈B can be given an integer label:

it is just the integer i itself. To formalize this, there is a map η : N→ B that provides
this labeling. The canonical labeling gives the root node a label of 1, the left and right
sub-nodes 2,3, and so on.

The canonical moves on this binary tree are L : B→ B and R : B→ B defined by
L : vi 7→ v2i and L : vi 7→ v2i+1. Just as above, these commute with the left and right
moves on the integers. So, η ◦L = L◦η and η ◦R = R◦η .

The pattern repeats. Consider the set D of dyadic rationals between zero and one.
These are fractions that can be written as (2n+1)/2m for some non-negative integers
m,n. These are in one-to-one correspondence with the integers: there is a canonical
bijection is δ :D→N given by δ : (2n+1)/2m 7→ 2m−1+n. There are obvious left and
right moves, given by δ ◦L = L◦δ and δ ◦R = R◦δ . So, for example, L(1/2) = 1/4
and R(1/2) = 3/4. Viewed as a tree, this places 1/2 at the root of the tree, and 1/4 and
3/4 as the nodes to the left and right.

All of these maps were bijections: they are all invertable. They place elements of all
four objects M,N,B,D in one-to-one correspondence with each other. The commuta-
tion of the L,R moves guarantees that the multiplication on M, i.e. string concatenation,
allows elements γ ∈M to act on N,B,D in the obvious, intended way.

1.3.2 Example: Julia Sets

As a practical example of the above machinery, consider the Julia set of the Mandelbrot
map. Recall the Mandelbrot map is an iterated map on the complex plane, given by
z 7→ z2 + c. The Julia set is the set of points of “where things came from” in the
Mandelbrot map; it is the inverse “map” z 7→ ±

√
z− c. The word “map” is in scare

quotes, as the plus-minus in front of the square root indicate that each z maps to either
one of two distinct predecessors. The choice of the plus-minus signs can be interpreted
as left-right moves, and so the Julia set can be interpreted as a representation of the
binary tree, with it’s elements labeled by integers, or dyadic fractions, or nodes in the
binary tree, or strings of ones and zeros.

We take a moment to make this explicit. Fix a point c ∈ C in the complex plane.
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Define a function jc : N → C recursively, by writing jc (1) = 0 and then jc (2m) =
−
√

jc (m)− c and jc (2m+1) =+
√

jc (m)− c. Equivalently, there are a pair of moves
on the complex plane, Lc : C→ C and Rc : C→ C given by Lc : z →−

√
z− c and Rc :

z →+
√

z− c which commute with the Julia map: jc ◦L = Lc ◦ jc and jc ◦R = Rc ◦ jc.
The skeleton of the Julia set is a set of points in the complex plane:

Jc = {z ∈ C : z = jc (n) ,n ∈ N}

The full Julia set is the closure Jc which includes all of the limit points of Jc. The set
Jc is countable; the closure Jc is uncountable.

1.3.3 Example: de Rham Curves

The above construction generalizes. Given any pair of functions f : X → X and g : X →
X and a point x0 ∈ X for any space X , the dyadic monoid induces a map j : N → X
given recursively as j (1) = x0 and j (2m) = f ( j (m)) and j (2m+1) = g( j (m)). As a
commuting diagram, one has that j ◦L = f ◦ j and j ◦R = g◦ j. This in turn induces a
set J = {x ∈ X : x = j (n) ,n ∈ N}. If the space X is a topological space, so that limits
can be meaningfully taken, then one also has the closure J.

In 1957, Georges de Rham notes that if X is a topological space, so that continuity
can be defined, and if there exist two points xa,xb ∈ X such that g(xa) = f (xb), then
the set J is a continuous curve.[1] The original proof also requires that X be a metric
space, and that the two functions f ,g be suitably contracting, so that the set J remains
compact. More precisely, so that the Banach fixed-point theorem can be applied, giving
two fixed points xa = f (xa) and xb = g(xb). Without compactness, the curve wanders
off to infinity, where conceptions of continuity break down. It is no longer a curve,
“out there”.

The continuity condition g(xa) = f (xb) and the fixed points have a direct interpre-
tation from the viewpoint of the binary tree B. Pick a point x ∈ X , any point at all, and
make nothing but left moves: the infinite string LLL · · · . The map converts this to the
iteration f ( f (· · ·(x))) which converges onto the fixed point xa = f (xa). Likewise, all
right-moves converge onto xb = g(xb). In between, there all other branches in B; but
there are also the “gaps” in between the branches.

Consider the two paths RLLL · · · and LRRR · · · down the tree. Both start at the
root, but end up at different places. Yet, they are immediate neighbors: there are no
other branches “in between” these two. Such immediate neighbors always lie at either
end of a “gap”. Each gap is headed up by the root that sits immediately above them,
so that each gap can be labeled by the node from which these two distinct branches
diverged. The continuity condition asks that these gaps be closed up: the requirement
that g(xa) = f (xb) is the requirement that the two sides of the central gap converge to
the same point. The curve becomes continuous at this point. By self-similarity, each
gap in the tree closes up; the curve is continuous at all such gaps.

As a specific example, consider X = R and f (x) = x/2 and g(x) = (x+1)/2.
The fixed points are f (0) = 0 and g(1) = 1 and the continuity condition is satisfied:
g(0) = f (1). Iteration produces a curve that is just all of the real numbers of the unit
interval. This curve is just the standard mapping of the Cantor space to the unit interval:
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it is one-to-one for all points that are not dyadic rationals, and it is two-to-one at the
dyadic rationals, as the continuity condition explicitly forces the two-to-one mapping.

Note that Julia sets are not de Rham curves: they don’t satisfy the continuity crite-
rion.

1.3.4 Shifts

Adjoint to the left and right moves is a shift τ that undoes what the L and R moves do.
It cancels them out, so that τ ◦L = τ ◦R = e with e the identity function.

Given a string γ ∈ M of length ν , consisting of letters a0a1 · · ·aν−1 so that each
ak ∈ {L,R} is a single letter, define the shift τ : M→M as the function that lops off a
single letter from the front, so that τ : a0a1 · · ·aν−1 7→ a1a2 · · ·aν−1 is a string that is one
letter shorter. This shift is adjoint to the moves L,R, which prepend either L or R to the
string. That is, L :M→M which acts on strings as L : γ 7→ Lγ , and likewise, R : γ 7→Rγ .
Then, taken as functions, τ ◦L = τ ◦R = e with e being the identity function on M, the
function that does nothing. The shift τ is only an adjoint, not an inverse, since there is
no way to reattach what was lopped off, at least, not without knowing what it was in
the first place. Thus L◦τ ̸= e ̸= R◦τ . The maps L,R were one-to-one but not onto; the
map τ is onto but not one-to-one.

The shift can be composed with either κ or with δ , to have the obvious effect.
It’s handy to introduce a new letter and a new function T : N → N so that one has
T ◦κ = κ ◦ τ acting as T (2m) = T (2m+1) = m. Since τ applied to the empty string
returns the empty string, so also T (1) = 1. Recycling the same letter T : D→ D and
defining it so that δ ◦T = T ◦δ one can infer that T x = 2x mod 1 for any x ∈ D. So,
for example, T (1/4) = T (3/4) = 1/2.

On the binary tree B, the shift moves back up the tree, from either the left or the
right side. That is, given a vertex v ∈ B, it is the map τ : v2m 7→ vm and likewise
τ : v2m+1 7→ vm.

For the Julia set example, it has a meaningful form: τ : z = jc (n) 7→ z2 + c. It
re-does what the two Julia set maps undid. It is onto: it maps Jc into all of Jc, and
likewise Jc onto Jc. For the de Rham curve example, it maps the curve back onto itself.
In all three examples, these sets are fixed points of τ . Taking Jc ⊂ C as a subset of
the complex plane, it is invariant under the action of τ , so that one has τ (Jc) = Jc
and likewise τ

(
Jc
)
= Jc. Likewise, the de Rham curve stays fixed in X . These are all

examples of invariant subspaces.

1.3.5 Completions

The previous section defined a binary tree B, but this tree is not the “infinite binary tree”
alluded to in the opening paragraphs. It is incomplete, in that it does not go “all the way
down” to it’s leaves. It is not compact, in the same sense that the dyadic fractions D are
not compact: the limit points are absent. The Cantor tree B is the closure or completion
ore compactification of B; it contains all infinitely-long branches, all the way down to
the “leaves” of the tree. The Cantor tree B is in one-to-one correspondence with the
Cantor space {0,1}ω , and both can be mapped down to the reals on the unit interval,
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using eqn 3. None of this is particularly deep, but a few paragraphs to articulate these
ideas will help avoid later confusion and imprecision.

To convert letter strings to binary strings, define a function b : M→{0,1} such that
it returns 0 if the first letter of a string is L, and otherwise it returns 1. If the string is
of zero length, then one has a choice: one can take b to be undefined, or let it be 0, or
1, or introduce a wild-card character ∗ = 0∨ 1 denoting “either zero or one”. For the
present, any of these choices is satisfactory. The wildcard is appealing when working
with the product topology; but, at the moment, we have no topologies at play.

To extract the n’th letter from a string, define bn : M→{0,1} as bn = b◦ τn. Thus,
given γ ∈M of length ν , one can create a bitstring b0b1 · · ·bν−1. It can be assigned the
obvious numerical value:

[
δ
−1 ◦κ

]
(γ) =

ν−1

∑
n=0

bn (γ)2−n−1

Comparing this to eqn 3, the completion is obvious: M = {L,R}<ω is completed as
M = {L,R}ω so that it contains all strings of infinite length. This is consistent with
the completion of the dyadic rationals D being the entire real unit interval: D = [0,1].
There is no completion N of the countable numbers, at least, not unless one wishes
to say that it is the uncountable infinity. This could be done, but then the games gets
even more circular, as this completion is just the Cantor set, and we already have that.
It seems best to leave N undefined, to avoid circular confusions. The completion B
engenders similar confusion. In the original definition, B was defined as a graph with
a countable number of vertexes, each labeled with an integer. This labeling must be
abandoned: B is a graph with an uncountable number of vertexes, each labeled by an
element from M.

The distinction between M, B and {0,1}ω becomes hard to maintain at this point:
they are all isomorphic. The distinction between M and {0,1}ω is particularly strained:
they are both collections of strings in two symbols. The primary purpose of trying
to maintain this distinction is to remind that M should be though of as a collection
of actions that can be applied to sets, while {0,1}ω is a set, a collection of points
that sometimes act as labels for things. This distinction is useful for avoiding off-
by-one mistakes during calculations; it is a notational convenience. This is a variant
of common practice in textbooks: after showing that two things are isomorphic, only
rarely is the notation collapsed into one big tangle. One maintains a Rosetta Stone
of different ways of writing the same thing. And so here: a distinction without a
difference.

1.4 Shift space
The shift τ was defined above as an operator that takes a sequence of letters, and lops
off the left-most symbol, returning a new sequence that is the remainder of the string.
A shift space S is any subset of the set of all infinite strings that remains invariant under
the shift: τS = S.

In general settings, one considers a vocabulary of N letters, and the set of infinite
sequences Nω , so that a shift space S ⊆ Nω is a subset of the “full shift” Nω (which is
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trivially invariant under τ). Shifts that are proper subsets of a full shift will be called
subshifts. For the Bernoulli shift, there are N = 2 letters, and the Bernoulli shift is
by definition the full shift 2ω = {0,1}ω . A trivial example of a subshift that is not
a full shift is the set S = {0ω ,1ω}; it has two elements, and is obviously invariant;
both 0ω and 1ω are fixed points of τ . Another example is S =

{
(01)ω ,(10)ω

}
, where

(01)ω = 0101 · · · is a repeating periodic string. Any collection of such periodic strings
forms a subshift.

Clearly, the union of two subshifts is a subshift, and so, to classify subshifts, one
wants to find all of the indecomposable pieces, and characterize those. Factors include
periodic strings of fixed period; but not all of these are unique: so, the period-4 string
(0101)ω is really just the period-two string in disguise.

Subshifts consisting entirely of periodic strings can be characterized in terms of
Lyndon words. Lyndon words are fixed length strings that are not decomposable into
shorter sequences. Thus, each one characterizes a periodic subshift. Cyclic permuta-
tions of a Lyndon word give the same subshift; for example, both (01)ω and (10)ω

belong to the same subshift. The number of distinct, unique subshifts of length ν is
given by Moreau’s necklace counting function: it counts the number of distinct se-
quences of a given length, modulo cyclic permutations thereof.

Characterizing the subshifts that do not consist of periodic orbits is considerably
harder. For example, consider the string s = 010ω . It has an orbit: τs = 10ω and
τ2s= 0ω and so one can write down a set ⟨s⟩= {010ω ,10ω ,0ω} which has the property
that τ ⟨s⟩ ⊂ ⟨s⟩. However, it is not a subshift, because τ ⟨s⟩ ̸= ⟨s⟩. The first two points
“wander away” under the application of the shift; they are part of the “wandering set”.
What remains is the fixed point τ0ω = 0ω . The ergodic decomposition theorem states
that all such sets X having the property that τX ⊂X can be decomposed into two pieces:
X = S∪W with S a subshift, τS = S and W the wandering set or dissipative set, that
eventually dissipates into the empty set: limn→∞ τnW =∅. Subshifts are fixed-points;
everything else disappears.

Given some real number x ∈ [0,1], and it’s binary expansion x = 0.b0b1 · · · , defined
in eqn 2, what is the nature of ⟨s⟩ for s = b0b1 · · · ? That is, defining

⟨s⟩= {γ = τ
ns : n ∈ N}

what portion of ⟨s⟩ is wandering, and which part is a subshift? If x = p/q is a ra-
tional number, the answer is easy: rational numbers have binary expansions that are
eventually periodic. They consist of some finite-length prefix of non-repeating digits,
followed by an infinite-length cyclic orbit. The finite-length prefix is the wandering
set; the cyclic part is a subshift. If the period of the cyclic part is ν , then the subshift
contains precisely ν elements.

For the Bernoulli shift τx= 2x mod 1, for the real numbers, the answer is provided
by the ergodic theorem. For all real numbers x ∈ [0,1]\Q, that is, the unit interval ex-
cluding the rationals, the orbit of x is ergodic: given any real number ε > 0 and any
y ∈ [0,1] there exists some n ∈ N such that |y− τnx| < ε . Iteration takes x arbitrarily
close to any location on the unit interval. In terms of symbolic dynamics, the binary ex-
pansion of y and the binary expansion of τnx will have m = ⌊log2 ε⌋ digits in common.
The number m can be made arbitrarily large; the subsequence will occur somewhere in
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the expansion. Put differently, every finite-length string γ ∈ {0,1}<ω occurs as a prefix
of (uncountably many) of the strings in ⟨x⟩.

In essence, that takes care of that, for the Bernoulli shift, at least, if one is looking
at it from the point of view of point dynamics. As long as one thinks with the mind-set
of points and their orbits, there is not much more to be said. The above is, in a sense,
a complete description of the Bernoulli shift. But the introduction to this text gave lie
to this claim. If one instead looks at the shift in terms of it’s transfer operator acting
on distributions, then much more can be said. The spectrum of the transfer operator
is non-trivial, and the eigenfunctions are fractal, in general. This will be examined
more carefully, later; but for now, the topic of point dynamics in the Bernoulli shift is
exhausted. This is the end of the line.

The Bernoulli shift is not the only shift on Cantor space. And so, onward ho.

1.5 Beta shift
The beta shift is similar to the Bernoulli shift, replacing the number 2 by a constant
real-number value 1 < β ≤ 2. It can be defined as

Tβ (x) =

{
βx for 0 ≤ x < 1

2
β
(
x− 1

2

)
for 1

2 ≤ x ≤ 1
(4)

This map, together with similar maps, is illustrated in figure 6 below.
Just as the Bernoulli shift generates a sequence of digits, so does the beta shift:

write

kn =

{
0 if 0 ≤ T n

β
(x)< 1

2

1 if 1
2 ≤ T n

β
(x)≤ 1

(5)

Given the symbolic dynamics, one can reconstruct the original value whenever 1 < β

as

x =
k0

2
+

1
β

(
k1

2
+

1
β

(
k2

2
+

1
β

(
k3

2
+

1
β
(· · ·)

)))
Written this way, the Tβ (x) clearly acts as a shift on this sequence:

Tβ (x) =
k1

2
+

1
β

(
k2

2
+

1
β

(
k3

2
+

1
β

(
k4

2
+

1
β
(· · ·)

)))
In this sense, this shift is “exactly solvable”: the above provides a closed-form solution
for iterating and un-iterating the sequence.

Multiplying out the above sequence, one obtains the so-called “β -expansion” of a
real number x, namely the series

x =
1
2

∞

∑
n=0

kn

β n (6)

The bit-sequence that was extracted by iteration can be used to reconstruct the original
real number. Setting β = 2 in eqn 5 gives the Bernoulli shift: T2 (x) = b(x).

Unlike the Bernoulli shift, not every possible bit-sequence occurs in this system. It
is a subshift of the full shift: it is a subset of {0,1}ω that is invariant under the action
of Tβ . The structure of this shift is explored in detail in a later section.
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1.6 Associated polynomial
The iterated shift can also be written as a finite sum. A later section will be devoted
entirely to the properties of this sum. Observe that

Tβ (x) = β

(
x− k0

2

)
and that

T 2
β
(x) = β

2x− β

2
(βk0 + k1)

and that

T 3
β
(x) = β

3x− β

2
(
β

2k0 +βk1 + k2
)

The general form is then:

T p
β
(x) = β

px− β

2

p−1

∑
m=0

kmβ
p−m−1 (7)

Since the km depend on both β and on x, and are only piece-wise continuous functions,
this is not a true polynomial. It does provide a polynomial-like representation with a
range of interesting properties.

1.7 Density Visualizations
The long-term dynamics of the β -shift can be visualized by means of a bifurcation
diagram. The idea of a bifurcation diagram gained fame with the Feigenbaum map
(shown in figure 5). The same idea is applied here: track orbits over long periods of
time, and see where they go. This forms a density, which can be numerically explored
by histogramming. This is shown in figure 2.

When this is done for the β -shift, one thing becomes immediately apparent: there
are no actual “bifurcations”, no “islands of stability”, no extended period-doubling
regions, none of the stuff normally associated with the Feigenbaum map. Although
there are periodic orbits, these form a set of measure zero: the iteration produces purely
chaotic motion for almost all values of x and all values of β > 1. In this sense, the
beta transform provides a clean form of “pure chaos”,1 without the pesky “islands of
stability” popping up intermittently.

The visualization of the long-term dynamics is done by generating a histogram and
then taking the limit. The unit interval is divided into a fixed sequence of equal-sized
bins; say, a total of N bins, so that each is 1/N in width. Pick a starting x, and then
iterate: if, at the n’th iteration, one has that j/N ≤ bn

β
(x)< ( j+1)/N, then increment

the count for the j’th bin. After a total of M iterations, let c( j;M) be the count in the

1Formal mathematics distinguishes between many different kinds of chaotic number sequences: those
that are ergodic, those that are weakly or strongly Bernoulli, weakly or strongly mixing. The beta transform
is known to be ergodic,[2] weakly mixing[3] and weakly Bernoulli.[4]
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j’th bin. This count is the histogram. In the limit of a large number of iterations, as
well as small bin sizes, one obtains a distribution:

ρ(y;x) = lim
N→∞

lim
M→∞

c( j;M)

M
for

j
N

≤ y <
j+1
N

This distribution depends on the initial value x chosen for the point to be iterated; a
“nice” distribution results when one averages over all starting points:

ρ(y) =
∫ 1

0
ρ(y;x)dx

Numerically, this integration can be achieved by randomly sampling a large number of
starting points. By definition, ρ(y) is a probability distribution:

1 =
∫ 1

0
ρ(x)dx

Probability distributions are the same thing as measures; they assign a density to
each point on the unit interval. It can be shown that this particular distribution is in-
variant under iteration, and thus is often called the invariant measure, or sometimes the
Haar measure.

For each fixed β , one obtains a distinct distribution ρβ (y). The figure 1 illustrates
some of these distributions for a selection of fixed β . Note that, for β < 1, the distri-
bution is given by ρβ (y) = δ (y), a Dirac delta function, located at y = 0.

The general trend of the distributions, as a function of β , can be visualized with
a Feigenbaum-style “bifurcation diagram”, shown in figure 2. This color-codes each
distribution ρβ (y) and arranges them in a stack; a horizontal slice through the diagram
corresponds to ρβ (y) for a fixed value of β . A related visualization is in 3, which
highlights the discontinuities in 2. Periodic orbits appear wherever the traceries in this
image intersect. A characterization of these orbits occupies a large portion of this text.

1.8 Tent Map
The tent map is a closely related iterated map, given by iteration of the function

vβ (x) =

{
βx for 0 ≤ x < 1

2
β (1− x) for 1

2 ≤ x ≤ 1

Its similar to the beta shift, except that the second arm is reflected backwards, forming
a tent. The bifurcation diagram is shown in figure 4. Its is worth contemplating the
similarities between this, and the corresponding beta shift diagram. Clearly, there are a
number of shared features.

1.9 Logistic Map
The logistic map is related to the tent map, and is given by iteration of the function

fβ (x) = 2βx(1− x)
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Figure 1: Beta-shift Density Distribution
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The above figure shows three different density distributions, for ρ1.2(y), ρ1.6(y) and
ρ1.8(y), calculated numerically. These are obtained by histogramming a large number
of point trajectories, as described in the text. The small quantities of jitter are due to a
finite number of samples. To generate this figure, a total of M = 4000 iterations were
performed, using randomly generated arbitrary-precision floats (using the Gnu GMP
package), partitioned into N = 800 bins, and sampled 24000 times (or 30 times per
bin) to perform the averaging integral. It will later be seen that the discontinuities in
this graph occur at the “iterated midpoints” mp = T p

β
(β/2). The flat plateaus are not

quite flat, but are filled with microscopic steps. There is a discontinuous step at every
p; these are ergodically distributed, i.e. dense in the interval, so that there are steps
everywhere. This is the general case; for special cases, when the midpoint has a finite
orbit, then there are a finite number of perfectly flat plateaus. The first such example
occurs at β =

(
1+

√
5
)
/2 = ϕ the Golden Ratio. In this case, there are only two such

plateaus.
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Figure 2: Beta-shift Bifurcation Diagram

This figure shows the density ρβ (y), rendered in color. The constant β is varied from 1
at the bottom to 2 at the top; whereas y runs from 0 on the left to 1 on the right. Thus, a
fixed value of β corresponds to a horizontal slice through the diagram. The color green
represents values of ρβ (y) ≈ 1.0, while red represents ρβ (y) ≳ 2 and blue-to-black
represents ρβ (y) > 0.5. The lines forming the fan shape are not straight. The precise
form is examined in a later section, given by a variant of the polynomial in eqn 7. The
discontinuities in this figure are more clearly highlighted in the next figure, 3.
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Figure 3: Midpoint Trace

Traces of midpoint iteration. Each horizontal line corresponds to a fixed β , with β

running fom 1 at the bottom, to 2 at the top. At each fixed β , the midpoint x = 1/2 is
iterated to generate T n

β
(1/2). At each such location (from left to right, of 0 to 1), the

corresponding pixel is given a color assignment, fading from red, through a rainbow, to
black, as n increases. This is a variant of 2, highlighting the edges. A formal analysis
of the traceries begins with figure 11

18



Figure 4: Tent Map Bifurcation Diagram

The bifurcation diagram for the tent map. The value of β runs from 1 at the bottom
of the image, to 2 at the top. The color scheme is adjusted so that green represents the
average value of the distribution, red represents areas of more than double the average
value, while blue shows those values that are about half the average value. Note that
this is a different color scheme than that used in figure 2; that scheme would obliterate
the lower half of this figure in red.

The black areas represent parts of the iterated range that are visited at most a finite
number of times. To the right, the straight boundary indicates that after one iteration,
points in the domain β/2 ≤ x ≤ 1 are never visited. To the left, points in the domain
0 ≤ x ≤ β (1−β/2) are never visited more than a finite number of times.

The figure can be imagined to be a superposition of a countable number of copies
of figure 2, each drawn out so as to terminate in a point, but separated into distinct
arms. Each copy is recapitulated in the Feigenbaum bifurcation diagram.
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It essentially replaces the triangle forming the tent map with a parabola of the same
height. That is, the function is defined here so that the the same value of β corresponds
to the same height for all three maps. Although the heights of the iterators have been
aligned so that they match, each exhibits rather dramatically different dynamics. The
β -transform has a single fixed point for β < 1, and then explodes into a fully chaotic
regime above that. By contrast, the logistic map maintains a single fixed point up to
β = 3/2, where it famously starts a series of period-doubling bifurcations. The onset
of chaos is where the bifurcations come to a limit, at β = 3.56995/2 = 1.784975.
Within this chaotic region are “islands of stability”, which do not appear in either the
β -transform, or in the tent map. The tent map does show a period-doubling regime,
but in this region, there are no fixed points: rather, the motion is chaotic, but confined
to multiple arms. At any rate, the period doubling occurs at different values of β than
for the logistic map.

The bifurcation diagram is shown in figure 5. Again, it is worth closely examining
the similarities between this, and the corresponding tent-map diagram, as well as the
β -transform diagram. Naively, it would seem that the general structure of the chaotic
regions are shared by all three maps. Thus, in order to understand chaos in the logistic
map, it is perhaps easier to study it in the β -transform.

The general visual similarity between the figures 2, 4 and 5 should be apparent,
and one can pick out and find visually similar regions among these three illustrations.
Formalizing this similarity is a bit harder, but it can be done: all three of these maps
are topologically conjugate to one-another. This is perhaps surprising, but is based
on the observation that the “islands of stability” in the logistic map are countable,
and are in one-to-one correspondence with certain “trouble points” in the iterated beta
transformation. These are in turn in one-to-one correspondence with rational numbers.
With a slight distortion of the beta transformation, the “trouble points” can be mapped
to the islands of stability, in essentially the same way that phase locking regions (Arnold
tongues) appear in the circle map. This is examined in a later section; it is mentioned
here only to whet the appetite.

1.10 Beta Transformation
After exactly one iteration of the beta shift, all initial points β/2 ≤ x ≤ 1 are swept
up into the domain 0 ≤ x < β/2, and never leave. Likewise, the range of the iterated
beta-shift is 0 ≤ x < β/2. Thus, an alternative representation of the beta shift, filling
the entire unit square, can be obtained by dividing both the domain and range by β/2
to obtain the function

tβ (u) =

{
βu for 0 ≤ u < 1

β

βu−1 for 1
β
≤ u ≤ 1

(8)

This can be written more compactly as tβ (x) = βx mod 1. In this form, the function is
named “the beta-transform”, written as the β -transformation, presenting a typesetting
challenge to search engines when used in titles of papers. The orbit of a point x in
the beta-shift is identical to the orbit of a point u = 2x/β in the beta-transformation.
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Figure 5: Logistic Map Bifurcation Diagram

The logistic map bifurcation diagram. The value of β runs from 1.75 at the bottom of
the image, to 2 at the top. The color scheme is adjusted so that green represents the
average value of the distribution, red represents areas of more than double the average
value, while blue shows those values that are about half the average value. Clearly, the
orbits of the iterated points spend much of their time near the edges of the diagram.

This is a very widely reproduced diagram. The goal here is not to waste space
reproducing it yet again, but to draw attention to the similarities between this diagram,
and figure 4. The tent can be smoothly deformed into the parabola; doing so sepa-
rates the multiple legs visible at the bottom of 4, with each leg becoming a bifurcation
branch. The central point, where all legs come together, is preserved in both images.
The curving arcs, highlighted in figure 3, are retained as well. The legs of 4 are chaotic
regions, and remain so as the tent is deformed into a parabola. They are merely sepa-
rated from one-another. The legs do not shrink to zero width.
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Explicitly comparing to the beta-shift of eqn 4:

T n
β
(x) =

β

2
tn
β

(
2x
β

)
(9)

The beta-shift and the β -transformation are essentially the same function; this text
works almost exclusively with the beta-shift, and is thus idiosyncratic, as it flouts the
more common convention of working with the β -transformation. The primary reason
for this is a historical quirk, as this text was started before the author became aware of
the β -transformation.

After a single iteration of the tent map, a similar situation applies. After one iter-
ation, all initial points β/2 ≤ x ≤ 1 are swept up into the domain 0 ≤ x < β/2. After
a finite number of iterations, all points 0 < x ≤ β (1−β/2) are swept up, so that the
remaining iteration takes place on the domain β (1−β/2)< x< β/2. It is worth defin-
ing a “sidetent” function, which corresponds to the that part of the tent map in which
iteration is confined. It is nothing more than a rescaling of the tent map, ignoring those
parts outside of the above domain that wander away. The sidetent is given by

sβ (u) =

{
β (u−1)+2 for 0 ≤ u < β−1

β

β (1−u) for β−1
β

≤ u ≤ 1

Performing a left-right flip on the side-tent brings it closer in form to the beta-transformation.
The flipped version, replacing u → 1−u is

fβ (u) =

{
βu for 0 ≤ u < 1

β

2−βu for 1
β
≤ u ≤ 1

The tent map (and the flipped tent) exhibits fixed points (periodic orbits; mode-
locking) for the smaller values of β . These can be eliminated by shifting part of the
tent downwards, so that the diagonal is never intersected. This suggests the “sidetarp”:

aβ (u) =

{
βu for 0 ≤ u < 1

β

β (1−u) for 1
β
≤ u ≤ 1

The six different maps under consideration here are depicted in figure 6. It is interesting
to compare three of the bifurcation diagrams, side-by-side. These are shown in figure
7.

1.11 Dynamical Systems
A brief review of dynamical systems is in order, as it provides a coherent language
with which to talk about and think about the beta-shift. The technical reason for this
is that a subshift S ⊂ {0,1}ω provides a more natural setting for the theory, and that
a lot of the confusion about what happens on the unit interval is intimately entangled
with the homomorphism 3 (or 6 as the case may be). Disentangling the subshift from
the homomorphism provides a clearer insight into what phenomena are due to which
component.
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Figure 6: Iterated piece-wise linear maps

The beta shift map, shown in the upper left, generates orbits that spend all of their time
in the shaded area: a box of size β

2 × β

2 . Enlarging this box to the unit square gives
the β -transformation. The tent map resembles the beta shift, except that one arm is
flipped to make a tent-shape. After a finite number of iterations, orbits move entirely
in the shaded region; enlarging this region to be the unit square gives the sidetent map.
Flipping it left-right gives the fliptent map. Although it is not trivially obvious, the
fliptent map and the sidetent map have the same orbits, and thus the same bifurcation
diagram.

The bottom three maps all have prominent fixed points and periodic orbits, es-
sentially because the diagonal intersects the map. The top three maps have periodic
orbits, but these occur only for a countable number of β values. General orbits are
purely chaotic, essentially because the diagonal does not intersect them. Note that the
slopes and the geometric proportions of all six maps are identical; they are merely
rearrangents of the same basic elements.
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Figure 7: Beta transform and Side-tent

The left figure shows the bifurcation diagram for the β -transform, as it is normally
defined as the βx mod 1 map. It is the same map as the beta shift, just rescaled to
occupy the entire unit square. In all other respects, it is identical to 2.

The middle figure is a similarly-rescaled tent map, given the name “side tent”
in the main text. It is essentially identical to 4, with the middle parts expanded and
the sides removed. In both figures, β runs from 1 at the bottom to 2 at the top. The
right-hand-side figure is the “sidetarp”, clearly its an oddly-folded variant of the beta
transform.

The review of dynamical systems here is more-or-less textbook-standard material;
it is included here only to provide a firm grounding for later discussion.

The Cantor space {0,1}ω can be given a topology, the product topology. The open
sets of this topology are called “cylinder sets”. These are the infinite strings in three
symbols: a finite number of 0 and 1 symbols, and an infinite number of * symbols,
the latter meaning “don’t care”. Set union is defined location-by-location, with 0∪∗=
1∪∗= ∗ and set intersection as 0∩∗= 0 and 1∩∗= 1. Set complement exchanges 0
and 1 and leaves * alone: 0 = 1, 1 = 0 and ∗ = ∗. The topology is then the collection
of all cylinder sets. Note that the intersection of any finite number of cylinder sets is
still a cylinder set, as is the union of an infinite number of them. The product topology
does not contain any “points”: strings consisting solely of just 0 and 1 are not allowed
in the topology. By definition, topologies only allow finite intersections, and thus don’t
provide any way of constructing “points”. Of course, points can always be added “by
hand”, but doing so tends to generate a topology (the “box topology”) that is “too
fine”; in particular, the common-sense notions of a continuous function are ruined by
fine topologies. The product topology is “coarse”.

The Borel algebra, or sigma-algebra, takes the topology and also allows set com-
plement. This effectively changes nothing, as the open sets are still the cylinder sets,
although now they are “clopen”, as they are both closed and open.

Denote the Borel algebra by B. A shift is now a map T : B → B that lops off the
leading symbol of a given cylinder set. This is provides strong theoretical advantages
over working with “point dynamics”: confusions about counting points and orbits and
defining densities go away. This is done by recasting discussion in terms of functions
f : B →R from Borel sets to the reals (or the complex numbers C or other fields, when
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this is interesting). An important class of such functions are the measures. These are
functions µ : B →R that are positive, and are “compatible” with the sigma algebra, in
that µ (A∪B) = µ (A)+µ (B) whenever A∩B = ∅ and (for product-space measures)
that µ (A∩B) = µ (A)µ (B) for all A,B ∈ B. The measure of the total space Ω =
{0,1}ω is by convention unity: µ (Ω) = 1.

The prototypical example of a measure is the Bernoulli measure, which assigns
probability p to any string containing a single 0 and the rest all *’s. By complement, a
string containing a single 1 and the rest all *’s has probability 1− p. The rest follows
from the sigma algebra: a cylinder set consisting of m zeros and n ones has measure
pm (1− p)n. It is usually convenient to take p = 1/2, the “fair coin”; the Bernoulli
process is a sequence of coin tosses.

The map given in equation 3 is a homomorphism from the Cantor space to the
unit interval. It extends naturally to a map from the Borel algebra B to the algebra
of intervals on the unit interval. It is not an isomorphism: cylinder sets are both open
and closed, whereas intervals on the real number line are either open, or closed (or
half-open). It is convenient to take the map as a map to closed intervals, so that it’s
a surjection onto the reals, although usually, this detail does not matter. What does
matter is if one takes p = 1/2, then the Bernoulli measure is preserved: it is mapped
onto the conventional measure on the real-number line. Thus, the cylinder set 0∗∗∗· · ·
is mapped to the interval [0,1/2] and 1 ∗ ∗ ∗ · · · is mapped to [1/2,1] and both have a
measure of 1/2 and this extends likewise to all intersections and unions. Points have
a measure of zero. That is, the homomorphism 3 preserves the fair-coin Bernoulli
measure.

Much of what is said above still holds for subshifts. Recall, a subshift S is a sub-
space S ⊂ {0,1}ω that is invariant under the shift T , so that T S = S. The space S
inherits a topology from {0,1}ω ; this is the subspace topology. The Borel algebra B
is similarly defined, as are measures. One can now (finally!) give a precise definition
for an invariant measure: it is a measure µ such that µ ◦T−1 = µ , or more precisely,
for which µ

(
T−1 (σ)

)
= µ (σ) for almost all cylinder sets σ ∈ S. This is what shift

invariance looks like. Note carefully that T−1 and not T is used in the definition. This
is because T−1 is a surjection while T is not: every cylinder set σ in the subshift “came
from somewhere”; we want to define invariance for all σ and not just for some of them.

The T−1 is technically called a “pushforward”, and it defines a linear operator
LT on the space F of all functions f : B → R. It is defined as LT : F → F by
setting LT : f 7→ f ◦ T−1. It is obviously linear, in that LT (a f +bg) = aLT ( f )+
bLT (g). This pushforward is canonically called the “transfer operator” or the “Ruelle-
Frobenius-Perron operator”. Like any linear operator, it has a spectrum. The precise
spectrum depends on the space F .

The canonical example is again the Bernoulli shift. For this, we invoke the inverse
of the mapping of eqn 3 so that f : [0,1] → R is a function defined on the unit inter-
val, instead of f : B → R. When F is the space of real-analytic functions on the unit
interval, that is, the closure of the space of all polynomials in x ∈ [0,1], then the spec-
trum of LT is discrete. It consists of the Bernoulli polynomials Bn (x) corresponding
to an eigenvalue of 2−n. That is,LT Bn = 2−nBn. Note that B0 (x) = 1 is the invariant
measure on the full shift. For the space of square-integrable functions f : [0,1]→ R,
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the spectrum of LT is continuous, and consists of the unit disk in the complex plane;
the corresponding eigenfunctions are fractal. Even more interesting constructions are
possible; the Minkowski question mark function provides an example of a measure on
{0,1}ω that is invariant under the shift defined by the Gauss map h(x) 7→ 1

x −
⌊ 1

x

⌋
. That

is, as a measure, it solves LT ?′ =?′ with ? the Minkowski question mark function, and
?′ it’s derivative; note that the derivative is “continuous nowhere”. This rather confus-
ing idea (of something being “continuous nowhere”) can be completely dispelled by
observing that it is well-defined on all cylinder sets in B and is finite on all of them –
not only finite, but less than one, as any good measure must obey.

These last examples are mentioned so as to reinforce the idea that working with B
instead of the unit interval [0,1] really does offer some strong conceptual advantages.
They also reinforce the idea that the Bernoulli shift is not the only “full shift”. In the
following text, we will be working with subshifts, primarily the beta-shift, but will
draw on ideas from the above so as to make rigorous statements about measurability
and invariance, without having to descend into either ad hoc hand-waving or provide
painfully difficult (and confusing) reasoning about subsets of the real-number line.

1.12 Beta Transformation Literature Review and References
The β -transformation, in the form of tβ (x) = βx mod 1 has been well-studied over the
decades. The beta-expansion 5 was introduced by A. Renyi[2] in 1957, who demon-
strates the existence of the invariant measure. The ergodic properties of the transform
were proven by W. Parry[3] in 1960, who also shows that the system is weakly mixing.

An explicit expression for the invariant measure was obtained independently by
A.O. Gel’fond[5] in 1959, and by W. Parry[3], as a summation of step functions

νβ (y) =
1
F

∞

∑
n=0

εn (y)
β n (10)

where εn is the digit sequence

εn (y) =

{
1 if y < tn

β
(1)

0 otherwise
(11)

and F is a normalization constant. By integrating εn (y) under the sum, the normaliza-
tion is given by

F =
∞

∑
n=0

tn
β
(1)

β n

Analogous to the way in which a dyadic rational p/2n has two different binary
expansions, one ending in all-zeros, and a second ending in all-ones, so one may also
ask if and when a real number x might have more than one β -expansion (for fixed
β ). In general, it can; N. Sidorov shows that almost every number has a continuum of
such expansions![6] This signals that the beta shift behaves rather differently from the
Cantor set in it’s embedding.

Conversely, the “univoke numbers” are those values of β for which there is only
one, unique expansion for x = 1. These are studied by De Vries.[7]
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The β -transformation has been shown to have the same ergodicity properties as
the Bernoulli shift.[4] The fact that the beta shift, and its subshifts are all ergodic is
established by Climenhaga and Thompson.[8]

An alternative to the notion of ergodicity is the notion of universality: a β -expansion
is universal if, for any given finite string of bits, that finite string occurs somewhere in
the expansion. This variant of universality was introduced by Erdös and Komornik[9].
Its is shown by N. Sidorov that almost every β -expansion is universal.[10] Conversely,
there are some values of β for which rational numbers have purely periodic β -expansions;[11]
all such numbers are Pisot numbers.[12]

The symbolic dynamics of the beta-transformation was analyzed by F. Blanchard[13].
A characterization of the periodic points are given by Bruno Maia[14]. A discussion
of various open problems with respect to the beta expansion is given by Akiyama.[15]

When the beta expansion is expanded to the entire real-number line, one effectively
has a representation of reals in a non-integer base. One may ask about arithmetic prop-
erties, such as the behavior of addition and multiplication, in this base - for example, the
sum or product of two β -integers may have a fractional part! Bounds on the lengths of
these fractional parts, and related topics, are explored by multiple authors.[16, 17, 18]

Certain values of β – generally, the Pisot numbers, generate fractal tilings,[19, 20,
21, 11, 15] which are generalizations of the Rauzy fractal. An overview, with common
terminology and definitions is provided by Akiyama.[22] The tilings, sometimes called
(generalized) Rauzy fractals, can be thought of as living in a direct product of Euclidean
and p-adic spaces.[23]

The set of finite beta-expansions constitutes a language, in the formal sense of
model theory and computer science. This language is recursive (that is, decidable by a
Turing machine), if and only if β is a computable real number.[24]

The zeta function, and a lap-counting function, are given by Lagarias[25]. The
Hausdorff dimension, the topological entropy and general notions of topological pres-
sure arising from conditional variational principles is given by Daniel Thompson[26].
A proper background on this topic is given by Barreira and Saussol[27].

None of the topics or results cited above are made use of, or further expanded on,
or even touched on in the following. This is not intentional, but rather a by-product of
different goals.
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2 Transfer operators
Given any map from a space to itself, mapping points to points, the pushforward maps
distributions to distributions. The pushforward is a linear operator, called the trans-
fer operator or the Ruelle–Frobenius–Perron operator. The spectrum of this operator,
broken down into eigenfunctions and eigenvalues, can be used to understand the time
evolution of a given density distribution. The invariant measure is an eigenstate of this
operator, it is the eigenstate with eigenvalue one. There are other eigenstates; these are
explored in this section.

Restricting to the unit interval, given an iterated map f : [0,1]→ [0,1], the transfer
operator acting on a distribution ρ : [0,1]→ R is defined as[

L f ρ
]
(y) = ∑

x= f−1(y)

ρ(x)
| f ′(x)|

The next subsection gives an explicit expression for this, when f is the β -transform.
After that, a subsection reviewing the invariant measure, and then a discussion of some
other eigenfunctions.

2.1 The β -shift Transfer Operator
This text works primarily with the β -shift, instead of the more common β -transform.
These two are more-or-less the same thing, differing only by scale factors, as given
in eqn. 9. The transfer operators are likewise only superficially different, being just
rescalings of one-another; both are given below.

The transfer operator the beta-shift map Tβ (x) is

[
Lβ f

]
(y) =

{
1
β

[
f
(

y
β

)
+ f

(
y
β
+ 1

2

)]
for 0 ≤ y ≤ β/2

0 for β/2 < y ≤ 1

or, written more compactly[
Lβ f

]
(y) =

1
β

[
f
(

y
β

)
+ f

(
y
β
+

1
2

)]
Θ

(
β

2
− y
)

(12)

where Θ is the Heaviside step function. The transfer operator for the beta-transform
map tβ (x) is

[
Mβ f

]
(y) =

1
β

[
f
(

y
β

)
+ f

(
y
β
+

1
β

)
Θ(β −1− y)

]
The density distributions graphed in figure 1 are those functions satisfying[

Lβ µ
]
(y) = µ (y) (13)

That is, the µ (y) satisfies

µ (y) =
1
β

[
µ

(
y
β

)
+µ

(
y
β
+

1
2

)]
Θ

(
β

2
− y
)

(14)
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Likewise, the Gelfond-Parry measure of eqn 10 satisfies[
Mβ νβ

]
(y) = νβ (y)

Recall that µ (y) = 2
β

νβ

(
2y
β

)
Θ

(
β

2 − y
)

; the two invariant measures are just scaled

copies of one-another. Both are normalized so that
∫ 1

0 µ (y)dy =
∫ 1

0 νβ (y)dy = 1.
Both of these invariant measures are the Ruelle-Frobenius-Perron (RFP) eigenfunc-

tions of the corresponding operators, as they correspond to the largest eigenvalues of
the transfer operators, in each case being the eigenvalue one.

More generally, one is interested in characterizing the spectrum[
Lβ ρ

]
(y) = λρ (y)

for eigenvalues |λ | ≤ 1 and eigenfunctions ρ (y). Solving this equation requires choos-
ing a space of functions in which to work. Natural choices include piece-wise contin-
uous smooth functions (piece-wise polynomial functions), any of the Banach spaces,
and in particular, the space of square-integrable functions. In general, the spectrum
will be complex-valued: eigenvalues will be complex numbers.

If a distribution ρ (y) is nonzero on the interval [β/2,1], the operator Lβ will map
it to one that is zero on this interval. Thus, it makes sense to restrict oneself to densities
that are nonzero only on [0,β/2]. When this is done, eqn 12 has the slightly more
convenient form[

Lβ f
]
(y) =

1
β

[
f
(

y
β

)
Θ(m0 − y)+ f

(
y
β
+

1
2

)
Θ(m1 − y)

]
with m0 = β/2 and m1 = β (β −1)/2= Tβ (m0). It is always the case that m1 <m0 and
so the second term above vanished on the interval [m1,m0]. This can be gainfully em-
ployed in a variety of settings; typically to write Lβ f on [m1,m0] as a simple rescaling
of Lβ f on [0,m1].

This equation can be treated as a recurrence relation; setting Lβ f = f gives the
λ = 1 eigenstate. Performing this recursion gives exactly the densities shown in figure
1. Computationally, these are much cheaper to compute than trying to track a scattered
cloud of points; the result is free of stochastic sampling noise. This density is the
Ruelle–Frobenius–Perron eigenstate; an explicit expression was given by Gelfond and
by Parry, as described in the next section.

2.2 The Gelfond–Parry measure
An explicit expression for the solution to Mβ ν = ν was given by Gelfond[5] and by
Parry[3]. It is the expression given by eqn 10. Unfortunately, I find the Russian original
of Gelfond’s article unreadable, and Parry’s work, stemming from his PhD thesis, is
not available online. Therefore, it is of some interest to provide a proof suitable for the
current text. A generalization of this proof, stated in terms of a Borel algebra, is used
in the subsequent section to construct general eigenfunctions.

There are two routes: either a direct verification that eqn 10 is correct, or a deriva-
tion of eqn 10 from geometric intuition. The direct verification is useful for practical
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Figure 8: Gelfond–Parry Normalization
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Gelfond--Parry Normalization

The above figure shows 1/F for the normalization constant F = ∑
∞
n=0 tnβ−n as a func-

tion of β . The horizonal axis is stretched out using log(β −1) so as to amplify the
behavior as β → 1. One has that F → ∞ in this limit (so 1/F → 0); the curve suggests
just how catastrophic that limit is. A graph of F vs. β , without the rescaling of the
horizontal axis, is shown in figure 13.

purposes; the geometric construction, as a stretch-cut-stack map, provides insight. Both
are given.

The Gelfond–Parry measure includes a normalization factor. It will be of recurring
interest, and so a graph f it is presented in figure 8.

2.2.1 Direct verification

A direct verification of correctness is done below, explicitly showing all steps in labo-
rious detail. It’s not at all difficult; just a bit hard on the eyes.

As before, let t (x) ≡ tβ (x) = βx mod 1 be the β -transformation of eqn 8, and
tn (x) the iterated transformation. Let Θ(x) be the Heaviside step function as always,
and to keep notation brief, let tn ≡ tn (1). The Gelfond-Parry measure is then

ν (y) =
1
F

∞

∑
n=0

Θ(tn − y)
β n

where the normalization F is given by

F =
∞

∑
n=0

tn
β n

30



The transfer operator M for the beta-transformation is slightly more convenient to
work with than L for this particular case. It is given by

[M f ] (y) =
1
β

[
f
(

y
β

)
+ f

(
y+1

β

)
Θ(β −1− y)

]
and we wish to verify that M ν = ν . Plugging in directly,

P = ν

(
y
β

)
+ν

(
y+1

β

)
Θ(β −1− y) =

=
1
F

∞

∑
n=0

1
β n

(
Θ

(
tn −

y
β

)
+Θ

(
tn −

y+1
β

)
Θ(β −1− y)

)
=

1
F

∞

∑
n=0

1
β n (Θ(β tn − y)+Θ(β tn −1− y))

The second line follows from the first, since Θ(ax) = Θ(x) for all constants a, and
the Θ(β −1− y) can be safely dropped, since tn ≤ 1 for all n. These terms simplify,
depending on whether tn is small or large. Explicitly, one has

Θ(β tn −1− y) = 0 if β tn −1 < 0
Θ(β tn − y) = 1 if β tn −1 > 0

and so

P =
1
F

∞

∑
n=0

1
β n (Θ(1−β tn)Θ(β tn − y)+Θ(β tn −1)(1+Θ(β tn −1− y)))

These can be collapsed by noting that

β tn = tn+1 if β tn −1 < 0
β tn −1 = tn+1 if β tn −1 > 0

and so

P =
1
F

∞

∑
n=0

1
β n (Θ(1−β tn)Θ(tn+1 − y)+Θ(β tn −1)(1+Θ(tn+1 − y)))

=
1
F

∞

∑
n=0

1
β n (Θ(tn+1 − y) [Θ(1−β tn)+Θ(β tn −1)]+Θ(β tn −1))

=
1
F

∞

∑
n=0

1
β n (Θ(tn+1 − y)+Θ(β tn −1))

= βν (y)− β

F
+

1
F

∞

∑
n=0

Θ(β tn −1)
β n

= βν (y)

The last sum on the right is just the β -expansion for 1. That is, the β -expansion of x is

x =
∞

∑
n=0

Θ(β tn (x)−1)
β n+1
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This is just eqn 6 written in a different way (making use of the equivalence 9). Thus
P = βν (y) and so M ν = ν as claimed.

2.2.2 Stretch–Cut–Stack Map

The measure can be geometrically constructed and intuitively understood as the result
of the repeated application of a bakers-map-style stretch and squash operation. The
idea is to iterate νn+1 = Mβ νn, starting with ν0 = 1 and then take the limit n → ∞;
the result is νn → ν in the limit, given as above. The basic stretch-cut-stack operation
provides intuition as to why ν is invariant. The proof that it converges as desired is
nearly identical to the (shorter) proof above.

Consider a first approximation that ν0 is constant on the interval [0,1], so that
ν0 (y) = 1. The operation of M acting on this is to stretch it out to the interval [0,β ],
chop off the [1,β ] part, move it to [0,β −1], stack it on top, thus doubling the density in
this region. The doubling, though, is partly counteracted by the stretching, which thins
out the density to 1/β uniformly over the entire interval [0,β ]. This operation preserves
the grand-total measure on the unit interval. Writing β −1 = t1 = t (t0) = t (1) for the
first iterate of the endpoint t0 = 1, this stretch, cut and stack operation should result in

ν1 (y) =

{
2
β

for y ∈ [0, t1]
1
β

for y ∈ [t1, t0]

The stretch–cut–stack operation is the intuitive, geometrical explanation for obtaining
the first iterate. The same result is obtained algebraically, by writing ν1 = M ν0 and
then plugging and chugging:

ν1 (y) =
1
β
[1+Θ(t1 − y)]

The derivation of a recursive formula for νn follows along the line of the algebraic
proof given in the previous section, this time, limiting the sums to finite order. The
general form is

νn = ρn −
n−1

∑
k=0

cn−kνk

which is preserved under iteration as νn+1 = M νn. The two parts are ρn defined as

ρn =
n

∑
k=0

1
β k Θ(tk − y)

This converges, up to overall normalization, to the invariant measure: ρn → Fν with F
the normalization constant from before. The cn are constants, defined as

cn = 1−
n−1

∑
k=0

Θ(β tk −1)
β k+1 (15)
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The sum in cn is a partial β -expansion for 1. Each term can be recognized as a bit from
the bit-expansion:

Θ(β tk −1) = dn

(
1
2

)
= kn

(
β

2

)
= εn

(
1
β

)
with kn as defined in eqn 5, εn defined as in eqn 11 and dn as in eqn 19 (apologies for
the variety of notations; each is “natural” in a specific context.) The β -expansion of
a real number x is as given in eqn 6. In the present context, this is the expansion for
x = β/2, or, after rescaling, the expansion for x = 1:

1 =
∞

∑
k=0

Θ(β tk −1)
β k+1

Thus, |cn| < β−n+1 and cn → 0 as n → ∞. The sum in cn is a partial β -expansion for
1. Thus, |cn|< β−n+1 and cn → 0 as n → ∞.

Each iteration preserves the measure; this is built into the construction. That is,∫ 1
0 νn (y)dy = 1 for all n. Plugging through gives a curious identity:

1 =
∫ 1

0
νn (y)dy =

n

∑
k=0

tk
β k −

n

∑
k=1

ck

which holds for all n. This is readily verified by further plugging through; the underly-
ing identity is that

tn = β
ncn

This follows by noticing that each Θ(β tk −1) records a decision to decrement, or not,
the product β tk occurring in the iteration tk+1 = β tk mod 1.

The Gelfond–Parry normalization was the n → ∞ limit of the first sum: F =

∑
∞
k=0 β−ktk.

2.2.3 Stacking Generic Functions

A slightly different calculation results if one works with an an arbitrary function ν0 (y).
The iteration to obtain νn = M nν0 proceeds much as before, with only minor modifi-
cations needed to obtain the general form.

The trick is to track two distinct travellers: one that travels with Θ(tk − y) and
another that travels with the bitsequence bk = Θ(β tk −1). The general solution has the
form

νn (y) = an (y)+
n

∑
k=1

hnk (y)Θ(tk − y)

an (y) =
n−1

∑
k=0

bkenk (y) (16)

The functions hnk and enk can be solved for recursively; the recursive relations are
simple enough that they can be rolled up as series summations. These are given by
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hnk (y) =
1

β k an−k

(
t1 −

β tk −1
β k +

y
β k

)
for n ≥ k

which express hnk in terms of the function an. This is given as a recursive series,
obtained by iterating

enk (y) =
1

β n

[
ν0

(
1− tk

β k +
y

β n

)
+Θ(k)

n−k−1

∑
m=1

β
mam

(
t1 −

β tk −1
β k +

β my
β n

)]

The starting point for iteration is a0 = ν0.
The function an is polynomial if ν0 is, and of the same degree; an is analytic, if ν0

is, and so on. The function hnk is likewise, on the domain 0 ≤ y ≤ tk; the discontinuities
in νn are entirely due to the Θ(tk − y) term.

The proper calculation of the n → ∞ limit of an remains a mystery. This is the
primary obstacle to constructing general eigenfunctions from this series.

Verification When ν0 = 1, all three functions an,enk and hnk become constants. In
this case, an → 1/F as n → ∞, with F the normalization constant as before. Defining
αn = β nan, the recursion relation takes the curious form

αn = 1+
n−1

∑
k=1

bk

n−k−1

∑
m=0

αm

This is an integer sequence: each αn is an integer, starting with α0 = α1 = 1. This has
the form of a generalized Fibonacci sequence. Denote the partial sum as si = ∑

i
m=0 αm.

This implies αi = si − si−1 and so

αn = 1+b1sn−2 +b2sn−3 + · · ·
sn = 1+ sn−1 +b1sn−2 +b2sn−3 + · · ·

If the orbit is of finite length p, so that bk = 0 for k > p, then this can be recast directly
into generalized Fibonacci form, by defining fn = sn +∑

p
k=1 bk. The recursion relation

is then
fn = fn−1 +b1 fn−2 + · · ·+bp fn−p

For example, the orbit generated by β = ϕ = 1.618 · · · the golden mean has p = 1,b1 =
1 and the sequence is αm = 1,1,2,3,5,8,13, · · · . Finite orbits and generalized Fi-
bonacci sequences will be treated at length in the next chapter. One of the interesting
properties is that β = limn→∞ fn/ fn−1 holds in the general case, and not just for the
golden mean. The bitsequences are self-describing; this is byproduct from the identity
β = ∑

∞
k=0 bkβ−k.
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2.2.4 Scaled iteration

It is convenient to rescale the iterate M n by a constant factor, so that instead, one is
examining a sequence of functions M µn = λ µn+1. The iterated operator then has the
form

µn (y) = c′n (y)+
n

∑
k=1

Θ(tk − y)

(λβ )k c′n−k

(
t1 −

β tk −1
β k +

y
β k

)

c′n (y) = ν0 (y)+
1

(λβ )n

n−1

∑
k=1

bk

[
ν0

(
1− tk

β k +
y

β n

)
+

n−k−1

∑
m=1

(λβ )m c′m

(
t1 −

β tk −1
β k +

β my
β n

)]
This is identical to the earlier forms when λ = 1. The starting point for iteration is
c′0 = ν0. For For ν0 = 1 and λ = 1, one regains the Gelfond–Parry distribution in the
limit of n → ∞. In this limit, c′n → 1/F .

2.3 Analytic Gelfond–Parry function
The technique above can be repeated verbatim for a “rotated” or “coherent” function

νβ ;z (y) =
∞

∑
n=0

zn Θ(tn − y)
β n (17)

for a given complex-valued z. No changes are required, and the result can be read off
directly: [

M νβ ;z
]
(y) =

νβ ;z (y)
z

− 1
z
+

∞

∑
n=0

zn Θ(β tn −1)
β n+1

=
νβ ;z (y)

z
+C (β ;z)

with C (β ;z) being a constant independent of y. If there are values of β and/or z at
which C (β ;z) = 0, then this becomes the eigenequation for M .

The eigenfunction for L is the same, up to rescaling of y 7→ βx/2. Recycling
notation slightly, write

vβ ;z (x) =
∞

∑
n=0

dn (x)
β n zn (18)

where the dn (x) are exactly the same digits as defined by Parry, just rescaled for the
beta-shift. That is,

dn (x) = εn

(
2x
β

)
= Θ

(
β

2
tn − x

)
= Θ

(
T n
(

β

2

)
− x
)
=

{
1 if x < T n

(
β

2

)
0 otherwise

(19)

where T the beta-shift map of eqn 4 and eqn 9 is used. The iterated end-point becomes
the iterated midpoint:

tn (1) =
2
β

T n
(

β

2

)
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Holding both β and x fixed, the summation is clearly convergent (and holomorphic
in z) for complex numbers z within the disk |z| < β . The eigenequation has the same
form: [

Lβ vβ ;z
]
(x) =

1
z

vβ ;z (x)+C (β ;z)

where C (β ;z) is a constant independent of x. Numeric verification reveals we were a
bit glib: C (β ;z) is a constant for x ≤ β/2 and is zero otherwise! (This is normal; L
was defined in such a way that it is always exactly zero for x > β/2.)

The interesting limit is where |z| → β and so its convenient to re-express C in terms
of ζ = z/β , so that everything is mapped to the unit disk. With some rearrangements,
one obtains

E (β ;ζ )≡ ζ βC (β ;ζ β ) =−1+ζ

∞

∑
n=0

ζ
ndn

(
1
2

)
(20)

Given that dn (1/2) = Θ(β tn −1), the above can be recognized as the rotated/coherent
form of eqn 15 in the n → ∞ limit. The primary task is to characterize the zeros of
E (β ;ζ ). This is a straight-forward sum to examine numerically; results will be pre-
sented in the section after the next.

2.4 Analytic ergodics
This section proposes that the entire β -subshift can be tied together with a single holo-
morphic equation. The holomorphic equation effectively provides a continuum (i.e.
uncountable number) of distinct relationships between different parts of the subshift.
This can be interpreted either as a form of interaction across the subshift, or as a kind
of mixing. Given the nature of the relationship, the moniker of “fundamental theorem
of analytic ergodics” is an amusing name to assign to the result.

The constant term can be independently derived through a different set of manipu-
lations. Explicitly plugging in eqn 18 into the transfer operator yields

C (β ;z) =
[
Lβ vβ ;z

]
(y)−

vβ ;z (y)
z

=
∞

∑
n=0

zn

β n

[
1
β

[
dn

(
y
β

)
+dn

(
y
β
+

1
2

)]
Θ

(
β

2
− y
)
− 1

z
dn (y)

]
Replacing z by ζ = z/β gives

E (β ;ζ ) =ζ βC (β ;ζ β )

=
∞

∑
n=0

ζ
n
[

ζ

[
dn

(
y
β

)
+dn

(
y
β
+

1
2

)]
Θ

(
β

2
− y
)
−dn (y)

]
This is holomorphic on the unit disk |ζ |< 1, as each individual dn is either zero or one;
there won’t be any poles inside the unit disk. Note that dn (y) = 0 for all y > β/2, and
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so one may pull out the step function to write

E (β ;ζ ) =
∞

∑
n=0

ζ
n
[

ζ dn

(
y
β

)
+ζ dn

(
y
β
+

1
2

)
−dn (y)

]
Θ

(
β

2
− y
)

confirming the earlier observation that E (β ;ζ ) vanishes for all y > β/2.
The bottom equation holds without assuming that E (β ;ζ ) is independent of y.

However, we’ve already proven that it is; and so a simplified expression can be given
simply by picking a specific y. Setting y = 0, noting that dn (0) = 1 and canceling
terms, one obtains eqn. 20 again.

Staring at the right-hand side of the sum above, it is hardly obvious that it should
be independent of y. In a certain sense, this is not “one equation”, this holds for a
continuum of y, for all 0 ≤ y ≤ 1. It is an analytic equation tying together the entire
subshift. For each distinct y, it singles out three completely different bit-sequences out
of the subshift, and ties them together. It is a form of mixing. Alternately, a form of
interaction: the bit-sequences are not independent of one-another; they interact. This
section attempts to make these notions more precise.

The tying-together of seemingly unrelated sequences seems somehow terribly im-
portant. It is amusing to suggest that this is a kind of “fundamental theorem of analytic
ergodics”.

For such a claim, it is worth discussing the meaning at length, taking the effort to
be exceptionally precise and verbose, perhaps a bit repetitive. Equation 4 defined a
map, the β -shift. Equation 5 defined a bit-sequence, the β -expansion of a real number
0 ≤ x ≤ 1, where equation 6 is the definition of the β -expansion. The set of all such bit-
sequences defines the shift. To emphasize this point, its best to compare side-by-side.
Copying equation 5, one bitsequence records the orbit of x relative to the midpoint:

kn (x) =

{
0 if 0 ≤ T n

β
(x)< 1

2

1 if 1
2 ≤ T n

β
(x)≤ 1

while a different bitsequence records the orbit of the midpoint, relative to x:

dn (x) =

{
1 if x < T n

(
β

2

)
= T n+1

( 1
2

)
0 otherwise

The iterations are running in opposite directions; this is as appropriate, since the the
transfer operator was a pushforward.

It is useful to return to the language of sigma algebras and cylinder sets, as opposed
to point dynamics. Recall that the Borel algebra B was defined as the sigma algebra,
the collection of all cylinder sets in the product topology of {0,1}ω . A subshift is
a subset S ⊂ B together with a map T : S → S that lops off the leading symbol
of a given cylinder set but otherwise preserves the subshift: TS = S . The inverted
map T−1 is a pushforward, in that it defines the transfer operator, a linear operator
LT : F → F on the space F of all functions f : S → R; explicitly, it is given by
LT : f 7→ f ◦T−1. Insofar as the dn arose in the exploration of the transfer operator, it
is not surprising that the shift is acting “backwards”.
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The problem with the language of point dynamics is that one cannot meaningfully
write T−n (x) for a real number, a point x, at least, not without severe contortions that
lead back to the Borel algebra. Not for lack of trying; the T−n (x) is called the “Julia
set” (to order n) of x: it is the preimage, the set of all points that, when iterated, converge
onto x.

Can the analytic relation be restated in terms of cylinder sets? Yes, and it follows
in a fairly natural way. The first step is to extend dn to a map dn : S → [0,1] into
the unit interval, as opposed to being a single bit. Let µ : B → [0,1] be the canonical
Bernoulli measure. Using the Bernoulli mapping 3, the interval [0,T n (β/2)] maps to
some cylinder; call it ∆n. Then, given some cylinder A ∈ S , define

dn (A) = µ (A∩∆n)

The rotated (pre-)measure is extended likewise:

ν (A) =
∞

∑
n=0

ζ
ndn (A)

with ζ = z/β as before, recovering the Parry measure by setting z = 1.
The Parry measure should be invariant under the action of T−1 : S → S , and

otherwise yield eqn 20. Let’s check. The proof will mirror the one of the previous
section. Again, it is convenient to use the β -transform tβ instead of the β -shift Tβ .
This is primarily a conceptual convenience; the subshift is more easily visualized in
terms of the mod 1 map. Otherwise, the same notation is used, but rescaled, so that ∆n
is the cylinder corresponding to the interval [0, tn (1)].

Recall that for every A ∈ S and every y ∈ A, one will find that y/β ∈ t−1 (A) and,
whenever y ≤ β − 1 that also (y+1)/β ∈ t−1 (A). Thus, t−1 (A) naturally splits into
two parts: the cylinder that maps to [0,1/β ], call it D, and the complement D.

The pushforward action is then

ν
(
t−1 (A)

)
=

∞

∑
n=0

ζ
n
µ
(
∆n ∩ t−1 (A)

)
=

∞

∑
n=0

ζ
n [

µ
(
∆n ∩D∩ t−1 (A)

)
+µ

(
∆n ∩D∩ t−1 (A)

)]
Two distinct cases emerge. When tn (1) < 1/β then one has that ∆n ∩D = ∅. Thus,
the second term can be written as

µ
(
∆n ∩D∩ t−1 (A)

)
= Θ

(
tn −

1
β

)
µ
(
∆n ∩D∩ t−1 (A)

)
= Θ

(
tn −

1
β

)
1
β

µ (∆n+1 ∩A)

where the second line follows from the first by linearity, and that D selected out one
of the two branches of t−1 (A). Meanwhile, when tn (1) > 1/β , then D ⊂ ∆n so that
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D∩∆n = D. Thus, the first term splits into two:

Θ

(
tn −

1
β

)
µ
(
∆n ∩D∩ t−1 (A)

)
= Θ

(
tn −

1
β

)
µ
(
D∩ t−1 (A)

)
= Θ

(
tn −

1
β

)
1
β

µ (A)

while

Θ

(
1
β
− tn

)
µ
(
∆n ∩D∩ t−1 (A)

)
= Θ

(
1
β
− tn

)
1
β

µ (∆n+1 ∩A)

Reassembling these pieces and making use of ∆0 ∩A = A one gets

ν
(
t−1 (A)

)
=

∞

∑
n=0

ζ n

β

[
µ (A)Θ

(
tn −

1
β

)
+µ (∆n+1 ∩A)

]
=

1
z

ν (A)− µ (A)
z

+µ (A)
∞

∑
n=0

ζ n

β
Θ

(
tn −

1
β

)
=

1
z

ν (A)+
µ (A)

z
E (β ;z)

with the constant term as before, in eqn 20:

E (β ;z) =−1+ζ

∞

∑
n=0

ζ
n
Θ

(
tn −

1
β

)
=−1+ζ

∞

∑
n=0

ζ
ndn

(
1
2

)
As before, one has for z = 1 that E (β ;1) = 0 and so ν ◦ t−1 = ν is indeed the measure
invariant under t−1. Other eigenvalues can be found for those values of z for which
E (β ;z) = 0. The task at hand is then to characterize E (β ;z).

2.5 Exploring E (β ;z)

The function is easily explored numerically. It is clearly convergent in the unit disk
|ζ | < 1 and has no poles in the disk. For almost all β , there seem to be a countable
number of zeros within the disk, accumulating uniformly on the boundary as |ζ | → 1.
An example is shown in figure 10. The notion of “uniformly” will be made slightly
more precise in the next section, where it is observed that, for certain special values of
β , the bit-sequence dn

( 1
2

)
is periodic, and thus is a polynomial. When it is polynomial,

there are a finite number of zeros (obviously; the degree of the polynomial), which are
distributed approximately uniformly near the circle |ζ |= 1. As the degree of the poly-
nomial increases, so do the number of zeros; but they remain distributed approximately
evenly. In this sense, the limit of infinite degree seems to continue to hold.

A handful of selected zeros are listed in the table below. The numbers are accurate
to about the last decimal place.
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Figure 9: Typical Eigenfunction
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A typical eigenfunction vβ ;z (x) solving Lβ v = λv for β = 1.2. This is the eigen-
function is as defined in eqn 18. This eigenfunction corresponds to the zero z =
1.1342exp iπ0.1799 of E (β ;z), alternately of C (β ;z), as defined in eqn 20. The eigen-
value is λ = 1/z. Since the eigenvalue is complex, so is the eigenfunction. The real
and imaginary parts are paired in a way that vaguely resembles sine and cosine; such
phased offsets are generic.

β z |z| 1/z
1.8 -1.591567859 1.59156785 -0.6283112558
1.8 -1.1962384 +i 1.21602223 1.70578321 -0.41112138 - i 0.41792066
1.8 0.99191473 +i 1.44609298 1.75359053 0.32256553 -i 0.47026194
1.6 -1.06365138 +i 1.00895989 1.46606764 -0.49487018 -i 0.46942464
1.4 0.55083643 +i 1.17817108 1.30057982 0.32564816 -i 0.69652119
1.2 0.95788456 +i 0.60733011 1.13419253 0.74462841 -i -0.47211874

These are not particularly meaningful numbers; they just give a flavor for some
locations of eigenvalues. Given a zero, the corresponding eigenfunction is also very
easily computed. A typical eigenfunction is shown in figure 9; this is for the zero listed
in the last row of the table above. Although it is unlike the figure 1, in that it is not
strictly decreasing, it does have the same general plateau-like regions. Note that all
such eigenfunctions are bounded and generally, differentiable-nowhere.

As the zeros accumulate onto the circle |ζ | → 1, there appears to be no way to
holomorphically continue the function E (β ;z) outside of the unit circle. This indicates
that there is a lower bound on the possible eigenvalues that can be reached via the
eigenfunctions of eqn 18. The lower bound is |λ | = 1/β ; the eigenfunctions with
smaller eigenvalue do not arise from eqn 18.

The apparent reason for this is that the coherent state was constructed as a deformed
version of the repeated iteration of ν0 = 1 a constant, as described in earlier sections.
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Figure 10: Disk of E (β ;z)

The above shows a visualization of E (β ;z) for β = 1.6 in the complex ζ = z/β plane.
The disk consists of all ζ values with |ζ | ≤ 1. The plot is a phase plot, showing the ar-
gument argE (β ;z)∈ [−π,π]. The color-coding of blue-black puts the phase just above
−π , green near 0, and red just below +π . Locations where the phase wraps around
counter-clockwise (right-handed) are zeros of E (β ;z); this follows from Cauchy’s
principle. The most prominent zero at the right-hand side of the image corresponds
to z = 1, located at ζ = 1/β so well inside the circle. This corresponds to the Gel-
fond–Parry invariant measure. Other zeros are seen at the end of black-red whiskers,
wrapping through green. These accumulate at the ζ = 1 boundary; in general, there
are a countable number of such zeros. The corresponding eigenvalues are located at
λ = 1/z = 1/βζ , so the accumulation ring of zeros occurs at |λ |= 1/β .
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Iterating on ν0 (y) a polynomial appears to generate eigenfunctions with eigenvalue
bounded by 1/β p for a polynomial of degree p. One explicit example, generated by a
parabola, is given in the next section. A simple, direct construction remains elusive.

A different derivation of this same holomorphic form will be given in the next
chapter. There, the beta shift is shown to be conjugate to an infinite shift matrix, in
explicit upper-Hessenberg form. Thus, the shift is explicitly a shift on the monomials
ζ n as the basis elements.

2.5.1 Convergence

The analytic structure of the ergodic disk

E (β ;z) =−1+ζ

∞

∑
n=0

bnζ
n

is daunting. Clearly, when the bitsequence bn is not finite, then there is a pole at ζ = 1.
There is also a pole at ζ = −1 unless the number of even and odd bits asymptotically
cancel out, and then the series is conditionally convergent.

More generally, the series will be conditionally convergent for ζ = eiφ only when
the bitsequence bn is ultimately periodic. In this case, ζ = eiφ that are roots of unity
can be arranged so that they precisely cancel for each period.

For ergodic bitsequences bn, it is not clear how to formulate a proper conjecture for
the sum.

2.5.2 Jentzsch’s theorem

Relevant to the present case is Jentzch’s theorem (1914), which states that if

g(z) = 1+a1z+ · · ·+anzn + · · ·

has a radius of convergence of one, then every point on the unit circle is a cluster-point
of zeros of partial sums

sn (z) = 1+a1z+ · · ·+anzn

A proof is given in [28], which generalizes to polynomial sequences that converge on
arbitrary regions of the complex plane (having positive capacitance).

Perhaps a simpler statement is that this follows from Rouché’s theorem, in that
1 − zn will have n roots, located at the roots of unity, and all the other terms only
perturb the location of the roots.

2.6 Other eigenfunctions
Eigenfunctions with eigenvalues λ less than 1/β clearly exist. Below is an example
with λ = 1/β 2 for β = ϕ = 1.618 · · · the golden mean. A general solution in terms of
piece-wise polynomial eigenfunctions will be presented several sections hence, after
the theory of finite orbits is developed.
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2.6.1 Piecewise quadratic eigenfuntions

To portray the problem, a piece-wise parabolic presentation is pursued. For β = ϕ , the
function

ρ (y) =


ϕy2 − y+ 1

8 for 0 ≤ y < 1
2

y2 − y+ ϕ

8 for 1
2 ≤ y < ϕ

2
0 for ϕ

2 ≤ y ≤ 1

satisfies Lϕ ρ = λρ for λ = ϕ−2.

2.6.2 Quasi-resonances

Returning to the expression for M µn = µn+1 given in section 2.2.4, one might search
for resonances by hypothesizing µ0 to be some polynomial, and then look for sequences
λ nµn → µ that converge uniformly in the n→∞ limit. Performing such a search reveals
surprises. The following was observed.

Fix β = 1.6. Then:

• If µ0 (x)= x−1/2 then µn converges to ≈−0.0869229ν with ν the Gelfond–Parry
invariant measure.

• If µ0 (x) = x−1/2+0.0869229 (so that the convergent above is subtracted), then
the µn appear to bounce around ergodically, maintaining a bounded norm. Three
behaviors are apparent: β n ∫ µn = const ≈ 0.2767. The L1 and L2 norms bounce
around but remain bounded: 0.3 < β n ∫ |µn| < 0.8 and 0.1 < β n ∫ |µn|2 < 1.0.
Each iterate is approximately orthogonal to the prior one: β 2n+1 ∫ µnµn+1 ≈ 0.
Here,

∫
f =

∫ 1
0 f (x)dx is just short-hand notation.

So there are two questions: what is this magic constant 0.0869229? What is this ergodic
bouncing?

The answer to the second question is that µn has converged onto a superposition
of eigenvectors, each having an eigenvalue of modulus 1/β but differing in phase.
Further iteration shows unitary evolution, up to a scale factor. The mixture over-all
resembles ergodic behavior. More precisely, assume there are multiple eigenfunctions
M (ψn + iχn) =

1
β

eiφn (ψn + iχn). Then if µn → ∑k akψk further iteration will resemble
an ergodic walk:

M µn = µn+1 =
1
β

∑
k

ak (ψk cosφk −χk sinφk)

and so the numerics for µn will look like a bouncing mess, as the various phase angles
φk make the factors come and go.

At any rate, iteration from a simple starting point cannot cross the barrier-wall of
eigenvalues located in a circle of radius 1/β . One becomes trapped at this location. To
get past it, one must design an initial µ0 that is orthogonal to all of these, much as part
of the recipe was to design an initial µ0 that was orthogonal to ν .
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If one considers instead a polynomial µ0 (x) = xn + cn−1xn−1 + · · ·+ c0, one can
find an analogous behavior: µn → Kν . The leading divergence can be subtracted, so
that iterating on µ0 (x) = xn + cn−1xn−1 + · · ·+ c0 −K gives a sequence of µn whose
length diminishes uniformly, in that β n ∫ µn = const, but otherwise bounce around er-
godically. The relationship between K and the polynomial is opaque. Of course, it can
be computed exactly; the polynomial can be inserted into eqn 16, binomials can be
expanded with binomial coefficients, and one obtains K. However, these formulas are
very tangled; an intuitive description of the manifold or variety is absent.

It has been shown that the beta transform is weak mixing. Is the above a symptom
of this? Is this how mixing manifests itself? If so, then it seems that thre should be a
descriptive framework that makes this explicit.

2.7 Conclusion
It appears that a complete description of the transfer operator remains elusive. For
larger eigenvalues, the analytic approach given above appears to be sufficient, at least
for the case where the transfer operator acts on a sufficiently tame space of functions.
A cohesive description of the spectrum for |λ | < 1/β remains absent. Worse, there
appear to be a variety of almost-resonances that are relatively easy to discover and
explore numerically, but defy coherent explanation. Particularly annoying is the lack
of a theoretical framework that articulates how mixing manifests itself in the structure
of the transfer operator.
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3 Finite Orbits
The iteration of the midpoint m0 = β/2, that is, the iterated series mn = T n

β
(β/2) is

ergodic in the unit interval, for almost all values of β . However, for certain values
of β , the midpoint iterates will hit the point x = 1/2 where the β -shift map has a
discontinuity. Here, iteration stops: at the next step, this point is defined to iterate to
zero, in eqn 4. Zero is a fixed point, and so there is nowhere further to go. This section
explores these special values of β .

Aside from the definition in eqn 4, one can consider the modified map, where the
less-than sign has been altered to a less-than-or-equals:

T≤
β
(x) =

{
βx for 0 ≤ x ≤ 1

2
β
(
x− 1

2

)
for 1

2 < x ≤ 1

In this map, the point x = 1/2 iterates to β/2, which is just the initial midpoint itself.
In this case, the halted orbits become periodic orbits.

The β values at which the midpoint has a periodic or terminating orbit will be called
“trouble spots”, for lack of a better term. They can be imagined to be prototypes of a
bifurcation point, “depending delicately on initial conditions”: where two choices are
possible, depending on infinitesimally small perturbations of m0, or, alternately, of β .

Before the end of the section, it will be shown that these “trouble spots” are dense in
the interval 1 ≤ β ≤ 2, that they can be placed in a one-to-one bijection with the dyadic
rationals, and that this bijection can be extended to the rationals (describing ultimately-
periodic orbits) and then the reals. The map is monotonically increasing, continuous
but not differentiable; it vaguely resembles the blancmange curve. Of course, it has a
peculiar fractal self-similarity, as all maps to the infinite binary tree do.

3.1 The β -generalized Golden Ratio
Trouble spots occur whenever the p’th iterate mp = T p

β
(m0) lands at the discontinuity,

so that one may take either mp = 0 or mp = m0. The iteration immediately before
corresponds to mp−1 = 1/2. The length of the orbit is p.

The first finite orbit can be found when β = ϕ =
(

1+
√

5
)
/2 the Golden Ratio.

In this situation, one has that m0 = ϕ/2 and m1 = 1/2. The length of the orbit is
ν = 2. For ν = 3, there are two such trouble spots, which occur when either β 3 −
β 2 − 1 = 0 or when β 3 − β 2 − β − 1 = 0. These correspond to the values of β =
1.465571231876768 · · · and β = 1.839286755214161 · · · .

Where else are such spots located? Consider, for example, m4 = T 4
β
(m0), and

consider the movement of m4 as β is swept through the range 1 < β < 2. This is shown
in figure 11. As made clear in the image, three new degenerate points appear. These
are located at β = 1.380327757 · · · and β = 1.754877666 · · · and β = 1.927561975 · · · ,
which are the real roots of β 4 −β 3 − 1 = 0 and β 4 −β 3 −β 2 − 1 = 0 and β 4 −β 3 −
β 2 −β −1 = 0 respectively.

Following a suggestion by Dajani[4], the β numbers corresponding to the trouble
spots may be called “generalized golden means”. Unfortunately, the term “generalized
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Figure 11: Location of Midpoints
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This chart illustrates the location of the first five midpoints, m0,m1, · · · ,m4 as a function
of β . When mk = 0.5, further iteration is ambiguous, as this is the location of the dis-
continuity in the shift map, and the next iteration leaves the midpoint bifurcated. These
are the “trouble spots”. The first trouble spot is visible for m1 = 1/2, corresponding to
β = ϕ and a length of ν = 2. The midpoint m2 crosses 1/2 (in the ascending direction)
at β = 1.465 · · · and β = 1.839 · · · , corresponding to orbits of length ν = 3. It also
crosses discontinuously downwards at β = ϕ . This crossing point has already been
assigned to a shorter orbit. The midpoint m3 has three new crossings. It also rises to
touch 1/2 at β = ϕ; but this has already been assigned to shorter orbits. The midpoint
m4 has six new crossings. Crossings will generally fall to the left and right of earlier
crossings, and so are related in a bracketing relationship. The bracketing is not the full
binary tree; it is pruned, as shorter orbit assignments can knock out longer one. For
example, m4 falls back down at the m2 crossing at β = 1.465 · · · , and so, here, m4 never
even gets close to 1/2; it won’t bracket until later. This is a formalized version of figure
3, which shows midpoints of all orders.
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golden mean” is in common use, and is applied to a variety of different systems. Not
all are relevant to the present situation; one that is, is given by Hare et al.[29] who
provide series expansions for the real roots of β p −∑

n−1
k=0 β k = 0; these are known as

the n-bonacci constants (Fibonacci, tribonacci, tetranacci, etc.). Stakhov[30] considers
β p+1 −β p −1 = 0 in general settings. Some, but not all of these numbers are known
to be Pisot numbers or Salem numbers[14]. In what follows, these will be referred to
as the “beta golden means”, since all of the ones that appear here have explicit origins
with the beta shift.

3.2 Counting Orbits
How many trouble spots are there? The table below shows the count Mν of the number
of “new” trouble spots, as a function of the orbit length ν .

ν 2 3 4 5 6 7 8 9 10 11 12
Mν 1 2 3 6 9 18 30 56 99 186 335

This appears to be Sloane’s OEIS A001037 which has a number of known relation-
ships to roots of unity, Lyndon words, and the number of orbits in the tent map. The
values are given by Moreau’s necklace-counting function. The trouble spots are the
positive real roots of polynomials of the form

p{bk} (β ) = β
ν −β

ν−1 −b1β
ν−2 −b2β

ν−3 −·· ·−1 = 0

with the {bk} being certain binary bit sequences. There is just one such (positive,
real) root for each such polynomial. These polynomials are relatively prime, in the
sense that a bit-sequence bk is disallowed if it has the same root as some lower-order
polynomial. For example, β 4 −β 3 −β −1 is disallowed; it has the same root as β 2 −
β −1. Equivalently, the quadratic is a factor of the quartic; the quartic is not relatively
prime with respect to the quadratic.

The reason for the appearance of the necklace-counting function is straightforward:
it is counting the number of distinct orbits of a given length. An orbit of length ν is,
by definition, a point x such that x = T ν

β
(x). Such an orbit generates a binary string, of

length ν corresponding to whether T j
β
(x)< 1/2 is true or not. A cyclic permutation of

such a string still corresponds to the same orbit; a reversed permutation does not: thus,
it is a necklace without reversal. The necklace-counting function gives the number
of distinct, unique orbits of a given length that cannot be factored into shorter orbits.
The beta transformation has the property that every possible orbit does occur; none are
prohibited.

Yet, the bit-string defining the polynomial is not a necklace; it cannot be rotated.
Each bit-string corresponds to a unique polynomial, having roots that differ from those
of other polynomials. The polynomials also have a canonical order, fixed as the integer
that generates the bit-string; they cannot be reordered. Ideas such as Lyndon words
apply to the orbits, but not to the defining polynomials. The ordering of the polynomials
is not the lexicographic ordering of the Lyndon words, and cannot be brought into this
order.
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The values of Mn are given explicitly by Moreau’s necklace-counting function

Mn =
1
n ∑

d|n
2d

µ

(n
d

)
where the sum runs over all integers d that divide n and µ is the Möbius function. The
generating function is

t
1
2 − t

=
∞

∑
n=1

nMn
tn

1− tn

which has a radius of convergence of |t| < 1/2. For large n, the asymptotic behavior
can be trivially deduced from the defining sum:

Mn =
2n

n
−O

(
2n/2

n

)

The above counting function is for necklaces with only two colors. In general,
one can have necklaces with 3 or more colors; can that happen here? Yes, of course:
if one considers the general β -transform for 2 < β , then, in general, it can be taken
as a “kneading transform” with ⌈β⌉ branches or folds in it. The analogous trouble-
spots again appear, and they can appear after an arbitrary finite-length orbit. Insofar
as they correspond to periodic orbits, they are necessarily counted by the necklace-
counting function. That is, one must consider all possible strings of ⌈β⌉ letters, modulo
a cyclic permutation: this is the very definition of a necklace (or “circular word”). The
number of such necklaces is given by the necklace-counting function. Each such orbit
is necessarily represented by a Lyndon word, which is a representative of the conjugacy
class of the orbit.

The isomorphism of different systems described by necklace polynomials is a sub-
ject that gets some fair amount of attention. Golomb gives an isomorphism between
the irreducible polynomials over Fp, for p prime and necklaces built from Lyndon
words.[31, 32] A number of other results exist, including [33, 34]. At any rate, a closer
study of the beta-polynomials seems to be called for.

3.3 β -Golden Polynomials
The “trouble spots” occur whenever the k’th iterate mk = T k

β
(m0) of the midpoint m0 =

β/2 lands on the starting midpoint mk = m0; alternately, when mk−1 = 1/2. Because
of the piece-wise linear form of Tβ , the k’th iterate will be a piece-wise collection of
polynomials, each of order k, each of the form p{bk} (β ). These must be arranged such
that p{bk} (β ) = 0 at each discontinuity, as illustrated in figure 11. This constrains the
polynomials that can appear; it constrains the possible coefficients {bk}; not all bit-
sequences appear. The sequences that do appear encode the orbit of the mid-point; see
below.

The table below explicitly shows the polynomials for the first few orders. A poly-
nomial is included in the table if it is an iterate of a previous polynomial, and if it’s
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real root is bracketed by the roots of the earlier iterates. Adopting ordinal numbering,
pn (β ) must have the form

pn (β ) =

{
β
(

pn/2 (β )+1
)
−1 for n even

β p(n−1)/2 (β )−1 for n odd
(21)

This recursion terminates at p0 (β ) = β −1.
The positive real root rn satisfying pn (rn) = 0 is unique; the other n− 1 roots are

complex; they are arranged in a roughly evenly-spaced ring on the complex plane, not
far from the unit circle, reminiscent of roots of unity. There is always a positive real
root, which satisfies 1 ≤ rn < 2; the real roots and the polynomials are in one-to-one
correspondence. The roots must be bracketed (to the left and right) by the roots of
polynomials occurring earlier in the sequence; if the root is not bracketed, then the
corresponding polynomial does not appear in the list.

The bracketing constraint can be represented by a recursive function θn (ρ) return-
ing a boolean true/false value, as to whether a given polynomial is acceptable. It is

θn (ρ) =

{
Θ
(
rn/2 −ρ

)
·θn/2 (ρ) for n even

θ⌊n/2⌋ (ρ) for n odd
(22)

The Heaviside Θ(x) used here is one for strictly positive x > 0, and is zero otherwise.
This is important, as using x ≥ 0 will not work. In numerical work, the test should
be bounded away from zero. The recursion compares the candidate ρ to some root at
each lower order. The recursion terminates at θ0 (ρ) = 1. The index n corresponds to
a valid polynomial, and thus a valid root, if and only if θn (rn) = 1. Effectively, this
states that roots of higher-order polynomials must be less than a certain sequence of
lower-order roots. This is visible in the location of the discontinuities in figure 11: new
discontinuities at higher orders must occur to the left of earlier ones.

For example, the polynomial β 3 −β − 1 is excluded from the list simply because
it is not an iterate of an earlier polynomial, even though it has the interesting real root
1.324717957244746 · · · , the “silver constant”. The numbering scheme does not even
have a way of numbering this particular polynomial. Despite this, the silver constant
does appear, but a bit later, as the root of p8 = β 5 − β 4 − 1, which is an allowed
polynomial.

The polynomial p5 = β 4 −β 3 −β −1 is excluded because it has ϕ = 1.618 · · · as
a root, which was previously observed by p1. The polynomial p9 = β 5 −β 4 −β −1 is
excluded because it’s root, r9 = 1.497094048762796 · · · is greater than its predecessor
r2; the recursive algorithm does not compare it to r4. Note that p9 is relatively prime to
the earlier polynomials, so irreducibility is not a sufficient criterion; the root must also
be less.

The indexing has the property that, whenever θn (rn) = 1, the integer 2n+ 1, ex-
pressed as a binary bitstring, encodes both the coefficients of the polynomial, and also
the orbit of the midpoint. This can be taken as an alternate, non-recursive definition of
θn: it is one if and only if the orbit of rn encodes the bitsequence of 2n+1.

The degree ν of the polynomial is identical to the length ν of the orbit; it is ν =
⌈log2 (2n+1)⌉. The bits bi of the bitstring 2n+ 1 = b0b1b2 · · ·bν correspond to the
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orbit as

bi = Θ

(
T i

β

(
β

2

)
− 1

2

)
= di

(
1
2

)
= ki

(
β

2

)
where the di are as given before, in eqn 19, and the ki as in eqn 5. Note that b0 = 1
always corresponds to 1/2 < β/2, always. By convention, the last digit is always 1,
also.

order ν pn (β ) n binary root rn
0 1

1 β 0 0
β −1 0 1 1

2 β 2 −β −1 1 11 ϕ = 1+
√

5
2 = 1.618 · · ·

3 β 3 −β 2 −1 2 101 1.465571231876768 · · ·
β 3 −β 2 −β −1 3 111 1.839286755214161 · · ·

4
β 4 −β 3 −1 4 1001 1.380277569097613 · · ·

β 4 −β 3 −β 2 −1 6 1101 1.754877666246692 · · ·
β 4 −β 3 −β 2 −β −1 7 1111 1.927561975482925 · · ·

5

β 5 −β 4 −1 8 10001 1.324717957244746 · · ·
β 5 −β 4 −β 2 −1 10 10101 1.570147312196054 · · ·
β 5 −β 4 −β 3 −1 12 11001 1.704902776041646 · · ·

β 5 −β 4 −β 3 −β −1 13 11011 1.812403619268042 · · ·
β 5 −β 4 −β 3 −β 2 −1 14 11101 1.888518845484414 · · ·

β 5 −β 4 −β 3 −β 2 −β −1 15 11111 1.965948236645485 · · ·

The next table lists the acceptable polynomial indexes for order 5, 6 and 7. Again,
the coefficients appearing in the polynomial are encoded by the binary value of 2n+1
in the sequence. This sequence has recently been published as OEIS A368747.

order ν valid indexes
5 8,10,12,13,14,15
6 16,20,24,25,26,28,29,30,31
7 32,36,40,42,48,49,50,52,53,54,56,57,58,59,60,61,62,63

The properties of this sequence are briefly reviewed in the next section.

3.4 Properties of the theta sequence
Define the “validity set” of valid or acceptable indexes as

Ψ = {n ∈ N : θn (rn) = 1, pn (rn) = 0} (23)

This is just the list of indexes from the previous two tables; it is Ψ={0,1, 2,3, 4,6,7,
8,10,12,13,14,15, 16,20,24,25,26,28,29,30,31, ...}. The θn is the acceptance function
from eqn 22. By abuse of notation, write θn = 1Ψ (n) = θ (n) for the membership
indicator function for this set. This function is visualized in figure 12.
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Figure 12: Indicator function θ
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This figure shows the indicator function θn, as defined in eqn 23, over the range of
26 ≤ n ≤ 219. The function is approximately periodic as a function of the order ν =
⌊log2 n⌋+ 2 of the corresponding polynomial; the order is just the length of a finite
orbit. This figure just stacks seven such ranges, for orders ν=6,7,8,9,10,14,18. One
can view each row as a comb. The teeth of the comb are the members of Ψν . The
number of teeth at each rank is given by Moreau’s necklace-counting function Mν .
The width of the teeth go as 2−ν , but the number of teeth goes as Mν ∼ 2ν/ν . In the
limit ν → ∞, the teeth converge onto a set of measure zero. This can be understood
as a representation of the set Ψ, taken with a real-valued index, rather than an integer
index.
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The elements of the validity set Ψ are ordered; this is the validity sequence ψm =
ψ (m). It is convenient to start the sequence at ψ0 = 0. This corresponds to β = 2 at
the right; while, at the far left, for β = 1, write ψ−1 = ∞. The function ψm encodes the
locations of one-bits in the bitmask θ , and so θ (ψm) = 1.

The summatory function of the indicator is S (k) = ∑
k
n=1 θn. It counts the total

number of one-bits below the location k. The validity sequence is the pullback of the
summatory function. Each ψm is the smallest integer k for which m = S (k) holds true,
and so one has m = S (ψm). The pullback can be expressed as ψ (m) = ψ (S (ψ (m))).

A few additional properties may be noted:

• For all m, θ (2m) = θ (2m −1) = 1.

• If θ (m) = 1 then θ (2m) = 1. By recursion, θ (2nm) = 1 for all n.

• If m is odd, and if θ (m) = 1, then θ ((m−1)/2) = 1. This is reminiscent of the
Collatz conjecture.

• If θ (m) = 0 then θ (2n (2m+1)) = 0 for all n.

Each of these properties is visible in figure 12. The second bullet accounts for the
stability of the comb-teeth, once they appear, while the last bullet accounts for the
large spaces that open up, and stay open, never filling in.

It is convenient to partition Ψ into ranks ν that correspond to the length of the orbits,
or equivalently, the order of the defining polynomial. Examining the earlier tables,
the rank of n is ν (n) = ⌊log2 n⌋+ 2. The partition is then Ψ =

⋃
∞
ν=1 Ψν with Ψν =

{n ∈ Ψ : ν (n) = ν}. As before, it is convenient to extend the partition so that it can
deal with the endpoints β = 1 and β = 2; this is a kind of (two-point) compactification
of these and other various sequences and sets. The compactification here is to write
ν (0) = 1 and ν (−1) = ∞, which allows components Ψ1 = {0} and Ψ∞ = {−1}. The
size of each component is |Ψν | = Mν given by Moreau’s necklace counting function
Mν .

The representation of θ as a real number is θ =∑
∞
n=1 θn2−n = 0.93258880035365 · · · .

At this time, this does not appear in OEIS.

3.4.1 Leaders

An important subsequence consists of the leaders of the doubling sequences. These can
be defined in several equivalent ways. One property of the bitmask is that if θ (m) = 1,
then θ (2nm) = 1 for all n. A leader λ is the smallest such m at the front of such a
doubling sequence: it is either an odd number λ = (2k+1) satisfying θ (λ ) = 1 or
it is an even number of the form λ = 2h (2k+1) ,h > 0 such that θ

(
2h (2k+1)

)
= 1

but θ
(
2h−1 (2k+1)

)
= 0. The minimal power h defining the leader will be called the

“height of the leader”.
Equivalently, the leaders can be defined as a subsequence of ψm. By definition, one

has that θ (ψm) = 1. Thus, if ψm is odd, then ψm is a leader. If ψm is even, then it is a
leader if and only if θ (ψm/2) = 0.

Given a valid index ψm, it is useful to define a function Λ that provides the map

Λ(ψm) = 2h (2ψm +1) (24)
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This map is not monotonic: Λ(1) = 3 and Λ(2) = 10 but Λ(3) = 7. It is, however,
one-to-one, as leaders are always a product of an odd number times some power of
two.

Sorting the leaders into ascending order, the start of the sequence is 1, 3, 7, 10, 13,
15, 25, 29, 31, ... This sequence is not currently known to OEIS. It is handy to count
from one, and to assign λ0 = 0, so that λ1 = 1 and λ2 = 3 and so on.

The number of leaders of non-zero height (h ̸= 0) at each order ν , starting at ν = 2,
is 0, 1, 1, 3, 3, 7, 10, 18, 28, 52, 83, 151, 256, 457, 798, 1439, 2549, 4627, 8328, 15190,
27659, 50800, 93270, 172330, 318717, 591996, ... This sequence is not currently
known to OEIS.

The number of leaders of a given order ν can be defined as the size of the set
Ω(ν) = {λ : ν = ⌊log2 λ⌋ ,λ = Λ(ψm)}. This can be understood as the necklace func-
tion, minus the elements of non-zero height, plus those promoted up from a lower
grade. This grading is 1, 1, 3, 3, 9, 12, 26, 43, 87, 149, 295, 531, 1021, 1898, 3630,
6822, 13062, 24783, 47481, 90699, 174165, 334148, 643306, 1238619, 2390213, ...
This sequence is not currently known to OEIS.

The number of leaders of a given order ν with a non-zero height is the size of the
set {λ : ν = ⌊log2 λ⌋ ,λ = Λ(ψm) ,0 < h}. This sequence is 0, 0, 1, 0, 3, 1, 6, 5, 16,
15, 43, 52, 116, 173, 348, 551, 1079, 1816, 3432, 6031, 11267, 20226, 37706, 68773,
128135, ... This sequence is not currently known to OEIS.

3.5 Location of β -Golden Roots
The location of the roots can be visualized by using the normalization of the Parry–Gelfond
measure. The function in eqn 10 or more generally 17 can be integrated in a straight-
forward manner. One has

I (β ;z) =
∫ 1

0
νβ ;z (x)dx =

∞

∑
n=0

zn

β n

∫ 1

0
dn (x)dx =

∞

∑
n=0

zn

β n T n
(

β

2

)
The result is a sawtooth, shown in figure 13. Each discontinuity corresponds to the real
root of one of the polynomials. The first few are labeled by the integer labels from the
previous table. The doubling sequences and their leaders are easy to identify.

3.5.1 Bracketing intervals

That this figure is a self-similar fractal is presumably self-evident. Thus, for example,
the graph to to right of r1 = ϕ = 1.618... repeats again between r2 and r1 and again
between r4 and r2. Each such bracketed interval contains a unique largest discontinuity;
it can be seen as being at the front of a doubling sequence. Each discontinuity is in
one-to-one correspondence with a bracketing interval; the bracketing intervals are all
self-similar to one-another.

A distinct notation for bracketed intervals is useful. Write ℓ Z⇒ f ⇐ \ ρ for the
discontinuity f bracketed on the left and right by ℓ and ρ . By “left” and “right”, it is
literally meant that the three roots are in order, with rℓ < r f < rρ with the inequalities
being strict. Not all ascending sequences of three roots form a valid bracket; valid
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Figure 13: Normalization Integral

This figure shows the integral I (β ) = ∑
∞
n=0 β−nT n

(
β

2

)
with 1 < β ≤ 2 running along

the horizontal axis. Each discontinuity corresponds to the location of a real root of
one of the β -Golden polynomials. Some of these are manually labeled by integers,
corresponding to the polynomial labels from the previous polynomial table.
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brackets are obtained by recursive subdivision; this is given in the next section. But
first, some examples.

Taking the liberty to write r0 = 2, the interval to the right of r1 is then 1 Z⇒ 3 ⇐ \ 0.
The most prominent self-similar intervals are then 2 Z⇒ 10 ⇐ \ 1 and 4 Z⇒ 36 ⇐\ 2 and
8 Z⇒ 136 ⇐ \ 4. In each of these examples, the front f was also a leader, with leadership
as defined in the previous section. This is not always the case: the brackets 1 Z⇒ 6 ⇐\ 3
and 1 Z⇒ 12 ⇐ \ 6 and 1 Z⇒ 24 ⇐\ 12 are clearly visible; they are a part of an index-
doubling sequence.

The extreme left side can be assigned the index of ∞ so that r∞ = 1. Thus, the entire
interval 1 ≤ β ≤ 2 corresponds to the bracket ∞ Z⇒ 1 ⇐ \ 0.

3.5.2 The bracket tree

The brackets can be arranged into a binary tree, recursively defined. Any valid interval
ℓ Z⇒ f ⇐ \ ρ can be split into two: the left side and the right side. These two pieces
are ℓ Z⇒ 2 f ⇐ \ f on the left, and f Z⇒ Λ( f ) ⇐\ ρ on the right, where Λ is the leader
function given by eqn 24 in the previous section. Recursion starts with ∞ Z⇒ 1 ⇐ \ 0. A
bracketing relationship is valid if and only if it appears in this recursive binary tree.

The left and right moves L,R on the binary tree can then be written as

L : (ℓ Z⇒ f ⇐ \ ρ) 7→ (ℓ Z⇒ 2 f ⇐ \ f ) (25)
R : (ℓ Z⇒ f ⇐ \ ρ) 7→ ( f Z⇒ Λ( f )⇐ \ ρ)

The right-move is denoted with a fraktur R instead of a roman R in order to distinguish
between the action of the leader function, and the conventional dyadic map

L : m 7→ 2m

R : m 7→ 2m+1

The issue is that not all dyadic R moves result in a valid index: having θ (m) = 1 does
not generally imply that θ (2m+1) is one. However, the leader function does provide
a successor that is always valid: θ (Λ(m)) = 1 is guaranteed by construction.

Any sequence of L,R moves is guaranteed to produce a valid interval; every loca-
tion in the binary tree is mapped to a valid index by the bracket recursion moves. A
general location on the bracket tree is

G = La1Ra2La3 · · ·Rak

and this has the property that if θ (m) = 1 then θ (G(m)) = 1. Equivalently, if m ∈ Ψ

then G(m) ∈ Ψ. This implies that the bracket recursion relations generate all of Ψ.
Starting at m= 1, all left-right moves produce elements of Ψ; conversely, every element
of Ψ can be expressed as some sequence of left-right moves applied to m = 1. It is
convenient to take G as the function that produces only the “good” indexes. Thus

G : La1Ra2La3 · · ·Rak 7→ La1Ra2La3 · · ·Rak

Labeling the nodes of the binary tree with the natural numbers N provides a bijection
G : N→ Ψ.
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The bracket recursion relations split the interval rℓ < r f < rρ into left and right
pieces, as well. That is, each node of the binary tree is labeled by some (unique) r f ,
with the root rℓ and rρ appearing as predecessors in the tree. Of course, the binary tree
can also be mapped to the dyadic rationals; thus the bracketing recursion relations give
a bijection between the dyadic rationals and the finite-length orbits of the β -map. The
bracket tree and the dyadic tree are in one-to-one correspondence. The correspondence
is shown in figure 14.

Perhaps the most interesting aspect to the figure is that it appears to be continuous.
That is, the roots rn appear to be dense in the interval 1 ≤ β ≤ 2. Although the mid-
points r f in an interval rℓ < r f < rρ are not evenly spaced, the midpoint always appears
to be sufficiently far away from either endpoint so that the convergents are dense in the
reals, which implies in turn that the map is continuous. It would appear that the map to
infinite-length sequences can be taken, without pathologies.

3.5.3 The finite comb

The figure 12 shows each indicator rank Ψν as a comb. A better understanding is
gained by mapping this to the infinite binary tree. Each rank ν corresponds to a single
horizontal row in the tree. The numbering that has been adopted is that ν = 2 is at the
root of the tree. The dyadic left and right moves on the comb are

L : θm 7→ θ2m

R : θm 7→ θ2m+1

The indicator function marks each node in the tree with a zero or a one.
One property of this marking is that when a node is marked with a zero, all nodes

in the right subtree are marked with a zero, as well: the presence of a zero removes
the entire right-hand branch under that point. This follows from the property noted
earlier, that if θ (m) = 0, then θ (2n (2m+1)) = 0 for all n. Restating in terms of
moves, if θm = 0 then, taking n = 0, one has Rθm = θ2m+1 = 0. Of course it, follows
that RRθm = 0. Taking n = 1, one has that LRθm = 0, and so both left and right sub-
branches are gone.

A converse marking is given by the property that, if θ (m) = 1 then θ (2m) = 1. On
the tree, this means that left-branches of a node marked with a one are never trimmed:
if θm = 1, then Lθm = 1.

Write 2<ω for the collection of all finite strings in the letters L,R and 2ω as the set of
all infinite strings. The indicator function is then a map θ : 2<ω →{0,1} that indicates
when a given finite, unbounded walk down the tree might have more branches, or
definitely does not. This definitely-maybe marking defines a filter, and dually, an ideal.
The filter/ideal can be taken on the integers, or equivalently, on the reals. The second
possibility is what the figure 12 is hinting at.

The filter has the form that if n∈Ψν then 2n∈Ψv+1. The converse is not true: 10∈
Ψ5 but 5 /∈ Ψ4. Written as a filter, this is LΨν ⊂ Ψν+1 and the subset relation is strict.
Written as and ideal, if n /∈ Ψν then (2n+1) /∈ Ψv+1. This is more clearly stated with
set complements at a given rank. Define the unit interval Iν =

{
n : 2ν−2 ≤ n < 2ν−1

}
and the set complement Ψν = Iν\Ψν . The ideal is then RΨν ⊂ Ψν+1 together with(
LRΨν ∪RRΨν

)
⊂ Ψν+2.
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Figure 14: Beta Bracket Map
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This figure shows the mapping from the dyadic rationals, interpreted as strings of left-
right moves, and the corresponding β = r f root for the front (center) of the correspond-
ing bracket. Thus, 1/2 maps to r1 = ϕ = 1.61803... and 1/4 maps to r2 = 1.46557...
while 3/4 maps to r3 = 1.83929... It would appear that the curve is continuous. The
curve does drop to β = 1 at the left, but it does so very slowly. The brackets ℓ Z⇒ f ⇐ \ ρ
remain quite wide, as the limit approaches β = 1. It does get there, though. An explicit
derivation of this limit is given in a later section. The sharp takeoff at the left is reminis-
cent of the Minkowski question-mark mapping. The left generator for the bracket map
is is quite close to left generator x/(1+ x) of the Minkowski fractal. The Minkowski
fractal has 1/(2− x) as the right generator. Replacing this with x+ 1/2 generates a
curve resembling the bracket curve above, having Minkowski-like behavior to the left,
an linear-like behavior to the right. The de Rham curve construction may be used to
generate such curves, given arbitrary L,R maps. The L,R maps for the bracket curve
are both fractal themselves, so finding affine generators would be a surprise.
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3.5.4 The comb bijection

The good-index bijection G : N → Ψ provides a mechanism to map the full binary
tree into the trimmed tree, so that every node in the trimmed tree is in one-to-one
correspondence with the full binary tree.

The leadership function provides the desired mapping. If n ∈ Ψν , then Λ(n) ∈
Ψν+1+h where h was the height of the leader. Any valid index n gets “kicked upstairs”
by the leadership function; one can write ΛΨν ⊂

⋃
∞
h=0 Ψν+1+h. This just corresponds

to the bracket move R : θm → θΛ(m) on the trimmed tree: given any location θ (m) = 1
in the trimmed tree, the bracket right move returns the next valid right branch in the
trimmed tree: R(m) = Λ(m), since, by construction, θ (Λ(m)) = 1 whenever θ (m) =
1.

3.5.5 The infinite comb

The comb is mapped to the reals by defining open subsets bounded by the dyadic
rationals. Let

I (m,ν) =
{

x ∈ R : m < x2ν−2 < (m+1) ;0 ≤ m < 2ν−2} (26)

so that I (0,2) = {x ∈ R : 0 < x < 1}. The left and right moves are the obvious ones:
LI (m,ν) = I (2m,ν +1) and RI (m,ν) = I (2m+1,ν +1). These are interpreted as the
left and right halves of the (fat) Cantor set, on the reals; the fat Cantor set being taken
as the reals with the dyadic rationals removed.

The filters on Ψν become filters on I (m,ν) in the obvious way, by means of a com-
muting diagram. Write I (Ψν) =

⋃
m∈Ψν

I
(
m−2ν−2,ν

)
as the union of intervals that

cover the nonempty runs in the binary tree. This is effectively what is being graphed in
the figure 12. The limit set is then

θ =
∞⋂

ν=2

I (Ψν) (27)

where the notation θ is happily abused to denote the limit of the indicator function θn
as a subset of the reals. This is possible precisely because θn can be mapped to the
binary tree, which can then be partitioned as filters and ideals.

Since 2ν−2 ∈ Ψν for all ν , i.e. the leftmost branch is never trimmed, one easily
concludes that 0 ∈ θ . Since

(
2ν−1 −1

)
∈ Ψν for all ν , the rightmost branch is never

trimmed, and so one may conclude that 1 ∈ θ .
It should be clear that the set θ is isomorphic to the Cantor set. The comb bijection

shows how to map points in θ back into the untrimmed infinite tree; the full binary tree
is isomorphic to the Cantor set. From this, one concludes that the set θ is uncountable,
and can be placed in bijection with the reals. This is explored in the next section. A
measure can be assigned to θ . This is given in the section after next. A more formal
examination of θ , tightening up some of the loose language above, will be given in a
later section on eventually-periodic orbits.
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3.5.6 Self-describing orbits

What is the meaning of the finite and infinite combs? The finite comb is a mapping of
of the valid-index set Ψ to the dyadics. The infinite comb is the closure of the finite
comb in the reals.

A polynomial index n ∈ Ψ if and only if n encodes a self-describing finite orbit.
That is, n ∈ Ψ if and only if the real root rn of pn (rn) = 0 iterates under the β -map
such that the iterate reproduces the bit-sequence of n. That is, n ∈ Ψ if and only if the
bits bi of the bitstring 2n+1 = b0b1b2 · · ·bν are given by the (finite) orbit as

bi = Θ

(
T i

β

( rn

2

)
− 1

2

)
= ki

( rn

2

)
If n does not have this property, then n /∈ Ψ. At each rank ν , the elements of Ψv
correspond to finite orbits of length ν . In the limit of ν → ∞, one gets self-describing
orbits of unbounded (infinite) length.

By construction, if n ∈ Ψν then Ln ∈ Ψν+1 and Λn ∈ Ψν+1+h. That is, if n is a
self-describing orbit, then it appears as the prefix of longer self-describing orbits.

Polynomials of infinite order are holomorphic functions. Given an infinite bitse-
quence {b}= b0b1 · · · , define a holomorphic function

q{b} (ζ ) = 1−
∞

∑
j=0

b jζ
j+1 (28)

If the bit-sequence is finite, in that all b j = 0 when j > k, then this is related to the
polynomials as

ζ
k+1 pn

(
1
ζ

)
= 1−b0ζ −b1ζ

2 −·· ·−bkζ
k+1

Given any arbitrary sequence {b}, the holomorphic function q{b} (ζ ) will have a single,
unique real, positive root. To make contact with the polynomials, write this as the
reciprocal, so that the root r satisfies q{b} (1/r) = 0. This root will have some orbit,
given by

ai = Θ

(
T i

β

( r
2

)
− 1

2

)
= ki

( r
2

)
Such an orbit is self-describing if and only if {a}= {b}.

The claim being pursued here is that the infinite comb contains all self-describing
sequences, and conversely, every element of the comb corresponds to a self-describing
bit-sequence. That is, if

x =
∞

∑
j=0

b j

2 j ∈ θ

then

x = 2
(

1−q{b}
(

1
2

))
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Every real number x ∈ θ in the comb corresponds to such a self-describing orbit. A
proof of these claims will be given in a later section, after the development of some
formal definitions.

In the meanwhile, it can be noted that every rational number corresponds to a bitse-
quence that is ultimately periodic. After an initial unstable finite sequence, the bitstring
settles down to a cyclic orbit. One task ahead is to examine the set Q∩θ : this is the
set of self-describing eventually-periodic infinite-length orbits. It turns out these can
be readily described as root of a finite polynomial. The holomorphic function q{b} (ζ )
to be factored into two finite polynomials, one describing the initial aperiodic segment,
and a second describing the cyclic segment. Such orbits are examined in a later section.

3.6 Formal definitions
A sufficient number of distinct concepts have been introduced, that some basic house-
keeping is in order. The definitions that follow are straight-forward and conventional.
The goal is to provide a workable vocabulary for further discussion.

Let B denote the finite but unbounded binary tree, and B it’s closure as the infinite
tree. The infinite tree is, of course, isomorphic to the Cantor space 2ω ; but this mech-
anism is not currently needed. A more careful definition of the finite tree is needed.
Thus, let B the the graph of vertices and connecting edges B=

{
vi,ei j : i ∈ N, j ∈ {2i,2i+1}

}
.

Let η : N→ B denote the canonical labeling of the binary tree by the positive integers,
so that the root of the tree is given the label 1, the first row is 2,3 and the next row
is 4,5,6,7. This is a bijection: every finite walk down the tree can be labeled with a
positive integer. The walks are left and right moves, in the canonical sense: L : N→ N
with L : m 7→ 2m and likewise R : N→N with R : m 7→ 2m+1. The pushforward of L,R
provide the canonical walks on the tree, as a commuting diagram, so that L◦η = η ◦L
and likewise R ◦η = η ◦R. It is useful to adjoin the pre-root elements {0,∞} so that
R : 0 → 1 and L : ∞ → 1.

Let D be the dyadic rationals, with the canonical bijection to the natural numbers
δ : D → N given by δ : (2n+1)/2m 7→ 2m−1 + n. This labels the root of the tree
with 1/2, and the first row under it as 1/4 and 3/4. The left and right moves are L :
(2n+1)/2m 7→ (4n+1)/2m+1 and R : (2n+1)/2m 7→ (4n+3)/2m+1. This was set
up so that L ◦ δ = δ ◦L and likewise R ◦ δ = δ ◦R. The map δ−1 : N→ D is equally
familiar: it is n = b0b1 · · ·bk 7→ ∑

k
n=0 bn2−n−1 that interprets n ∈ N as a sequence of

L,R moves in the binary tree, returning the fraction found at that location.
This allows the bracket tree and the good-index bijection to be specified more pre-

cisely. The validity set Ψ ⊂ N is defined in eqn 23 as the collection of natural num-
ber indexes corresponding to polynomials with self-describing roots. This set came
with two functions L,R : Ψ → Ψ given by index-doubling L : m 7→ 2m and leadership
(eqn24) R : m 7→ Λ(m). The good-index bijection G : N → Ψ is then defined as the
pullback L◦G = G◦L and R◦G = G◦R.

The trimmed tree B⊂ B is the image of Ψ under the mapping η , so that B= ηΨ.
This consists of those nodes and edges in the finite binary tree that are labeled by
integers from the validity set Ψ. The good-index function G places the trimmed tree
and the finite tree in a bijection, so that B= ηGη−1B.
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The root map r : Ψ → [1,2] takes valid integer indexes, and maps them to the roots
of the corresponding (finite-orbit) polynomials, so that pn (rn) = 0. The bracket map,
depicted in figure 14, can now be written more precisely as the function ρ = r◦G◦δ−1 :
D→ [1,2]. It maps the dyadics to the β values that have finite orbits.

The notation for the finite comb θ is abused in several ways. In eqn 22 it is used to
indicate whether a given polynomial root has a self-describing orbit. It is then defined
as the indicator function for set membership θ = 1Ψ : Ψ → {T,F} and finally as the
finite comb θ ⊂ D. Formally, the finite comb can now be written as θ = δ−1Ψ.

The good-index bijection G : N → Ψ can be commuted with the dyadic bijection
to obtain the “good dyadic map” G= δ ◦G◦δ−1 : D→ θ . Given any dyadic fraction,
this map returns another dyadic that lies within the finite comb. As all the other maps
discussed so far, it is a bijection. It is depicted in figure 15.

The infinite comb θ was the closure of the finite comb, so that θ ⊂ θ . The closure,
defined in eqn 27, is constructed as the infinite intersection of open sets. Corresponding
to this is the closure B ⊂ B of infinitely long paths in the trimmed tree. It is taken as
the limit of the finite but unbounded-length paths in B. The dyadics can be closed
in several ways; one way is to the rationals Q, and then further to the reals R. In
the present case, we restrict attention to the unit interval I = [0,1] ⊂ R and to QI =
Q∩ [0,1]. Proper diligence requires distinguishing BQ from BR and also θQ from θR.

The rationals correspond to infinite length orbits that are ultimately periodic; these
will be examined in a later section. A closure to the root map to the rationals appears
naturally; it can be written as r : θ → [1,2]. Combined with the closure G : QI → θ this
gives a closure of the bracket map ρ = r ◦G : QI → [1,2]. Closing to the reals gives
G : [0,1]→ θ and ρ = r◦G : [0,1]→ [1,2]. This is the primary achievement of this sec-
tion: the definition of the bracket map as a continuous monotonic ascending bijection
between the reals in the unit interval, and β values understood as self-describing orbits.
Proving continuity will require some theoretical machinery and lemmas; these will be
developed in a later section. However, the net result can already be seen in figure 14.

3.7 The Good Map and Measures
The formal definitions allow the description of the bracket map to be completed. This
is a matter of reviewing the remaining congruences. The fundamental one, moving
forward, is the “good map” G : D → θ that is a correspondence between the dyadic
rationals to the comb. The comb, in turn, can be understood as inducing a measure.
The measure, combined with the good map, induces the “beta measure”, which is just
the bracket map. This closes the circle of commuting diagrams.

3.7.1 The good map

The validity map G : N→ Ψ can be commuted with the canonical mapping δ : N→ D
between the natural numbers and the dyadic rationals. This defines a map G= δ ◦G◦
δ−1 that is a bijection between the dyadic rationals and the finite comb: G : D→ θ . It
is shown in figure 15.

61



Figure 15: The Good Map
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A graph of the “good map” G : D→ θ . It is defined as the commutator G= δ ◦G◦δ−1

of the valid-index map G : N→ Ψ by the canonical mapping δ : N→ D between the
natural numbers and the dyadic rationals. The finite comb is just a mapping of the good
indexes Ψ to the dyadics: θ = δ−1Ψ.
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Figure 16: Limit of Indicator Sum
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This figure shows the limit of the indicator sum A(x) = limν→∞ Aν (x) of eqn 29. More
precisely, it shows Aν (x) for ν = 20. By this point, convergence is sufficient that any
differences from the limit are not visible to the naked eye.

3.7.2 The comb measure

The infinite comb was constructed as a closure or limit of the finite comb. An interest-
ing trick is to interpret it as a measure, and so to integrate over it. This can be obtained
as a limit over sums of ranks in the finite comb. The measure is depicted in figure 16.

The sum over the indicator function S (k) = ∑
k
n=1 θn shows power-of-two periodic-

ity, same as each rank in the finite comb. Each rank ν can be separated out as

Sν (k) = S (k)−S
(
2ν−2 −1

)
The intent is to isolate the range 2ν−2 ≤ k < 2ν−1, and to split the sum S (k) into a
collection of ranks Sν .

At the end of the range, the sum Sν achieves Moreau’s necklace-counting function:
Sν

(
2ν−1 −1

)
= Mν . Dividing by Mν gives each rank the same vertical scale: zero to

one. It is also useful to rescale the horizontal range, to run zero-to-one as well. This
gives a normalized version

Fν (x) =
Sν

(⌊
2ν−2 (1+ x)

⌋)
Mν
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that runs from zero to one as x runs from zero to one. This function does not have an
interesting limit as ν → ∞, as it slowly drops to zero over the entire unit interval. How-
ever, it does so at a fixed rate, and can be held constant with a radical. The sequence of
functions

Aν (x) = exp
(
Mν 2−ν logFν (x)

)
(29)

converge rapidly and more-or-less uniformly to a limit A(x) = limν→∞ Aν (x). It ap-
pears to be well-defined on the unit real interval 0 ≤ x ≤ 1. This is the limit shown in
figure 16. It is perhaps useful to keep in mind the asymptotic limit of Moreau’s func-
tion, Mν = 2ν/ν−O

(
2ν/2/ν

)
and so the radical scales as Mν 2−ν = 1/ν−O

(
2−ν/2/ν

)
.

The convergence to the limit appears to be uniform and rapid, except at x = 0,
which proceeds slowly. This is easily demonstrated. The x = 0 limit is

A(0) = lim
ν→∞

(Fν (0))
Mν 2−ν

= lim
ν→∞

(
1

Mν

)Mν 2−ν

= lim
ν→∞

(
ν

2ν

)1/ν

=
1
2

lim
ν→∞

ν
1/ν =

1
2

The slow convergence is entirely due to the last limit, above.
The offsets to the sums and limit above were defined above, so as to avoid having

to debate the meaning of limν→∞
ν
√

0. Yet clearly, the intent is that A(x) should provide
a measure for the infinite comb. Should the infinite comb be thought of as having a
large point-weight at x = 0? Perhaps not; thus, perhaps a more suitable measure is
µθ (x) = 2A(x)−1, which runs from zero to one over the unit interval.

To summarize: The function µθ (x) provides a measure for the infinite comb given
in eqn 27. The non-flat sections are where the infinite-length self-describing sequences
are accumulating.

3.7.3 The Beta measure

The significance of the comb measure is revealed by superimposing it’s graph 16 on the
bracket map 14, so that both appear side by side. This is shown in 17. The stair-treads
line up with the blancmange dips in the bracket map. The good map can be used to
eliminate the stair treads. The identity is

2A◦G= ρ = r ◦G◦δ
−1 = r ◦δ

−1 ◦G

Since G= δ ◦G◦δ−1 is a bijection, it can be peeled off, to give

2A = r ◦δ
−1

This is surprising. The map r is purely local: it takes integers n to the enumerated
roots pn (rn) = 0. It is just specifying locations of roots. The map A is global: it is
counting how many roots there are. It is the limit of a sum, a kind of peculiar integral,
that captures information about all other β values, and how they behaved.

An alternative interpretation is that this provides a way of estimating the number
of orbits of length ν , satisfying β < α for some fixed 1 ≤ α ≤ 2. The total number of
orbits of length ν is given by Moreau’s Mν . The counting function Sν (k) returns the
total number of orbits of length ν that occurred at some β with β ≤ rk. The normalized
version provides this same number slightly more elegantly: the total number of orbits
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Figure 17: The Beta Measure
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This figure superimposes the two figures 14 and 16 into one. The indicator measure
has been rescaled, so that the y-axis aligns with the interval 1 ≤ β ≤ 2, as that is the
nominal topic of discussion. The comb is also a map through β values, but taken
sideways, as it were. This figure indicates visually what that correspondence is. When
the stair-treads are removed with the “good map”, the two curves are identical. This
is surprising, as they have entirely different origins: the indicator measure is counting
periodic orbits, while the bracket map is providing the locations.
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of length ν with β < ρ (x) is given by Mν Fν (x). The indirection with ρ is annoying;
define fν (α) = Fν

(
ρ−1 (α)

)
, so that fν (α) counts the fraction of all orbits of length

ν occuring at some (any) β ≤ α . This fraction is approximated as fν (α) ≈ (α/2)ν ,
which holds exactly in the limit ν → ∞.

This last again illustrates the local-global tie between these two: fν (α) is a count-
ing function, an integral of sorts, while α is just a number. It’s quite rare to find such
specific analytic results in this project. Very rare: this is the first.

3.8 Complex Roots
What are the complex roots? Numerical work clearly indicates that they seem to be
approximately cyclotomic in some sense or another. They seem to be more-or-less
uniformly distributed in an approximate circle, always. The modulus of most of the
complex roots appear to be less than one. This is violated for the complex roots of
p2k (β ) = β k+2 −β k+1 −1, where some of the roots in the right-hand quadrant have a
modulus larger than one. By contrast, the complex roots of p2k−1 (β ) = β k+1−∑

k
j=0 β j

seem to always have a modulus less than one. These two seem to be the extreme cases:
in general, the polynomials appear to be “approximately cyclotomic”. Its not clear how
to make this statement more precise.

These numerical results can be argued heuristically: just divide the polynomial by
it’s leading order. That is, a general polynomial of this form is

pn (z) = zk+1 −
k

∑
j=0

b jzk− j

with the convention that b0 = bk = 1, and the bit-sequence 2n+1 = b0b1b2 · · ·bp cor-
responding to a terminating orbit. Dividing by zk+1gives a series

1− 1
z
− b1

z2 − b2

z3 −·· ·

Clearly, this can have a zero only when |z|< 2 as otherwise, the terms get too small too
quickly.

3.9 β -Golden β -Fibonacci Sequences
It is well known that the golden ratio occurs as limit of the ratio of adjacent Fibonacci
numbers:

ϕ = lim
m→∞

Fm

Fm−1

where Fm = Fm−1 +Fm−2. There is a generalization of this, which also has received
attention: the tribonacci, quadronacci, etc. sequences, whose limits are

αn = lim
m→∞

F(n)
m

F(n)
m−1

where F(n)
m = F(n)

m−1 +F(n)
m−2 + · · ·+F(n)

m−n.
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Is it possible that the real roots of the polynomials pn(β ) are also the roots of
such sequences? But of course they are! Given a finite string of binary digits {b} =
b0,b1, · · · ,bk, write the beta-Fibonacci sequence as

F{b}
m = b0F{b}

m−1 +b1F{b}
m−2 + · · ·bkF{b}

m−k

The name “beta-Fibonacci” is needed because the term “generalized Fibonacci se-
quence” is already in wide circulation for the special case of all bits being one. The
ratio of successive terms is

α
{b} = lim

m→∞

F{b}
m

F{b}
m−1

and is given as the (positive) real root of the polynomial

pn (β ) = β
k+1 −b0β

k −b1β
k−1 −·· ·−bk = 0

These polynomials and their roots were already enumerated and tabulated in the previ-
ous section.

The beta-Fibonacci sequences do not appear by accident: these sequences have an
ordinary generating function (OGF) given by the polynomial! That is,

∞

∑
m=0

zmF{b}
m =

zk

1−b0z−b1z2 −·· ·−bkzk+1 =
1

zpn
( 1

z

)
The factor of zk in the numerator serves only to initiate the sequence so that F{b}

0 =

· · ·= F{b}
k−1 = 0 and F{b}

k = 1.
These sequences are generic: they indicate how many different ways one can par-

tition the integer m into elements of the set {b0,2b1,3b2, · · · ,(k+1)bk}. So, for ex-
ample, the entry for n = 12 in the table below corresponds to OEIS A079971, which
describes the number of ways an integer m can be partitioned into 1, 2 and 5 (or that
5m can be partitioned into nickels, dimes and quarters). This corresponds to the bit se-
quence {b}= 11001; that is, {b0,2b1,3b2, · · · ,(k+1)bk}= {1 ·1,2 ·1,3 ·0,4 ·0,5 ·1}=
{1,2,5}. From such partitions, it appears that one can build partitions of the positive
integers that are disjoint, and whose union is the positive integers. This suggests a
question: can these partitions be expressed as Beatty sequences?

The previous table is partly repeated below, this time annotated with the OEIS
sequence references.
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n binary root root identity sequence
0 1 1
1 11 ϕ = 1+

√
5

2 = 1.618 golden ratio Fibonacci A000045
2 101 1.465571231876 · · · OEIS A092526 Narayana A000930
3 111 1.839286755214 · · · tribonacci A058265 tribonacci A000073
4 1001 1.380277569097 · · · 2nd Pisot A086106 A003269, A017898
6 1101 1.754877666246 · · · A109134 A060945
7 1111 1.927561975482 · · · tetranacci A086088 tetranacci A000078
8 10001 1.324717957244 · · · silver A060006 A003520, A017899

10 10101 1.570147312196 · · · Pisot A293506 A060961
12 11001 1.704902776041 · · · A079971
13 11011 1.812403619268 · · · A079976
14 11101 1.888518845484 · · · A079975
15 11111 1.965948236645 · · · pentanacci A103814 A001591
16 100001 1.285199033245 · · · A005708, A017900

All of these integer sequences and roots participate in a number of curious rela-
tions having a regular form; this is, of course, the whole point of listing them in the
OEIS. This suggests a question: do the known relationships generalize to the beta-shift
setting?

For example, the polynomials of the form

β
k+1 −β −1 = 0

are the Lamé polynomials, they arise as solutions to Lamé’s equation, a kind of el-
lipsoidal harmonic differential equation. In the present notation, these correspond to
polynomials pn (β ) = 0 for n = 2k.

Another example is the Fibonacci-tribonacci-tetranacci sequence of “generalized
golden means”. These are the roots of the series for which all bk = 1, that is, the roots
of

β
k+1 −β

k −β
k−1 −·· ·−1 = 0

In the present notation, these would be the polynomials pn (β ) = 0 for n = 2k−1. Such
roots can be rapidly computed by a series provided by Hare, Prodinger and Shallit[29]:

1
αk

=
1
2
+

1
2

∞

∑
j=1

1
j

(
j (k+1)

j−1

)
1

2 j(k+1)

This series is obtained by making good use of the Lagrange inversion formula. Here,
αk is the k’th generalized golden mean, i.e. the solution p2k−1 (αk) = 0. Can the Hare
series be extended to provide the roots rn of pn (rn) = 0 for general n?

Another set of observations seem to invoke the theory of complex multiplication
on elliptic curves, and pose additional questions. So:

The tribonacci root r3 is given by

r3 =
1
3

(
1+

3
√

19+3
√

33+
3
√

19−3
√

33
)
≃ 1.839 · · ·
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The silver number (plastic number) r8 is given by

r8 =
1
6

(
3
√

108+12
√

69+
3
√

108−12
√

69
)
≃ 1.324 · · ·

The Narayana’s cows number (supergolden ratio) r2 is given by

r2 =
1
6

3
√

116+12
√

93+
2

3 3
√

116+12
√

93
+

1
3
≃ 1.465 · · ·

The root r6 is related to the silver number r8 as r8 = r6 (r6 −1) and is given by

r6 =
1
6

3
√

108+12
√

69+
2(

3
√

108+12
√

69
)2 ≃ 1.754 · · ·

Do the other roots have comparable expressions? To obtain them, is it sufficient to
articulate the theory of “complex multiplication” on elliptic curves? Are these just dis-
guised solutions to Lamé’s ellipsoidal harmonic differential equation? The appearance
of only the cube and square roots is certainly suggestive of an underlying process of
points on elliptic curves.

3.10 β -Fibonacci sequences as shifts
The nature of the β -Fibonacci sequences as shift sequences can be emphasized by
noting that they arise from the iteration of the companion matrix for the polynomial
pn (x). This is a (k+1)× (k+1) matrix in lower-Hessenberg form:

B =



b0 1 0 0 · · · 0
b1 0 1 0 · · · 0
b2 0 0 1 · · · 0
...

...
...

. . .
...

bk−1 0 0 0 · · · 1
bk 0 0 0 · · · 0


(30)

Iteration produces a linear recursive sequence this is the β -Fibonacci sequence. The
m’th element of the sequence is obtained from the m’th iterate Bm.

Define the exchange matrix as

J =


0 0 · · · 0 1
0 0 · · · 1 0
...

... . .
. ...

0 1 · · · 0 0
1 0 · · · 0 0
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This can be used to write the above in the more conventional companion-matrix form:

C = [JBJ]T =



0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 0 · · · 1
bk bk−1 bk−2 bk−3 · · · b0


Some explicit examples are in order. For the golden ratio, one has

B =

[
1 1
1 0

]
and the iterates are

B2 =

[
2 1
1 1

]
, B3 =

[
3 2
2 1

]
, B4 =

[
5 3
3 2

]
, Bn =

[
Fn Fn−1

Fn−1 Fn−2

]
with Fn being the n’th Fibonacci number, as usual. For the general case, after m ≥ k−1
iterations, one gets the Hankel matrix

Bm =



F{b}
m F{b}

m−1 F{b}
m−2 · · · F{b}

m−k+1 F{b}
m−k

F{b}
m−1 F{b}

m−2 F{b}
m−3 · · · F{b}

m−k F{b}
m−k−1

F{b}
m−2 F{b}

m−3 · · ·
...

...
...

. . .
...

...

F{b}
m−k+1 · · ·
F{b}

m−k · · · F{b}
m−2k


so that the top row consists of the latest sequence values. When multiplied by the bits,
this just generates the next iterate in the sequence. The upper-diagonal 1’s just serve to
shift columns over by one, with each iteration: that is why it’s a shift!

The product BmJ is a Toeplitz matrix.
The characteristic polynomial of this matrix is, of course, the polynomial pn:

det [B− xI] = (−1)k pn (x)

Thus, we can trivially conclude that the eigenvalues of B are given by the roots of
pn (x). This matrix is in lower-Hessenberg form; this makes it obvious that it’s a shift;
a finite shift, in this case.

For every Hankel matrix, there are corresponding moment problems that ask if
there is a measure that generates the corresponding matrix entries (as moments). The
moment problem on the unit interval is the Hausdorff moment problem. In the present
case, it appears that the corresponding measure is precisely the Parry–Gelfond measure.
The only point of confusion is that the measure is placed in the denominator, not the
numerator, as the measure is for the pushforward, rather than being a pullback. There
do appear to be various interrelationships between the moments, these remain to be
articulated.
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3.11 Infinite sequences and shifts
Both of the last two sections extend in a natural way for infinite sequences. The β -
Fibonacci sequences are just as before,

F{b}
m =

m

∑
j=1

b j−1F{b}
m− j

starting with F{b}
0 = 1. The sum is always finite, and all that one needs is the first m bits

of the (now infinite) bit-sequence {b}. The integer sequence still converges as before,

β = lim
m→∞

F{b}
m

F{b}
m−1

with β value is the one associated to {b}. The real number β and the bit sequence {b}
label exactly the same orbit.

The shift of eqn 30 is replaced by an infinite-dimensional matrix Hβ = BT/β .
The transpose puts the matrix into upper-Hessenberg form; the subdiagonal provides
the shift. It is rescaled so that the largest eigenvalue is 1. To be explicit: given the
bit-sequence {b}, the operatorHβ has the matrix elements

〈
0
∣∣Hβ

∣∣ j
〉
=

b j

β〈
j+1

∣∣Hβ

∣∣ j
〉
=

1
β

with all other entries being zero. It is perhaps useful to visualize this operator; in
pictorial form, it is

Hβ =
1
β


b0 b1 b2 b3 · · ·
1 0 0 0 · · ·
0 1 0 0 · · ·
0 0 1
...

...
...

. . .

 with ψ =


1

(λβ )−1

(λβ )−2

(λβ )−3

...


where w is the shift state, satisfying Hβ ψ = λψ whenever the eigenvalue λ can satisfy
the top row:

λ =
∞

∑
j=0

〈
0
∣∣Hβ

∣∣ j
〉

ψ j =
1
β

∞

∑
j=0

b j

(λβ ) j = λ (E +1) = λ

(
1−q{b}

(
1

λβ

))
= λ

with q{b} (ζ ) the same holomorphic function as defined earlier, in eqn 28 and with E
as defined in eqn 20, where we’d previously identified solutions E = 0 as eigenvalues.

Explicit eigenfunctions on the unit interval can be recovered directly from this shift
state. The eigenvector ψ can be expanded in terms of the canonical basis vectors e j
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so that ψ = ∑ j ψ je j and e j is the vector with a one in the j’th position, and zero
everywhere else. Then make the identification

e j 7→ ε j (y) = Θ(t j − y)

where ε j (y) is the step function previously given in 11, with tn = tn
β
(1) being the

iterated endpoint from eqn 8. Alternately, after rescaling with x = yβ/2 so as to work
with the rescaled shift,

e j 7→ d j (x) = Θ(m j − x)

with m j = T j
β
(β/2) being the iterated midpoint from eqn 9, and d j (x) the rescaled step

function from eqn 19. With this identification, one has

ψ (x) =
∞

∑
j=0

d j (x)ψ j =
∞

∑
j=0

1

(βλ ) j Θ(m j − x)

which is just eqn 18 in a slightly different form. It satisfies Lβ ψ = λψ and, for λ = 1
recovers the original Gelfond–Parry invariant measure from eqn 10.

The mapping S : e j 7→ d j (x) can be thought of as a similarity transform, so that

Lβ S = SHβ

with Lβ the transfer operator from eqn 12. This mapping is not invertable; it is a
projection from some larger space of functions on the unit interval, to those functions
that can be represented with piecewise constant segments. Subsection 2.6 demonstrated
that there are also piece-wise quadratic solutions, and a general form for piece-wise
polynomial solutions will be given in section 6.4.

Clouding the issue is that when a bitsequence {b} is not of finite length, the holo-
morphic function q{b} (ζ ) has a countable number of zeros, accumulating on a circular
ring at |ζ |= 1. These appear to be dense on the circle, and so Jentzch’s theorem blocks
conventional analytic continuation to the region |ζ |> 1. But clearly, Lβ has eigenval-
ues in this region; the piecewise quadratic eigenfunction exhibited in section 2.6 has
the eigenvalue λ = 1/β 2 which corresponds to ζ = β > 1. Classical analysis doesn’t
allow us into that region. This suggests some incomplete description or paradox.

The paradox is resolved in 6.4. The resolution maps the e j to piece-wise polynomial
functions. When the polynomials are of degree m, then Lβ has a block upper-triangular
form, with the diagonal blocks containing β−kHβ , for 0 ≤ k ≤ m. Off-diagonal blocks
couple terms. This form reproduces the spectrum: when a bitsequence {b} is not of
finite length, the spectrum still accumulates on a ring at |ζ |= 1, but this time, that ring
corresponds to β−m, so that there is an accumulation of eigenvalues at |λ | ≥ β−m. For
piecewise-polynomial solutions, there are accumulation rings at each m.

These are the piecewise-polynomial solutions. In the m → ∞ limit, the piecewise
real-analytic solutions lie in the kernel λ = 0. In addition to these, there are also the
piecewise-fractal solutions, termed “coherent states”, as they are (again) constructed
as shifts. These belong to the continuous spectrum, and can be constructed for any
|λ |< 1. This construction is given in section 6.6.
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3.12 Equivalent labels for orbits
There are many equivalent ways of labeling the various expressions and properties
under consideration. These are recapped here.

3.12.1 Orbits

For every given 1 < β < 2 there is a unique orbit of midpoints
{

mp
}

given by mp =
Tβ (mp−1) = T p

β
(m0) and m0 = β/2. The orbits are in one-to-one correspondence with

β . The midpoints are the same as the Parry sequence; namely T p
β
(β/2) = (β/2) t p

β
(1),

recalling here the notation of eqn 8 and 10. Some orbits are of finite length; the rest are
either eventually periodic, or are ergodic.

3.12.2 Orbit encoding

The midpoint generates a unique sequence of bits {b}= {b0,b1,, · · · ,bk, · · ·} given by
the left-right moves of the mid-point, as it is iterated. That is, bk = Θ(mk −1/2) so
that bk is one if the midpoint is greater than half, else bk is zero. Each bit-sequence is
in one-to-one correspondence with β . Finite orbits have finite-length sequences.

3.12.3 Monotonicity

The compressor function w(β ) = ∑k bk2−k is a monotonically increasing function of
β , so that values of w(β ) are in one-to-one correspondence with β .

3.12.4 Polynomial numbering

If the orbit is finite, then there exists a polynomial pn (z) = zk+1−b0zk −b1zk−1−·· ·−
bk−1z− 1 with k = 1+ ⌊log2 (2n+1)⌋ being the length of the orbit. The positive real
root rn of pn (rn) = 0 is β = rn. That is, the iteration of rn will generate the finite-length
bit-sequence {b} = {b0,b1,, · · · ,bk}. The integer n is in one-to-one correspondence
with the bit sequence, and with the value of β . The integer is explicitly given by
2n+1 = ∑

k
j=0 2 jb j.

If the orbit is not finite, there is a function q{b} (ζ ) = 1−∑
∞
j=0 b jζ

j+1 holomorphic
on the unit disk, having one unique positive real zero q{b} (r{b}

)
= 0 where this r{b} =

1/β is the same β that generated the bit-sequence {b}. Iterating r{b} generates {b}.
If {b} is finite, then q{b} (ζ ) = ζ k+1 pn (1/ζ ), so these functions agree on finite-length
sequences.

3.12.5 Brackets

If the orbit is finite, then there exists a unique bracketing relationship ℓ Z⇒ n ⇐ \ ρ for
which n is the polynomial index. The left and right bounds ℓ,ρ are strictly smaller
indexes: ℓ < n and ρ < n, and even more strongly, 2ℓ ≤ n and 2ρ ≤ n that have the
property of bounding the positive real roots of the corresponding polynomials: rℓ <
rn < rρ , with pℓ (rℓ) = pn (rn) = pρ

(
rρ

)
= 0.
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3.12.6 Binary tree

Each bracket is in one-to-one correspondence with a node in the full, unbounded binary
tree. Sub-brackets define left and right subintervals that are disjoint, and whose union
makes up the whole interval. Every node in the full binary tree can be labeled with
a unique sequence of left-right moves to get to that node. This places the brackets
(and thus, the polynomials and the roots and the mid-point orbits) in unique, one-to-
one correspondences with finite-length strings of L,R moves. Such strings are, in turn,
in one-to-one correspondence with the dyadic rationals. The L,R strings are in one-to-
one correspondence with the orbits {b} but they are not numerically the same! This are
distinct sequences! In particular, all possible L,R moves are allowed. Only a limited
number of orbits {b} are possible, as limited by necklace-counting considerations.

3.12.7 Baire sequences

If the orbit is finite, then there exists a unique integer sequence [m1,m2, · · · ,mk] such
that the index is given by η [m1,m2, · · · ,mk]. This is a bijection between all valid in-
dexes and all possible finite-length sequences. Due to the bounding property of the
brackets, limits of k → ∞ can be taken, and these limits are unique. Thus, all β val-
ues, including those with non-finite orbits, can be placed in a one-to-one bijection with
infinite-length sequences [m1,m2, · · · ] ∈ Nω .

3.12.8 Beta-Fibonacci sequences

If the orbit is finite, then there exists a sequence of integers F{b}, the beta-Fibonacci
sequence, that is in one-to-one correspondence with the finite bit sequence {b} =
b0,b1, · · · ,bk, and with the value of β . There are also sequences for each infinite-length
orbit {b}. These are briefly touched on, below.

3.12.9 Shift matrix

If the orbit is finite, then the finite bit sequence {b} = b0,b1, · · · ,bk defines a lower-
Hessenberg “golden shift” matrix B, as shown in eqn 30. The limit of k → ∞ can be
taken in a relatively straight-forward manner, given below.

3.12.10 Summary

To summarize: any one of these: the integer n, the polynomial pn (x), the bracket
location in the binary tree, a dyadic rational, a point in Baire space, the integer sequence
F{b}

m , the orbit of midpoints mp = T p (β/2), the orbit encoding {b}, the shift matrix
B, the value of the compressor function w(β ) and, of course, β itself can each be used
as a stand-in for the others, as they are all in one-to-one correspondence. Specifying
one determines the others; all uniquely map to one-another. The formulas that provide
maps between each of these can all be given in closed form, except for the handful of
recursively-defined formulas. The recursive formulas are all invertable; thus they are
computable (decidable). They are all equivalent labels. Fashionably abusing notation,
n ≡ pn (x)≡ rn ≡ {b} ≡ F{b}

m ≡ mp ≡ w(β )≡ β ≡ B.
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An explicit expression relating the orbit encoding and the orbit can be read off
directly from eqn 7. Plugging in,

mp = T p+1
β

(
β

2

)
=

β

2

[
β

p+1 −
p

∑
j=0

b jβ
p− j

]
(31)

for p < k the length of the bit sequence, and mk = T k+1
β

(β/2) = β pn (β )/2 = 0 termi-
nating, since β is the positive root of pn (x).

Four of the correspondences given above ask for finite orbits. Three of these can be
extended to non-finite orbits in an unambiguous and uncontroversial way. The exten-
sions are covered in the next two sections. The fourth is the numbering n of the finite
orbits. These are countable; there is no way to extend the counting number n to the
non-finite orbits. Indeed, there are too many: the non-finite orbits are uncountable.
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4 Eventually-periodic orbits
The previous section characterized the set of β values which have midpoint orbits of
finite length. Another interesting class is the set of eventually-periodic orbits: orbits of
infinite length, settling down to a stable, periodic cycle after an initial bout of chaotic
motion. These β values occur as the roots of a slightly different set of self-describing
polynomials, as a sum of two parts: one for the initial chaotic motion, and a second
polynomial for the cyclic motion. These can be (monotonically) paired with the rational
numbers, with infinite paths through the binary tree, and with locations on the comb
function. They naturally extend the bracket mapping from the dyadic rationals to all
rational numbers.

4.1 Bitsequence polynomials
Consider the set of all eventually-periodic bit-sequences. These consist of a leading
chaotic prefix of length L followed by a periodic orbit of length N. Such sequences can
be placed in one-to-one correspondence with the rationals, in the conventional fashion.
Select such a sequence {bk}. The cyclic condition has that bk = bk+N for all k ≥ L.
Split this into two parts: a finite length-L digit sequence dk = bk for k < L and a finite
length-N cyclic bit sequence ck = bk+L for k < N. Associated to this is a rational
number x = ∑

∞
k=0 bk2−k−1. To get it’s value, write

S (β ) =
∞

∑
k=0

bkβ
−k

=
L−1

∑
k=0

bkβ
−k +

L+N−1

∑
k=L

bkβ
−k +

L+2N−1

∑
k=L+N

bkβ
−k + · · ·

=
L−1

∑
k=0

bkβ
−k +

β N

β N −1

L+N−1

∑
k=L

bkβ
−k

=
1

β L−1

L−1

∑
k=0

dkβ
L−k−1 +

1
β L−1 (β N −1)

N−1

∑
k=0

ckβ
N−k−1

Plugging in β = 2 gives ratios of whole numbers: a rational that corresponds to this
bit-sequence.

Any given 1 ≤ β ≤ 2 generates a mid-point orbit bit-sequence. Sadly, we’ve intro-
duced too many different but equivalent notations for this. Starting with the mid-point
x = m0 = β/2, the characteristic bit-sequence is

bn = Θ

(
mn −

1
2

)
= Θ

(
T n

β

(
β

2

)
− 1

2

)
= dn

(
1
2

)
= kn

(
β

2

)
= εn

(
1
β

)
Such orbits have the self-describing property, that β = S (β ). This follows from eqn
6, as well as other identities. For the eventually-periodic orbits, S (β ) is a ratio of
polynomials. It can clearly be placed in one-to-one correspondence with the rationals.
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It is not hard to show that it has one unique real root 1 < β ≤ 2, and so these are in
one-to-one correspondence as well.

This can be related to earlier notation. Writing β −S (β ) = 0 and then multiplying
through by the denominator,

(
β

N −1
)(

β
L −

L−1

∑
k=0

dkβ
L−1−k

)
−

N−1

∑
k=0

ckβ
N−1−k = 0

This touches the earlier notation for the polynomials describing finite orbits:

p{d0···dν−1} (β ) = β
ν −

ν−1

∑
k=0

dkβ
ν−1−k

and so the eventually-periodic orbits are the roots of(
β

N −1
)

p{d0···dL−1} (β )+ p{c0···cN−1} (β )−β
N = 0

Finite-length orbits have N = 1 and c0 = 0, so that the cyclic term vanishes, and the
earlier form is recovered, after ignoring an extra factor of β −1.

Finite-length orbits can be converted to infinite-length periodic orbits simply by
setting the last bit to zero, and then repeating the bit sequence cyclically. Recall, finite
orbits always have the last bit equal to one, so this operation is always unambiguous.
Restating this explicitly: if b0b1 · · ·bν−1 is a finite-length orbit, then set L = 0 and
N = ν and ck = bk for k < ν −1 and finally cν−1 = 0. Plugging through just yields the
usual polynomial for finite orbits.

Collecting terms of the same order, write

0 = β
N+L −

N+L−1

∑
k=0

akβ
N+L−1−k

The coefficients are then

ak = dk + ck−L +δ
0
k−N−1 −dk−N

with δ the Kronecker delta. The only coefficients that can appear are in the set ak ∈
{−1,0,1,2}, and at most one coefficient can be 2; it is specifically aN−1, which can
only ever be 1 or 2. This can be best understood visually, lining up columns. For L>N,
get ak by summing the columns:

d0 · · · · · · dL−1 c0 · · · cN−1
+ 0 · · · 0 1 -d0 · · · -dL−1

a0 · · · aN · · · aN+L−1

The top row shows the prefix string and the first run of the cyclic string. The second
row shows minus the prefix string, shifted all the way to the right, establishing
alignment at the right side. Just before it is a lone 1, and then padded on the left with
zeros. The bottom row is just the sum of the two rows above it. Clearly, the coefficient
aN−1 can only ever be 1 or 2. It is exactly the same for L < N, with the bottom row
being shorter:
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d0 · · · dL−1 c0 · · · cN−1
+ 0 · · · 0 1 -d0 · · · -dL−1

a0 · · · aN · · · aN+L−1

4.2 Examples
Not all possible bit-sequences {bk} are allowed. They must be self-describing, so
that the root of β − S (β ) = 0, when iterated, generates {bk}. For orientation, some
examples are shown below.

p
q

p+q
2q m,c b0b1 · · · L N polynomial β

0 1/2 1,0 1· 1 1 β −1 = 0 1

1 1 0,1 1 0 1 β −2 = 0 2

1/2 3/4 3,0 11· 2 1 β 2 −β −1 = 0 ϕ = 1.61803 · · ·

1/3 2/3 0,2 10 0 2 above above

2/3 5/6 1,2 110 1 2 β 3 −β 2 −2β +1 = 0 1.80...= 2cos π

7

5/6 11/12 3,2 1110 2 2 β 4 −β 3 −2β 2 +1 = 0 1.90516616775

11/12 23/24 7,2 11110 3 2 β 5 −β 4 −2β 3 +1 = 0 1.95468312004

· · ·

1/4 5/8 5,0 101· 3 1 β 3 −β 2 −1 1.46557123187

1/7 4/7 0,4 100 0 3 β 3 −β 2 −1 above

4/7 11/14 1,4 1100 1 3 β 4 −β 3 −β 2 −β +1 = 0 1.72208380573

11/14 25/28 3,4 11100 2 3 β 5 −β 4 −β 3 −2β 2 +β +1 = 0 1.87134931301

25/28 53/56 7,4 111100 3 3 β 6 −β 5 −β 4 −2β 3 +β +1 = 0 1.93992448793

2/7 9/14 1,2 1010 1 3 β 4 −β 3 −2β +1 = 0 1.55897987798

9/14 23/28 3,2 11010 2 3 β 5 −β 4 −β 3 −β 2 +1 = 0 1.77847961614

4/5 9/10 1,12 11100 1 4 β 5 −β 4 −β 3 −β 2 −β +1 = 0 1.88320350591

The rationals in the first column are from the set 0
1 ≤ p

q ≤ 1
1 . The β bit-sequences

always have b0 = 1 and thus, the second column shows S (2) = (p+q)/2q ≥ 1/2. The
third column m,c shows the prefix and the cyclic part as integers. The fourth column
shows the actual bitsequence. An overline is drawn over the repeating digits. If there
is one repeating digit, and it is zero, it is written as · so as to keep things a bit more
readable. The prefix must always start with a 1, and so the integer m is unique. The
length of the prefix is in the L column. The cycle might have leading zeros, and so
specifying c is not enough; a cycle length is required, given in the N column. The
corresponding polynomial and it’s root are given in the last two columns.

Notes:
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• The sequence 110 is described in OEIS A160389.

• The sequence 1010 is obviously not allowed, as it is the same as 10.

• The sequence 10010 = 1001 is not allowed. In the unreduced form, replacing 10
by 110 gives 10010 7→ 10011 = 19, which wasn’t allowed as a finite orbit.

• The sequence 10110 is not allowed; it reduces to a finite form 10110 7→ 10111 =
23 that is a disallowed finite orbit.

• These last two observations are a coincidence, and do not hold in the general
case. There are good periodic orbits that have disallowed finite versions, and
vice-versa.

• The sequence 10100 is not allowed, because it is reducible: 10100 = 1010.

• 4/7 gives 1100 seems to be OEIS A289917 which is
(

1+
√

13+
√

2
√

13−2
)
/4.

• 4/5 gives 11100 seems to be OEIS A289915 which is
(

1+
√

2+
√

2
√

2−1
)
/2.

The polynomial factors as β 5−β 4−β 3−β 2−β +1=(β +1)
(
β 4 −2β 3 +β 2 −2β +1

)
.

• Rationals with prefix m = 0 correspond to the finite orbits.

• It seems the prefix m = 2L−1 never occurs, when L > 1.

• The prefix is often but not always odd. Counterexamples include 7/12 = 11001
and 13/20 = 1101001.

• The first time that m = 5 occurs is for 9/28 = 101010.

Not all rationals give valid bit-sequences. The set of valid rationals are exactly the ones
that are in the set Q∩ θ where θ is the infinite comb, given in eqn 27, and depicted
visually in figure 12. The comb is extremely fractal, and working directly with Q∩θ

would be a chore. Fortunately, the bracket map saves the day: it is a map of the entire
unit interval onto θ . The bracket map, shown in figure 14, maps rationals to rationals;
it provides a map Q∩ [0,1]→ Q∩θ . Thus, it provides a better, though more indirect
way, of describing the ultimately-periodic orbits. Some examples are reviewed in the
section after next.

4.3 Rational to periodic binary
As a practical matter, it is computationally useful to convert a given fraction p/q into
the binary prefix m, it’s length L, and the cyclic part c, and its length N. This is not
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hard, but also not entirely easy, and so is presented here. Write

p+q
2q

=
m
2L +

1
2L

( c
2N +

c
22N +

c
23N + · · ·

)
1
2L

(
m+

c
2N

(
1+

1
2N +

1
22N + · · ·

))
1
2L

(
m+

c
2N −1

)
1
2L ·

m
(
2N −1

)
+ c

2N −1

In the last line, both numerator and denominator are integers. This allows the following
algorithm:

1. Find gcd(p+q,2q) and so reduce to lowest terms a/b = (p+q)/2q.

2. Factor b = 2Lb′ to obtain L ≥ 0.

3. Solve
(
2N −1

)
mod b′ = 0 for the smallest positive N ≥ 1.

4. Define r =
(
2N −1

)
a/b′.

5. Solve (r− c) mod
(
2N −1

)
= 0 for the smallest c such that 0 ≤ c < 2N .

6. Define m = (r− c)/
(
2N −1

)
.

This provides all four integers m,L,c,N that define the cyclic expansion.

4.4 The Bracket Map
The bracketing relationship provided a mapping to the dyadic rationals, via moves on
the binary tree. What do ultimately-periodic moves correspond to, on that tree?

The left and right moves L,R on the valid-index binary tree were L : (ℓ Z⇒ f ⇐ \ ρ) 7→
(ℓ Z⇒ 2 f ⇐ \ f ) and R : (ℓ Z⇒ f ⇐ \ ρ) 7→ ( f Z⇒ Λ( f )⇐\ ρ). (The symbol R is used in
place of R in this section, for ease of typography. They are isomorphic.) Consider
starting at ∞ Z⇒ 1 ⇐ \ 0 and applying a sequence of alternating left and right moves.
This is shown in the table below:
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position move bracket β

1/2 - ∞ Z⇒ 1 ⇐ \ 0 1.61803398...

1/4 L ∞ Z⇒ 2 ⇐ \ 1 1.46557123...

3/8 LR 2 Z⇒ 10 ⇐\ 1 1.57014731...

5/16 LRL 2 Z⇒ 20 ⇐ \ 10 1.53849659...

11/32 LRLR 20 Z⇒ 82 ⇐\ 10 1.56175206...

21/64 LRLRL 20 Z⇒ 164 ⇐ \ 82 1.55392112...

43/128 LRLRLR 164 Z⇒ 658 ⇐ \ 82 1.55970265...

85/256 LRLRLRL 164 Z⇒ 1316 ⇐ \ 658 1.55767530...

171/512 LRLRLRLR 1316 Z⇒ 5266 ⇐\ 658 1.55917021...

1/3 LR — 1.55897978...

The column labeled “position” is the location in the dyadic tree. By convention,
1/2 is at the top, and 1/4 lies to the left, and 3/4 lies to the right. The column labeled
“move” consists of the sequence of left-right moves to get to a given tree position. For
n moves, encoded as a binary integer m, the corresponding position in the dyadic tree
is (2m+1)/2n. The bracket is likewise a position in the valid-index binary tree. The
string of moves to get to that location are written in reverse applicative order, so that
the first letter in the string is the first move. If the moves are treated as functions to be
composed and applied, then the string needs to be reversed to get the applicative order.
The beta is the beta value at the center of that bracket. Based on the beta value, we
conclude that G : 1/3 7→ 2/7.

A second example helps cement the idea.

position move bracket β

1/2 - ∞ Z⇒ 1 ⇐\ 0 1.61803398...

1/4 L ∞ Z⇒ 2 ⇐\ 1 1.46557123...

1/8 LL ∞ Z⇒ 4 ⇐\ 2 1.38027756...

3/16 LLR 4 Z⇒ 36 ⇐ \ 2 1.44326879...

5/32 LLRL 4 Z⇒ 72 ⇐\ 36 1.42705896...

11/64 LLRLR 72 Z⇒ 580 ⇐ \ 36 1.43949911...

21/128 LLRLRL 72 Z⇒ 1160 ⇐ \ 580 1.43591015...

43/256 LLRLRLR 1160 Z⇒ 9284 ⇐ \ 580 1.43866733...

85/512 LLRLRLRL 1160 Z⇒ 18568 ⇐ \ 9284 1.43784133...

1/6 LLR — 1.43841656...

Based on the convergent, we conclude that G : 1/6 7→ 2/15, deduced below. In this
case, 1/6 /∈ θ and so the raw fraction 1/6 does not generate a self-describing orbit.
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But 2/15 is self-describing. Of course, that is the entire intent of the bracket map.
Originally formulated as the good-index map G : N→ Ψ which maps natural numbers
to brackets, the extension G is the “good rational” map G : Q → Q∩ θ , which maps
rationals to those that are self-describing. This is the same map as visualized in figure
14.

4.5 Bracketing Examples
A curated collection of examples of rationals passed through the bracketing function
is given below. It serves mostly to give a sense of the patterns that develop, as well as
counterexamples that defy simple patterns.

a
b Ψ moves p

q = G a
b id orbit β

0/1 -1 ε 0/1 y 1· 1

1/2n − ε ≈ RL · · ·LR 1/
(
2n+1 −1

)
−δ - ≈ 10 · · ·01

1/2n 2n−1 RL · · ·LR 1/2n y 10 · · ·01

1/8− ε ≈ RLLLR 1/15−δ - ≈ 10001 <1.380277

1/8 4 RLL 1/8 y 1001 1.38027756

1/7 RLLR 4/31 - 100100 1.42109608

1/6 RLLR 2/15 - 10010 1.43841656

1/5 RLLRR 12/85 - 100100100 1.45394278

1/4− ε ≈ RLLR 1/7−δ - ≈ 1001 <1.4655712

1/4 2 RL 1/4 y 101· 1.46557123

2/7 RLRL 4/15 - 10100 1.52626195

1/3 RLR 2/7 - 1010 1.55897987

2/5 RLRRL 20/63 - 1010100 1.58925391

3/7 RLRR 10/31 - 101010 1.60022189

1/2− ε ≈ RLR 1/3−δ - ≈ 101 < 1.618 · · ·

1/2 1 R 1/2 y 11· ϕ = 1.618 · · ·

6/11 8900/16383 - 1.69971346

5/9 RRLLLRR 40/73 - 1.70348856

4/7 RRLL 4/7 y 1100 1.72208380

3/5 RRLLR 25/42 - 11001100 1.74720863

9/14 RRLRL 9/14 y 11010 1.77847961

2/3 RRL 2/3 y 110 1.80193773

7/10 RRLRRL 43/62 - 1.82000973
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a
b Ψ moves p

q = G a
b id orbit β

5/7 RRLR 7/10 - 110110 1.82651577

3/4 3 RR 3/4 y 111· 1.83928675

7/9 RRRLLLR 227/292 - 1.86625406

11/14 RRRLL 11/14 y 11100 1.87134931

4/5 RRRLL 4/5 y 11100 1.88320350

5/6 RRRL 5/6 y 1110 1.90516616

6/7 RRRL 6/7 y 1110 1.92128960

8/9 RRRRLLL 8/9 y 1111000 1.93762945

25/28 RRRRLL 25/28 y 111100 1.93992448

9/10 RRRRLL 9/10 y 111100 1.94470383

10/11 10/11 y 1.94988340

11/12 RRRRL 11/12 y 11110 1.95468312

1/1 0 R 1/1 y 1 2

Table legend.

• The first column shows selected interesting rationals. Every possible rational is
allowed here, and will generate an ultimately-periodic orbit.

• The second column shows the corresponding index Ψ; only seven are shown, for
the finite orbits that correspond to the dyadic rationals; all others have an infinite
limit.

• The third column shows the bracket moves generated by that rational. These
are obtained as the binary expansion of the fraction a/b, or, more properly, the
expansion for (a+b)/2b. Thus, the first move is always R, to arrive from the far
left to the center of the tree. The expansions for 6/11 and 10/11 were left blank;
these are pointlessly long strings that would have cluttered the table.

• The fourth column shows the result of the “good rational” map G : Q→ Q∩θ

that takes G : a
b 7→ p

q . Thus, by definition, p/q ∈ θ . The fractions are those
obtained by extending the “good index” map G : N → Ψ to it’s limit points. A
graph of the fourth column, relative to the first, is given in figure 15. Although
that figure was prepared for the finite orbits, it is exactly the same for the periodic
orbits.

• Some of the discontinuities visible in 15 are shown here, in the rows with δ ,ε ≪
1 in them. For example, the top of the tree is 1/2, which has a finite orbit 10. It
can also be written as an infinite cyclic orbit 101 = 1/3 and these two distinct
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binary strings are mapped to distinct fractions; thus, the discontinuities. Such a
discontinuity appears at every finite orbit.

• Notable rows are 6/11, which has a horribly large denominator; and 7/9 is the
runner-up. The large denominator is due to leader heights that are greater than
one, that are encountered during the expansion. Compare rows 7/9 to 8/9. Both
have long move strings, but G(7/9) = 7/9. Similarly, 6/11 and 10/11 have intol-
erably long move strings, but G(10/11) = 10/11.

• The fifth column has a ’y’ in it, whenever G(a/b) = a/b; when the first and fifth
column are equal. Note that most ’y”s occur at the end of the table, rather than
at the beginning.

• The sixth column shows the bitsequence b0b1 · · · for the binary expansion of p/q
. Some rows are blank; these rows had horribly long expansions that provide no
intuition.

• The seventh and rightmost column shows the corresponding β value for the orbit
in the previous column.

Perhaps most notable is that the good map G maps rationals to rationals. Reassuringly,
it extends from the dyadic rationals, to all rationals. Formal lemmas and proofs follow
in a later section.

84



5 Formalities
Theorems, lemmas, proofs. A number of observations, claims and assumptions have
been made. They seem “obviously true” from numerical work, but are lacking a formal
proof. These are sketched below. As sketches, this chapter is still quite informal; the
difference is that it uses a more sophisticated vocabulary to say things in a more abstract
manner.

• Theorem: The finite orbits are dense in 1 ≤ β ≤ 2. Proof: Provided by the
bracketing relation, which states that between any two endpoints, there’s another
orbit strictly in the middle. We even have more: the estimate ν1/ν from the limit
diagram, showing how they don’t want to accumulate near β = 1.

• Lemma: The bracketed roots are always in strict ascending order, with rℓ < r f <
rρ .

• Lemma: The valid-index map G is a bijection. Proof: Leadership function is
monotonically increasing.

• Theorem: The good map G always maps rationals to rationals. More precisely,
those rationals are always inside of θ so that G : QI → θ ∩Q is a bijection,
except at the dyadics, where we have a countable freedom of finite orbits and
one infinite-periodic orbit to choose from.

• Theorem: G : [0,1]→ θ is a bijection for all reals [0,1]⊂ R. That is, the closure
to reals works as expected. This follows because the roots form a countable
dense subset, the reals are separable, and the function is continuous.

• Proper diligence requires distinguishing BQ from BR and also θQ from θR.

The remainder of this section consists of fragments of proofs of the above theorems
and lemmas. If these were stitched together properly, whole proofs should emerge. As
it is, its more an outline or sketch.

5.1 The Rational Comb
The dyadic comb, of figure 12, shows where valid finite orbits can occur. It’s limit to
infinite rank gives the infinite comb θ of eqn 27. The only valid rationals, that is, those
giving self-describing orbits, are those that belong to Q∩θ .

This can be understood as a limiting procedure. Every rational can be approxi-
mated by a dyadic rational; each set is dense in the other. The dyadic rationals are
finite walks down the binary tree; the non-dyadic rationals are infinite walks. The in-
finite comb corresponds to the trimmed tree, described earlier. The trimming always
maintains branches of unbounded length. These have a limit; in the limit, some of
these will correspond to rationals. These are exactly the rationals that correspond to
the ultimately-periodic orbits. The correspondence goes in both directions: given an
infinite path down the tree, it is sufficient to truncate it to be of finite length. By con-
struction, the truncated path corresponds to a valid dyadic rational. To recap: going
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in one direction, there is a sequence of finite orbits that converge, in the limit, onto
an eventually-periodic orbit. Conversely, given such an orbit, every truncated version
thereof is valid.

5.2 Closures
The ultimately-periodic orbits live inside the closure B ⊂ B. Write C ⊂ B for the
cyclic (ultimately periodic) orbits; these are infinite-length strings describing moves
down the infinite binary tree. As already noted, C∩B ⊂ B; that is, every infinite-
length cyclic orbit, when truncated to finite length, is a valid finite orbit. The closure
B consists of all self-describing bit-strings obtained as solutions to β = S (β ) where
S (β ) = ∑

∞
k=0 bkβ−k. The cyclic orbits are just a special case: C ⊂ B. There are

presumably many more, uncountably many chaotic orbits in B.
Just a little bit more machinery is needed. Let 2ω be Cantor space, the space of

infinitely-long binary strings. Let χ : 2ω → [0,1] be the canonical mapping of Cantor
space to the unit interval: χ : (b0b1 · · ·) 7→∑k bk2−k−1. Note that this mapping manages
to miss all the dyadic rationals, as these correspond to finite strings, of which there
aren’t any in the Cantor space. Let 2<ω = 2∗ be the set of finite-length binary strings,
and allow the symbol χ to perform double-duty, by writing χ : 2∗ → D to map finite
strings to dyadics. These binary strings can also be interpreted as strings in the symbols
L,R, so that they are moves on the tree. Write ι : 2∗ → B that maps the empty string to
the root of the tree, and likewise ι : 2ω → B that maps infinite strings to the leaves of
the infinite tree.

The comb was a subset of the unit interval: θ ⊂ [0,1]. The claim is that θ = χιB.
The mapping is onto, but not one-to-one: The finite orbits all have corresponding cyclic
orbits, all of which are distinct elements in B but map to the (finite-orbit) polynomial,
and thus the same root.

The good-index function provided a bijection B= ηGη−1B between the trimmed
and untrimmed finite, unbounded trees. The claim is that this can be extended to a
bijection B = GB. This requires a short detour into topology. The standard (weak)
topology on Cantor space is the product topology. The base for the topology may
be taken as the set of all finite strings, followed by an infinite number of don’t-care
markers. These are the open sets; the full topology is the finite intersection and infinite
union of the open sets in this base.

Every set in the base of the topology is represented by a finite string. The function
η−1 maps this to an integer. The function G is defined on all integers; it returns an
integer, which is mapped by η to a finite string and thus an open set. To conclude,
ηGη−1 maps open sets to open sets, and it is defined on every open set in the topology.
Thus, it is safe to write G = ηGη−1, as it is defined everywhere; all of B is in it’s
domain. The range of G can be taken to be the definition of the closure B. This has
several benefits: it avoids having to make funny arguments that pass through the reals
via the comb, and it also makes clear that G is a bijection. Note G is not continuous, in
the context that B⊂ B, since G−1 is defined almost nowhere on B.

The points rn are dense in the interval [1,2]. Within each rank ν they are monotoni-
cally increasing. The bracketing relation guarantees that, for all rn in the subtree, these
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are all contained within the endpoints of the bracket, and that they are always totally
ordered, by the natural tree-ordering. The notion of open sets is compatible. Given
a basic open set in B, the function ρ = r ◦G ◦η−1 maps it to an open set U ⊂ [1,2].
Claim that the inverse map also maps open sets to open sets, and thus ρ is continuous.
This is established as follows. Since the rn are dense in the interval [1,2], any open set
U ⊂ [1,2] can be written as a countable union of brackets. The function ρ−1 is defined
on all brackets, and by bracketing, it is defined on all U ⊂ [1,2] and by bracketing
ρ−1U is an open set in the product topology on B.

The goal is to extend this reasoning to ρ : D→ [1,2], given by ρ = ρ ◦η ◦ δ−1 =
r ◦G ◦ δ−1 so as to obtain a continuous, monotonic function ρ : [0,1] → [1,2] on the
unit interval. And we are done, more or less.

The mapping χ maps the basic open sets of B to open subintervals of the unit
interval; more precisely, to subintervals with dyadics at each end. These are precisely
the sets I (m,ν) defined in eqn 26. They allowed the infinite comb to be built up from
unbounded-length but finite strings in B.

The base of the product topology was mapped to open intervals on the real-number
line; and so ρ is continuous on the reals. This can also be seen in a different way. The
standard measure µ on the reals says that µI (m,ν) = 22−ν . The function G is built
from left and right moves. The left moves bump the rank by one, and so always map
to sets that are exactly half the size on the real number line. The right moves are given
by the leadership function: ΛΨν ⊂

⋃
∞
h=0 Ψν+1+h for each rank ν . The resulting sets

are (at a minimum) half the size, and possibly larger, as the union of additional small
intervals. This allows a conventional delta-epsilon proof of continuity to go forward:
for each epsilon, one can choose a rank ν where the basis sets I (m,ν) are smaller than
epsilon. The function G maps them to other open sets that are strictly smaller. Strictly,
because the height of a leader is always a finite number; the union is written as a union
over all possible heights, but the union is always finite.

5.3 Proof that roots are correctly bounded
Theorem: The bracket relationship gives roots with rℓ < r f < rρ being strict inequali-
ties.

Proof: Recursion starts with ∞ Z⇒ 1 ⇐\ 0. The bracket moves are

L : (ℓ Z⇒ f ⇐\ ρ) 7→ (ℓ Z⇒ 2 f ⇐ \ f )
R : (ℓ Z⇒ f ⇐ \ ρ) 7→ ( f Z⇒ Λ( f )⇐ \ ρ)

So p1 = β 2 −β −1 and p∞ = p1/0 = β −1 and p1/∞ = β −2. Must show that bracket
bounds are respected in all four cases. The proofs depend on having p′n (β )> 0 for all
1 ≤ β ≤ 2.

Case 1: Show that r2 f < r f . Proof: The L move gives p2 f = β
(

p f +1
)
− 1. So

1= r2 f
(

p f
(
r2 f
)
+1
)

but since r2 f > 1, must have p f
(
r2 f
)
< 0 and since p′n > 0,

conclude that r2 f < r f .

Case 2: Show that rℓ < r2 f . Proof: For any ℓ Z⇒ f ⇐\ ρ it is always the case that ρ is in
the tree rooted by ℓ. This can be seen by examining the two possibilities arising
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from ∞ Z⇒ 1 ⇐ \ 0 and then keeping in mind all trees are isomorphic. The path
to ρ from it’s root ℓ is ρ = LnRℓ for some n ≥ 0. Thus p f = β n+1 pℓ−1 and so
p2 f = β n+2 pl −1. But pℓ (rℓ) = 0 and so p2 f (rℓ) = −1 < 0. Since p′n (β ) > 0,
conclude that rℓ < r2 f .

Case 3: Show that r f < rΛ( f ). Proof: Proceeds as a modified proof of case 1. For
height zero, Λ( f ) = 2 f +1 so pΛ( f ) = β p f −1. Thus, 1 = rΛ( f )p f

(
rΛ( f )

)
so 0 <

p f
(
rΛ( f )

)
< 1 and since p′n > 0, conclude that r f < rΛ( f ). What about positive

heights? For height h, the moves are LhR and so pΛ( f ) = β h+1 p f − 1. Again,

1 =
(
rΛ( f )

)h+1 p f
(
rΛ( f )

)
and again 0 < p f

(
rΛ( f )

)
and so again r f < rΛ( f ).

Case 4: Show that rΛ( f ) < rρ . Proof: This proceeds as a modified version of case 2,
with the role of left and right reversed. In this case, ρ roots a tree, and the path
to f is f = RnLρ for some n ≥ 0. For n = 0, one has p f = β

(
pρ +1

)
− 1 and

so pΛ( f ) = β h+1
(

p f
)
−1. Expanding, pΛ( f ) = β h+2 pρ +β h+2 (β −1)−1, and

since pρ

(
rρ

)
= 0, one concludes that pΛ( f )

(
rρ

)
> 0 and therefore rΛ( f ) < rρ .

For n > 0, the proof proceeds the same way, with pΛ( f ) = apρ + b for some
positive numbers a,b. Thus, pΛ( f )

(
rρ

)
= b > 0 and again rΛ( f ) < rρ .

To conclude: the roots are ordered as rℓ < r f < rρ with strict inequalities holding.
QED.
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6 Decaying Eigenfunctions
This section examines the general set of solutions to Lβ ψ = λψ for |λ |< 1. Two gen-
eral classes of solutions are presented. One consists of a discrete spectrum of (piece-
wise) polynomial eigenfunctions, occurring at the β values associated with the finite
orbits. The other class consists of (piece-wise) fractal eigenfunctions, which can be
constructed for any complex λ with |λ |< 1. That is, the continuous spectrum.

The discrete spectrum is closely analogous to the discrete spectrum of the poly-
nomial eigenfunctions of the Bernoulli operator. Recall that the Bernoulli operator is
the beta transform, for β = 2. It has a discrete spectrum with λ = 2−n for all non-
negative integers n; the corresponding eigenfunctions are the Bernoulli polynomials.
The Bernoulli polynomials are orthonormal to one-another. In the n → ∞ limit, they
converge to either sin2πx or cos2πx, depending on whether n is even or odd. Both of
these trig functions, and any function odd about 1/2 lie in the kernel of the operator.

The Bernoulli operator also has a continuous spectrum that has a countable number
of distinct eigenfunctions for each λ .[35] As these all share the same eigenvalue, one
is free to choose the basis as desired. There are two generic possibilities. In one
choice, the basis functions are square integrable, but are not differentiable at the dyadic
rationals. These are built up as coherent states of underlying periodic waves. They
resemble the blancmange curve; the periodic spectrum appears here, in the same way
that the blancmange curve becomes a parabola for a specific parameter value.

A different choice of basis provides eigenfunctions that are smooth over the open
interval 0< x < 1 but diverge at x = 0,1 and are thus not square-integrable, due to these
divergent endpoints. Equivalently, they are not smooth at x = 0,1. The discrete spec-
trum emerges as those special values of λ for which the endpoints are finite, thus both
smooth and square-integrable. Explicit constructions of both sets of basis functions,
and the transformation between them, is given in [35].

This section presents explicit analogous solutions for the beta operator, for the β

values corresponding to finite orbits. That is, both kinds of eigenfunctions are pre-
sented: piecewise-polynomial eigenfunctions, and fractal (coherent state) eigenfunc-
tions. The development below is long and verbose, but never rises above the complexity
level of basic algebra. There does not seem to be much need for abstract conceptual-
ization here; it is mostly a matter of turning the crank and verifying identities.

6.1 General Framework
When an orbit is finite, of order ν , the Parry–Gelfond invariant measure consists of ν

distinct plateaus. It is a piecewise constant function. This description can be extended
to any piece-wise continuous sections; the method is illustrated for piecewise polyno-
mial intervals. For a polynomial of order j, the largest real eigenvalue is β− j, with
additional complex eigenvalues λ bounded in the range β− j−1 < |λ |< β− j.

The method for obtaining these is straightforward. The first step is to obtain the seg-
ments on which the polynomials will live. This is easy: the endpoints of the intervals
are determined by the midpoint orbit mk = T k+1

β
(1). A somewhat inelegant/difficult bit

is that these need to be sorted into order, so that they define non-overlapping segments.
Hypothesizing a distinct polynomial on each segment, these are plugged through Lβ to
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obtain a matrix relating polynomial coefficients. This matrix is block-upper-triangular,
and thus solvable, and that’s it; one is done.

Besides the need to sort midpoints, there is one more inelegant or difficult aspect
to this. The application of Lβ generates additional intervals; these are images of the
original intervals under the pushforward Lβ . They are determined by the values mk/β

and 1/2+mk/β for each midpoint. These new intervals are entirely contained within
the original set, but introduce a practical difficulty: the membership function is needed.
Membership is easily computed with arithmetic; what is annoying is that there does not
seem to be any obvious recursive relationship that provides this membership function.
Instead, one proceeds by brute force: compute the mk, sort them into order, compute the
mk/β and 1/2+mk/β , and see where they land. It would be conceptually preferable
if some relationship could be found, that gave the indicator function by means of some
small, simple recurrence relation. If there is such a relation, it is not obvious.

6.2 Ruminations
The development of this section raises an overall bugaboo: what is the appropriate
balance between “mathematics” and “algorithmics”? The general goal of the former
is to provide understanding and insight by use of small, compact algebraic formulas
establishing relationships between things. The later is used to compute things that
are too tedious to do by hand. But a thing is computable, only if there is a recursive
formulation that terminates. The product of two real numbers is computable only if
they themselves are individually computable. The “best” algorithm for multiplication
requires a trade-off between speed, size and complexity; a choice must be made. There
is a homotopic landscape of algorithms, but it is hardly clear what is homotopic to
what.

The algorithmic difficulty of multiplying a pair of arbitrary numbers is avoided
when those two numbers can be given a short, compact mathematical (arithmetical?)
definition: as members of some ring or integral domain or whatever. Computing the
mk is far more annoying: the appropriate value of β must first be found by solving
for the root of a polynomial pn (β ) = 0, when the orbit is finite, or by specifying β

in some other way, when the orbit is not finite. But still, this can be brushed away
as unconcerning, since multiplication is an old and comfortable prosthesis, as is root-
finding.

Thus, in one sense, it is quite fine to say “compute the mk, sort them into order,
compute the mk/β and 1/2+mk/β , and see where they land”; this is just fine as an al-
gorithm. As a bit of mathematics, it is deeply unsatisfying: the relationship between the
endpoints is opaque and unknown; the endpoints themselves can be explicitly graphed
and charted and exhibited, showing hints of patterns present. But the form of those
patterns is hidden. The mathematical structure is unresolved.

Is this acceptable? There is no algebraic equation for the real roots of a polynomial
larger than a cubic; we’ve come to terms with this state of affairs and accept it. But
this is only because there are existing, known proofs that explicitly demonstrate that
such roots are fundamentally unobtainable by algebraic means. The state of affairs
regarding the iterated β -transform midpoints is not settled: perhaps there are algebraic
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expressions, and perhaps there are not. A tool-set to determine the answer to this
question is absent. I don’t know how to solve this, other than to blunder about.

6.3 Motivating example
The general solution can be placed into context by exhibiting an example of what it
produces. This section demonstrates a piecewise quadratic solution to

Lβ f = λ f

The solution is developed for the n = 2 finite orbit.
For n = 2, the defining polynomial is the cubic p2 (β ) = β 3 −β 2 −1. It has a root

p2 (r2) = 0, numerically determined as β = r2 ≈ 1.46557 · · · . The midpoint orbit is

m0 = β/2 ≈ 0.73278
m1 = β (β −1)/2 ≈ 0.34116

m2 = β
2 (β −1)/2 = 1/2

The length of the orbit is ν = 3, which is necessarily the same as the degree of the
cubic p2. The midpoints fall in the sequence 0 < m1 < m2 < m0 < 1, and so this fixes
four intervals

I3 = [0,m1]< I2 = [m1,m2]< I1 = [m2,m0]< I0 = [m0,1]

As the desired solution is a quadratic, hypothesize fk (y) = ak0 +ak1y+ak2y2 on each
segment Ik with constants ak j to be determined.

The pushforward is, as always

[
Lβ f

]
(y) =

1
β

[
f
(

y
β

)
Θ(m0 − y)+ f

(
y
β
+

1
2

)
Θ(m1 − y)

]
and plugging through the fk results in eigen-relations

λ fk (y) =
1
β

[
fLk

(
y
β

)
+ fRk

(
y
β
+

1
2

)]
The notation fLk and fRk is shorthand for the recursive interval maps L : Ik 7→ Ik

β
and

R : Ik 7→ Ik
β
+ 1

2 . These two maps induce interval inclusion relations

LI3 ⊂ I3 and LI2 ⊂ I3 and LI1 = I2

RI3 = I1 and RI2 ⊂ I0 and RI1 ⊂ I0

The shorthand notation is just a linear operator:

fLk =
ν

∑
m=0

Θ(LIk ⊆ Im) fm
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where Θ(LIk ⊆ Im) is an indicator function that is true for only one k,m pair. It is
generically the case that LIk is wholly contained in only one interval Im. Likewise for
RIk, and so the eigen-relations become

λ fk (y) =
1
β

ν

∑
m=1

[
Θ(LIk ⊆ Im) fm

(
y
β

)
+Θ(RIk ⊆ Im) fm

(
y
β
+

1
2

)]
That this is just a matrix equation can be manifested more directly by writing it as

λ

 f1 (y)
f2 (y)
f3 (y)

=
1
β

 0 1 0
0 0 1
0 0 1




f1

(
y
β

)
f2

(
y
β

)
f3

(
y
β

)
+ 1

β

 0 0 0
0 0 0
1 0 0




f1

(
y
β
+ 1

2

)
f2

(
y
β
+ 1

2

)
f3

(
y
β
+ 1

2

)


To make an overly-long story short, the hypothesized quadratics fk (y) = ak0 +ak1y+
ak2y2 can be plugged through; the monomials in y j gathered together, leaving a solvable
matrix equation. The general form will be given shortly. The resulting solution is

f (y) =


f3 (y) =

β−1
β

y2 − β−1
β

y+ β (β−1)
4(β+1) for 0 ≤ y < m1 =

β (β−1)
2

f2 (y) = (β −1)y2 − β−1
β

y+ β−1
4(β+1) for m1 ≤ y < m2 =

1
2

f1 (y) = y2 − β−1
β

y+ β−1
4β (β+1) for 1

2 ≤ y < m0 =
β

2

0 for m0 ≤ y ≤ 1

During the solution, it becomes apparent that the eigenvalue is λ = 1/β 2. The solution
consists of four intervals, three piece-wise quadratics. Keep in mind this holds only for
β = r2 ≈ 1.46557 · · · and so other finite orbits will have a different form.

6.4 General form
The general form follows the template given in the example above. It provides addi-
tional detail on how to obtain the solvable matrix. From the top:

• The goal is to solve Lβ f = λ f to obtain the eigenvalue λ and eigenfunction f .
This will be done for β values that have finite orbits. These values are given by
the largest real root of the corresponding polynomial.

• Fix n, selecting a polynomial pn (β ) of order ν . Solve pn (β ) = 0 to obtain a root
rn = β .

• Iterate the midpoint m0 = β/2 to get m1 = Tβ (m0) = β (β −1)/2, ..., mk =

T k
β
(m0), ..., mν = 1/2.

• Use the midpoints to split the interval [0,1] into ν distinct sub-intervals. Provide
a label k for each interval, so that the intervals Ik can be referred to by their labels.
It is generally easiest to sort these into ascending order, but this is not mandatory.
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• Define the recursive interval maps L : Ik 7→ Ik
β

and R : Ik 7→ Ik
β
+ 1

2 .

• Starting with I0 = [m0,1], define an interval inclusion graph.

• The interval inclusion graph determines incidence matrices. These are square
matrices B,C having matrix entries Bk j = Θ(I j ⊆ LIk) where

Θ(I j ⊆ LIk) =

{
1 if I j ⊆ LIk

0 if I j ⊈ LIk

is the inclusion membership function. Likewise Ck j = Θ(I j ⊆ RIk).

• For each interval k, define the component fk (y) = f (y)|Ik as the restriction of f
to the interval Ik.

• On each interval, the pushforward Lβ takes the form of a recurrence relation

λβ fk (y) = fLk

(
y
β

)
+ fRk

(
y
β
+

1
2

)
where Lk = j when I j ⊆ LIk and likewise for Rk.

• Explicitly inserting the membership function Θ into the recurrence relation gives
the linear equation

λ fk (y) =
1
β

ν

∑
m=1

[
Θ(LIk ⊆ Im) fm

(
y
β

)
+Θ(RIk ⊆ Im) fm

(
y
β
+

1
2

)]

• This is more visually transparent when written in block form a

λ

 f1 (y)
...

fν (y)

=
1
β

B


f1

(
y
β

)
...

fν

(
y
β

)
+ 1

β
C


f1

(
y
β
+ 1

2

)
...

fν

(
y
β
+ 1

2

)


with the square matrices B,C as just defined.

• For each interval k, write fk (y)=∑ j ak jy j for unknown constants ak j to be solved
for. Thus, the eigenfunction will be piece-wise polynomial. The above forms a
linear system that is solvable.

• Insert the polynomial pieces, and gather terms into monomials y j. This requires
the use of binomial coefficients to write(

y
β
+

1
2

) j

=
j

∑
m=0

(
j

m

)
ym 1

β m · 1
2 j−m
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so that

fk

(
y
β
+

1
2

)
= ∑

j
ak j

(
1
2
+

y
β

) j

=
∞

∑
m=0

ym
(

2
β

)m ∞

∑
j=m

ak j
1
2 j

(
j

m

)

• Grouping into monomials results in the block-triangular form

λ


A0
A1
A2
...

=
1
β


D C01 C02 · · ·
0 1

β
D C12 · · ·

0 0 1
β 2 D

...
...

. . .




A0
A1
A2
...


with D = B+C and with C jm = c jmC with

c jm =

(
2
β

)m 1
2 j

(
j

m

)
and block vectors

A j =

 a1 j
...

aν j


• In other words,

Lβ =
1
β


D C01 C02 · · ·
0 1

β
D C12 · · ·

0 0 1
β 2 D

...
...

. . .


is a matrix representation of Lβ in a monomial-basis form. It is upper-triangular.
It is solvable. It can be truncated at any finite j to give a finite ν j×ν j matrix.

• For any fixed ν , the eigenfunction consists of ν pieces, each piece being a poly-
nomial of the same degree j.

• For such a truncated, finite-size matrix, the spectrum of Lβ is determined en-
tirely by the spectrum of the block D, as solvability implies that only the bottom-
right block matters. Thus, one concludes that the spectrum of Lβ is just the
spectrum of D times β− j.

• The spectrum of D is given by the self-encoding polynomial; it is det [D−ωI] =
pn (ω). The roots of pn (ω) completely determine the constructable eigenfunc-
tions.
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• Given this block-triangular structure, the consequence is that the largest real
eigenvalue of Lβ will be β− j and there will in general be additional complex
eigenvalues λ satisfying β− j−1 < |λ | < β− j. These are determined entirely by
the spectrum of D.

This is a complete description for such piece-wise polynomial solutions. The solution
decouples the behavior with respect to the monomials, which is captured in the D,C
block matrix, from the behavior with respect to the intervals, which is captured in the
individual blocks B,C. This allows limiting behavior can be explored in two distinct
ways. One is the replacement of the monomial basis by some other basis, possibly
not polynomial. Another is the ν → ∞ limit, where the number of plateaus becomes
unbounded.

The factorization into block-triangular form indicates that the spectrum of Lβ is
determined entirely by the spectrum of D, and thus it is this spectrum that should be the
subject of focus; the rest is just decorative trimmings. The only irregular or “difficult”
part to the above is the calculation of the interval inclusions, needed to obtain the left
and right incidence matrices B and C.

That’s it. That’s the complete solution for the general case.

6.5 Interval Inclusion Tables
The most confusing aspect of the above solution is the form of the interval inclusions.
This is explored below, by writing out explicit cases and organizing them into a table.
Unfortunately, they shine no light on the situation.

Below is the interval inclusion table for the polynomials up to order ν = 5.

ν n m j LI5 LI4 LI3 LI2 LI1 RI5 RI4 RI3 RI2 RI1

2 1 1,0 ⊂ I2 ⊂ I2 = I1 = I0

3
2 1,2,0 ⊂ I3 ⊂ I3 = I2 = I1 ⊂ I0 ⊂ I0

3 2,1,0 ⊂ I3 ⊂ I3 ⊂ I3 = I2 = I1 = I0

4
4 1,2,3,0 ⊂ I4 ⊂ I4 = I3 = I2 = I1 ⊂ I0 ⊂ I0 ⊂ I0

6 2,3,1,0 ⊂ I4 ⊂ I4 ⊂ I3 ⊂ I3 = I2 ⊂ I1 ⊂ I1 = I0

7 3,2,1,0 ⊂ I4 ⊂ I4 ⊂ I4 ⊂ I4 = I3 = I2 = I1 = I0

5

8 1,2,3,4,0 ⊂ I5 ⊂ I5 = I4 = I3 = I2 = I1 ⊂ I0 ⊂ I0 ⊂ I0 ⊂ I0

10 3,1,4,2,0 ⊂ I5 ⊂ I5 ⊂ I5 = I4 = I3 = I2 = I1 ⊂ I0 ⊂ I0 ⊂ I0

12 2,3,4,1,0 ⊂ I5 ⊂ I5 = I4 ⊂ I3 ⊂ I3 = I2 ⊂ I1 ⊂ I1 ⊂ I1 = I0

13 2,4,1,3,0 ⊂ I5 ⊂ I5 ⊂ I5 ⊂ I5 = I4 = I3 = I2 = I1 ⊂ I0 ⊂ I0

14 3,4,2,1,0 ⊂ I5 ⊂ I5 ⊂ I4 ⊂ I4 ⊂ I4 = I3 ⊂ I2 ⊂ I2 = I1 = I0

15 4,3,2,1,0 ⊂ I5 ⊂ I5 ⊂ I5 ⊂ I5 ⊂ I5 = I4 = I3 = I2 = I1 = I0

Table legend:

• The column labeled m j gives the index order for j such that 0 < · · ·< m j < · · ·<
m0 = β/2 < 1.

• The columns labeled LIk and RIk indicate what happens when L,R are applied to
Ik. The result is marked as equality or strict inclusion.
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I don’t have anything particularly notable to say about the above table.Although there
is a pattern to the above table, it is difficult to express in words. More progress can be
made by encoding the binary relationships as matrices, as below.

6.5.1 Interval inclusion incidence matrices

An alternate representation for the above tables is as matrices. These are the square
matrices B,C, having matrix entries Bk j = Θ(I j ⊆ LIk) where

Θ(I j ⊆ LIk) =

{
1 if I j ⊆ LIk

0 if I j ⊈ LIk

is the inclusion membership function. Likewise Ck j = Θ(I j ⊆ RIk). In tabular form:

ν n m j B C seq ind P D

2 1 1,0
[
·1
·1

] [
· ·
1 ·

] [
2
1

] [
L
R

] [
· 1
1 ·

] [
· 1
11

]

3 2 1,2,0

[·1 ·
· · 1
· · 1

] [ · · ·
· · ·
1 · ·

] [
2
3
1

] [
L
L
R

] [ · 1 ·
· · 1
1 · ·

] [ · 1 ·
· · 1
1 · 1

]

3 2,1,0

[· ·1
· ·1
· ·1

] [ · · ·
1 · ·
· 1 ·

] [
3
1
2

] [
L
R
R

] [ · · 1
1 · ·
· 1 ·

] [ · · 1
1 · 1
· 11

]

4
4 1,2,3,0

·1 · ·
· · 1 ·
· · · 1
· · · 1


 · · · ·
· · · ·
· · · ·
1 · · ·


2

3
4
1


L

L
L
R


 · 1 · ·
· · 1 ·
· · · 1
1 · · ·


 · 1 · ·
· · 1 ·
· · · 1
1 · · 1


6 2,3,1,0

· ·1 ·
· ·1 ·
· · · 1
· · · 1


 · · · ·

1 · · ·
1 · · ·
· 1 · ·


3

1
4
2


L

R
L
R


 · · 1 ·

1 · · ·
· · · 1
· 1 · ·


 · · 1 ·

1 · 1 ·
1 · · 1
· 1 · 1


7 3,2,1,0

· · ·1· · ·1
· · ·1
· · ·1


 · · · ·

1 · · ·
· 1 · ·
· · 1 ·


4

1
2
3


L

R
R
R


 · · · 1

1 · · ·
· 1 · ·
· · 1 ·


 · · · 1

1 · · 1
· 1 · 1
· · 11



5

8 1,2,3,4,0


·1 · · ·
· · 1 · ·
· · · 1 ·
· · · · 1
· · · · 1



· · · · ·
· · · · ·
· · · · ·
· · · · ·
1 · · · ·




2
3
4
5
1




L
L
L
L
R



· 1 · · ·
· · 1 · ·
· · · 1 ·
· · · · 1
1 · · · ·



· 1 · · ·
· · 1 · ·
· · · 1 ·
· · · · 1
1 · · · 1



10 3,1,4,2,0


· ·1 · ·
· · · 1 ·
· · · · 1
· · · · 1
· · · · 1



· · · · ·
· · · · ·
· · · · ·
1 · · · ·
· 1 · · ·




3
4
5
1
2




L
L
L
R
R



· · 1 · ·
· · · 1 ·
· · · · 1
1 · · · ·
· 1 · · ·



· · 1 · ·
· · · 1 ·
· · · · 1
1 · · · 1
· 1 · · 1
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ν n m j B C seq ind P D

12 2,3,4,1,0


· ·1 · ·
· ·1 · ·
· · · 1 ·
· · · · 1
· · · · 1



· · · · ·
1 · · · ·
1 · · · ·
1 · · · ·
· 1 · · ·




3
1
4
5
2




L
R
L
L
R



· · 1 · ·
1 · · · ·
· · · 1 ·
· · · · 1
· 1 · · ·



· · 1 · ·
1 · 1 · ·
1 · · 1 ·
1 · · · 1
· 1 · · 1



13 2,4,1,3,0


· · ·1 ·
· · · · 1
· · · · 1
· · · · 1
· · · · 1



· · · · ·
· · · · ·
1 · · · ·
· 1 · · ·
· · 1 · ·




4
5
1
2
3




L
L
R
R
R



· · · 1 ·
· · · · 1
1 · · · ·
· 1 · · ·
· · 1 · ·



· · · 1 ·
· · · · 1
1 · · · 1
· 1 · · 1
· · 1 · 1



14 3,4,2,1,0


· · ·1 ·
· · ·1 ·
· · ·1 ·
· · · · 1
· · · · 1



· · · · ·
1 · · · ·
· 1 · · ·
· 1 · · ·
· · 1 · ·




4
1
2
5
3




L
R
R
L
R



· · · 1 ·
1 · · · ·
· 1 · · ·
· · · · 1
· · 1 · ·



· · · 1 ·
1 · · 1 ·
· 1 · 1 ·
· 1 · · 1
· · 1 · 1



15 4,3,2,1,0


· · · ·1
· · · ·1
· · · ·1
· · · ·1
· · · ·1



· · · · ·
1 · · · ·
· 1 · · ·
· · 1 · ·
· · · 1 ·




5
1
2
3
4




L
R
R
R
R



· · · · 1
1 · · · ·
· 1 · · ·
· · 1 · ·
· · · 1 ·



· · · · 1
1 · · · 1
· 1 · · 1
· · 1 · 1
· · · 11


The structure of the B and C matrices have no strong, easy-to-describe pattern that

jumps out. It is all more subtle. First, some general comments. These all follow from
the nature of the interval inclusions, and are fairly easily derived.

• The sum D = B+C never has any entries that have 2 in it. This follows from the
L,R maps.

• The first column of B is always zero. This follows because L always shifts down;
the topmost interval can never be a subinterval of some other interval.

• The first column of C always has at least one entry that is one. This follows
because R always shifts up, and some interval must always be above the one or
more lower intervals.

• There are one or more non-zero entries in the last column of B.

• The last column of C is always all-zeros.

• Every row in B has exactly one non-zero entry. This follows, because every
interval is a subinterval of one and only one other interval.

• The top row of C is always all-zeros.

• It is always the case that B(ν ,ν) = 1 and B(ν −1,ν) = 1.

A more opaque but important pattern is the shift structure across the two. For every row
of B and C, the following holds: If B(k, j) = 1, then one and only one of the following
possibilities hold:

• B(k+1, j+1) = 1 and C (k+1,1) = 0
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• B(k+1, j+1) = 1 and there does not exist any i such that C (k, i) = 1 and
C (k+1, i+1) = 1

• B(k+1, j+1) = 0 and C (k+1,1) = 1

• B(k+1, j+1) = 0 and there exists i such that C (k, i) = 1 and C (k+1, i+1) = 1

• j = ν and C (k+1,1) = 1

• j = ν and there exists i such that C (k, i) = 1 and C (k+1, i+1) = 1

Since for every row k, there is always some column j for for which B(k, j) = 1, the
above holds for all rows. It is saying that there is always a shift, either in the B matrix,
or in the C matrix, and never both at the same time, for every row.

The six bullet points above are expressed as logic statements written in English.
To be useful for calculations, they need to be converted into formulas. This will be
needed later, in the section on the continuous spectrum. The structure above can be
captured by two distinct functions. One is a sequencing function: given interval k (row
k), return the next shift j + 1; the other function is the sequence indicator function:
given interval k, was the shift obtained on the left or right? The table above shows
these two functions, labeled as “seq” and “ind”.

The “seq” function is a permutation; the corresponding permutation matrix is shown
in the P column. The “sporadic” matrix S = B+C−P is what is left over, after remov-
ing P.

The indicator function “ind” shows how the permutation matrix is assembled from
B and C. One has that

P(k, j) = Θ(ind(k) = L)B(k, j)+Θ(ind(k) = R)C (k, j)

Pk j = δind(k),LBk j +δind(k),RCk j

where Θ(x) = 1 if x evaluates to true, else Θ(x) = 0. The δab is the Kronecker delta.
The sequence function “seq” is the permutation, expressed as a cycle:

Pk j = δseq(k), j = Θ(seq(k) = j)

It is currently unclear how to obtain any of these matrices and functions, other than to
brute-force iterate the midpoint, sort the midpoints into order, compute the intervals,
and compute the overlaps. This is an algorithmic process that does not provide much
insight.

The permutation matrices are orthogonal, in that P−1 = PT . There are some addi-
tional sporadic identities. For P = Pn for index n, note that PT

2 = P3 and PT
7 = P4 and

PT
15 = P8 and PT

13 = P10. Unclear how these interchanges might be meaningful; there’s
no corresponding relationship between P12 and P14.

The product PT D is lower-triangular, and thus explicitly solvable.
The D matrix encodes the generating polynomial. That is, det [D−λ I] = pn (λ ) so

that det [D−β I] = 0.
Each matrix D can be taken to be the adjacency matrix for a graph. These are shown

below; they show how intervals mix into one-another.

98



ν n D diagram

2 1
[
· 1
11

]
12 n=1

3 2

[ · 1 ·
· · 1
1 · 1

]
123 n=2

3

[ · · 1
1 · 1
· 11

]
123 n=3

4
4

 · 1 · ·
· · 1 ·
· · · 1
1 · · 1

 234 n=41

6

 · · 1 ·
1 · 1 ·
1 · · 1
· 1 · 1

 234 n=61

7

 · · · 1
1 · · 1
· 1 · 1
· · 11

 234 n=71

5

8


· 1 · · ·
· · 1 · ·
· · · 1 ·
· · · · 1
1 · · · 1

 345

n=8

2 1

10


· · 1 · ·
· · · 1 ·
· · · · 1
1 · · · 1
· 1 · · 1

 345

n=10

2 1

12


· · 1 · ·
1 · 1 · ·
1 · · 1 ·
1 · · · 1
· 1 · · 1

 345

n=12

2 1

13


· · · 1 ·
· · · · 1
1 · · · 1
· 1 · · 1
· · 1 · 1

 345

n=13

2 1
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ν n D diagram

14


· · · 1 ·
1 · · 1 ·
· 1 · 1 ·
· 1 · · 1
· · 1 · 1

 345

n=14

2 1

15


· · · · 1
1 · · · 1
· 1 · · 1
· · 1 · 1
· · · 11

 345

n=15

2 1

Left-moving arrows indicate LIk 7→ I j = Ik/β while right-moving arrows indicate
RIk 7→ I j = Ik/β + 1/2. If only one arrow lands on an interval, then the map is an
equality (one-to-one and onto); otherwise it is an inclusion. The arrow-heads are drawn
in proper interval sequence; the L and R maps never alter the overall sequence. Due to
the self-inclusion LIν 7→ Iν = Iν/β for the left-most interval, for all orders ν , this map is
always an inclusion (recursively splitting the interval into ever-smaller pieces). These
in turn are mapped back to the right, eventually creating a set of enpoint mappings that
is dense in the unit interval. Note also that there is always a map LIν−1 7→ Iν for all
orders ν .

Some open questions:

• Why these graphs, and not others?

• Are these somehow the prime graphs, in that all other (measure-preserving)
graphs can be constructed from these? For example, all Markovian two-point
graphs can be taken as linear combinations of the n = 0 and n = 1 graphs. In
this example, Mi j = aδi1δ j1+bδi2δ j2+c

(
δi1δ j1 +δi2δ j1 +δi1δ j2

)
represents all

possible 2× 2 graphs, where as much material flows into a vertex, as flows out
of it. The a and b terms are just the n = 0 graph, while the c term is the n = 1
graph. (A Markov normalization additionally requires that a+ c = b+ c = 1.)

6.6 Coherent States
It is possible to construct coherent-state eigenfunctions satisfying Lβ f = w f for any
complex w with |w|< 1. By “coherent state” it is meant a fractal function

ψw (x) =
∞

∑
k=0

wks
(

T k
β
(x)
)

where s(x) = g(x mod β/2) is a sawtooth, and g(x) is more-or-less any function on
the interval 0 ≤ x ≤ 1/2; it is constrained by recursion on 1/2 ≤ x ≤ β/2. This con-
struction uses the framework established above. It is relatively straightforward, al-
though it has a few difficult turns that leave open it’s general structure.
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The construction appears to yield a family of functions f that should be able to form
a countable orthonormal basis, for any fixed w. This has some interesting ramifications.
In the case of β = 2, the Bernoulli shift, this basis has been obtained long ago.[35]
Since the collection of basis functions is countable, the space is quite large. It includes
smooth functions, infinitely differentiable on the open interval 0 < x < 1, but divergent
at the endpoints. These also form a countable basis, which can be explicitly exhibited.
Furthermore the (orthogonal) transform, taking the one basis into the other, can also
be exhibited. Explicit expressions are given in [35]. No such explicit form is given
below. It is hypothesized to exist, by analogy. However, the manipulations here are
sufficiently daunting that an explicit demonstration remains an open problem. There
are more than a few open problems that arise, here.

6.6.1 Construction

Fixing a self-describing polynomial pn (β ) = 0 fir fixed n and order ν , the construc-
tion follows the framework developed above. The solution f to Lβ f = λ f consists
of piece-wise components f (y) = fk (y), when y is restricted to the interval Ik. The
interval inclusion maps give the twizzled form

βλ

 f1 (y)
...

fν (y)

= B


f1

(
y
β

)
...

fν

(
y
β

)
+C


f1

(
y
β
+ 1

2

)
...

fν

(
y
β
+ 1

2

)


Each segment is a superposition of coherent states, expressed with a rotation matrix R
such that  f1 (y)

...
fν (y)

= R

 ψ1 (y)
...

ψν (y)


In index notation, this is fk (y) = Rk ja jψ j (y) with ψk (y) = ψ

(
T k−1

β
(y)
)

. For the case
of n = 1 and n = 2, it is possible to obtain a solution with R being the identity. For
the case n = 3, this is no longer possible, and R is non-trivial, and depends on the
eigenvalue. It is hypothesized that one can take R = I whenever β > 1.5, while larger
β values require a non-trivial R, and may also incur other constraints. The need for R
arises from the form of the C matrix: if it has more than one non-zero entry, then it
applies a constraint that must be resolved with a non-trivial R.

Several identities are needed. One is

ψ

(
T k

β
(y)
)
=

∞

∑
n=0

wns
(

T n+k
β

(y)
)

=
1

wk

[
ψ (y)−

k−1

∑
n=0

wns
(

T n
β
(y)
)]

Also, for k > 0,

ψ

(
T k

β

(
y
β

))
= ψ

(
T k

β

(
y
β
+

1
2

))
= ψ

(
T k−1

β
(y)
)
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while for k = 0

ψ

(
y
β

)
= s
(

y
β

)
+wψ (y)

ψ

(
y
β
+

1
2

)
= s
(

y
β
+

1
2

)
+wψ (y)

Plugging through, this gives

βλR

 a1ψ1 (y)
...

aν ψν (y)

= BR


a1ψ1

(
y
β

)
a2ψ1 (y)

...
aν ψν−1 (y)

+CR


a1ψ1

(
y
β
+ 1

2

)
a2ψ1 (y)

...
aν ψν−1 (y)


Setting D = B+C (as before) and continuing,

βλR

 a1ψ1 (y)
...

aν ψν (y)

=DR


a1wψ1 (y)
a2ψ1 (y)

...
aν ψν−1 (y)

+BR


a1s
(

y
β

)
0
...
0

+CR


a1s
(

y
β
+ 1

2

)
0
...
0


Shorten the notation for the recurrence relation:

ψk+1 (y) = ψ

(
T k

β
(y)
)
=

1
wk

[
ψ (y)−

k−1

∑
n=0

wns
(

T n
β
(x)
)]

=
1

wk [ψ (y)−Sk−1 (y)]

and then plug through and collect distinct terms. The ψ terms give

βλR


a1

a2w−1

...
aν w1−ν

= wDR


a1

a2w−1

...
aν w1−ν


which has the form of an eigenvalue equation. The solution is given by

det [wD−βλ I] = 0

and since det [D−β I] = 0 conclude that λ = w. Note that this is independent of the
matrix R.

The generating terms, those having only s in them, give

βR


0

a2S0 (y)
...

aν w2−ν Sν−2 (y)

=DR


0
0

a3w−1S0 (y)
...

aν w2−ν Sν−3 (y)

−BR


a1s
(

y
β

)
0
...
0

−CR


a1s
(

y
β
+ 1

2

)
0
...
0
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The goal is to find a rotation matrix that allows the above to be solved. The rotation
matrix has ν (ν −1)/2 free parameters, whereas the above provides only ν constraints.
This would appear to allow for a fair amount of freedom.

An additional constraint is that the desired form requires a rotation R that keeps the
s
(

y
β
+ 1

2

)
term alive, so that it can be used to get an equation of the form

s
(

y
β
+

1
2

)
= ∑

k
cks
(

β
ky
)

for some constants ck. Since s(x) = g(x mod β/2), the search is limited to 0 ≤ y ≤
β/2. The left-hand side maps [0,1/2] to [1/2,β/2] and thus can be used to cancel out
any behavior at all, including the right-hand side. Thus, it is sufficient to set

g(y) =

{
h(y) for 0 ≤ y ≤ 1

2

−∑k ckh
(
β k+1

(
y− 1

2

))
for 1

2 < y ≤ β

2

This works for any h whatsoever, unless h is constrained for some other reason. The
function h can be freely chosen to be anything at all, for the n = 1 and n = 2 cases.
The n = 3 solution places a constraint on h; it must be of the form h(y) = yp for any
complex number p. For an explicit solution, and details on this constraint, refer to the
accompanying diary. It is not clear when the general form will be similarly constrained
or not. Still, a one-parameter family of solutions were obtained (for fixed w), which is
plenty enough to develop a countable orthonormal basis (for fixed w).

Presuming such a rotation matrix R can be found, this gives a family of solutions
to Lβ f = w f for any complex w with |w|< 1.

6.6.2 Example solution for n=1

For the n = 1 case, p1 (β ) = β 2 − β − 1 has a root β = r1 = ϕ . The midpoints are
m0 = β/2 and m1 = 1/2 so 0 < m1 < m0 < 1 and I2 = [0,1/2] and I1 = [1/2,m0]. The
interval inclusion map is given by

B = Θ(I j ⊆ LIk) =

[
0 1
0 1

]
and C = Θ(I j ⊆ RIk) =

[
0 0
1 0

]
The rotation matrix R can be taken to be the identity; it is not needed. Plugging through
and cranking gives the solution.

f (y) =


f2 (y) = wβψ

(
Tβ (y)

)
for 0 ≤ y ≤ 1

2

f1 (y) = ψ (y) for 1
2 < y ≤ β

2

f0 (y) = 0 for β

2 < y ≤ 1

In the process of obtaining the above, one finds the constraint

−wβ
2g(y) = g

(
y
β
+

1
2

)
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that must hold for all 0 ≤ y ≤ β/2. Satisfying this constraint is easy. The map takes
[0,1/2] to [1/2,β/2], and these two intervals are non-overlapping. Thus, it is sufficient
to set

g(y) =

{
h(y) for 0 ≤ y ≤ 1

2

−wβ 2h
(
β
(
y− 1

2

))
for 1

2 < y ≤ β

2

for any h whatsoever, and any complex w with |w| < 1. This will give a valid eigen-
function with eigenvalue λ = w. So, for β = ϕ the golden mean, this provides the
general solution.

Polynomial generators An interesting case arises, of one wishes g(y) to be smooth
over the entire interval 0 ≤ y ≤ β/2. This ends up constraining the spectrum. A few
examples.

First consider the form g(x) = 1. The constraint then forces w =−1/β 2.
The linear form is g(x) = x+b, which must satisfy

0 = wβ
2 (y+b)+

y
β
+

1
2
+b

The linear form forces w=−1/β 3 and b=−1/2
(
1+wβ 2

)
. Since β = ϕ , this reduces

to b =−(1+ϕ)/2
The quadratic form is g(x) = x2 +bx+ c and the constraint forces

w =− 1
ϕ4 = 5−3ϕ b =−(ϕ +1) c =

3ϕ +2
4

It appears that this pattern can be followed, thus obtaining an eigenfunction with eigen-
value w =−1/β k+2 for polynomial generators g(x) of degree k.

6.6.3 Commentary

The n = 2 case is very nearly identical to the above. The solution to the n = 3 case can
be exhibited (see the diary) but only after much grief. It requires a non-trivial rotation
matrix R that depends on w. It also imposes a constraint on h(y), which can no longer
be arbitrary, but must have h(y) = yp for arbitrary complex number p. At any rate, it is
solvable.

It is hypothesized that solutions are possible for all n. The rotation matrix R is
needed to resolve multiple constraints introduced by the C matrix. It seems quite rea-
sonable to think that this is always possible, although we have no proof in hand.

The immense freedom in the n= 1 and n= 2 cases, and the one-parameter family of
solutions for the n= 3 case suggests that one can provide a complete set of orthonormal
solutions to Lβ f = w f for any complex w with |w|< 1. Explicit formulas for the n = 1
and n = 2 cases could be brute-forced, if desired. However, explicit formulas for this
set for general n remain out of reach with the given toolset.

The coherent states provide a general solution. Presumably, this aligns with the
piece-wise polynomial solutions, given earlier. Understanding how these align requires
a review of what happens at w = β−k.
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The coherent state construction is performed for the countable set of finite orbits,
enumerated by pn (β ) = 0. These give a collection of β that are dense in the interval
1 ≤ β ≤ 2. Can the construction be extended to all β? Doing so would require some
way of obtaining the interval inclusion map that the B and C matrices encode. This
inclusion map is implicit in the sofic shift, but none of the above constructions work at
an abstraction level that was appropriate for exposing it. There’s some Borel algebra
here, but the above calculations were not sufficient to make it explicit.

There are unexplored tools. For example, most real numbers x have an uncountable
number of distinct β -expansions for most values of β .[6] This is the opposite of the so-
called “univoke” expansions.[7] Nowhere in the above constructions was this fact made
use of, or touched upon. Yet it is implicitly there: the coherent state is iterating with
T k

β
(x) but it was never questioned or debated that this may result in different iterates,

and thus different coherent states. This is bad: it was implicitly assumed that the
coherent state is unique and well-defined, whereas perhaps each coherent state should
be taken to be an uncountable family of such states. Whether they all come together in
the end, or remain distinct, is entirely unclear.

Clearly, we’ve pried the lid off of a jar, and peered inside. It seems to hold a bot-
tomless collection of tasks, each engendering new and ever-more-complex hypothesis.
Of course, this is the way of mathematics, and one must be careful how one spends
one’s time on Earth. Still, it is all a bit unnerving.
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7 Islands of Stability as Arnold Tongues
The classical Feigenbaum bifurcation diagram, shown in figure 5, manifests two dis-
tinct behaviors: the “islands of stability”, in which there are periodic orbits, and the
“chaotic regions”. These regions alternate and interleave as a parameter λ appearing
in the iterated equation λx(1− x) is swept through a range of values. By contrast, the
equivalent diagram for the beta-map, shown in figure 2, does not seem to have regions
of stability. This is only an illusion: they are there, they are only infinitely thin. This
chapter focuses on how to crowbar them open, to finite size.

In the previous chapters, it was demonstrated that there is a countable set of β

values, dense in the range 1 ≤ β ≤ 2, for which orbits are finite and terminate after a
fixed number of iterations. Alternately, they can be made periodic, simply by changing
a less-than sign to a less-than-or-equals sign. The β values for which orbits are periodic
can be placed in correspondence with the periodic orbits of the logistic map; the β

values for which orbits are chaotic correspond to the chaotic orbits of the logistic map.
The open problem is to demonstrate this correspondence explicitly. This problem is
not tackled here; it is just brushed up against.

The circle map xn+1 = xn + θ +K sin2πxn provides one possible mechanism for
taking a set of measure zero, and crowbaring it open to a set of finite size. For K = 0,
this is just the rotation map xn+1 = xn + θ which has only periodic orbits, when θ

is rational, and chaotic orbits, when θ is not rational. As one sweeps θ through a
range, the subset of periodic orbits is countable, and is a set of measure zero: thus, the
rotation map can be said to be chaotic for almost all θ . Setting K to a non-zero value
expands the regions of periodic orbits to finite size, termed Arnold tongues. These are
the mode-locking regions that are generically visible in driven oscillator systems. The
perturbation by the kick K displaces what would have been chaotic orbits into mode-
locked regions. For small K, this perturbation is soft, in that one might say “it shouldn’t
change things much.” But even a whisper of a miniscule K is enough to convert the set
of periodic orbits from a measure of zero to a finite measure.

Another possibility is to just crowbar open the periodic regions with a “hard” per-
turbation, localized at a point. Take the natural saw-tooth shape of the β -map, widen
the middle, and insert a slanting downward line, to create a zig-zag. That is, connect
the two endpoints in the middle of the beta shift, “widening” it so that it has a finite, not
infinite slope, thereby converting the iterated function from a discontinuous to a con-
tinuous one. This can be constructed directly: given some “small”, real ε > 0, define
the piecewise-linear ε-generalization of the map 4 as

Tβ ,ε(x) =


βx for 0 ≤ x < 1

2 − ε

β

4 −β
( 1

4 − ε
)

w for 1
2 − ε ≤ x < 1

2 + ε

β
(
x− 1

2

)
for 1

2 + ε ≤ x ≤ 1
(32)

where w is just a handy notation for a downward sloping line:

w =
2x−1

2ε

Observe that w = 1 when x = 1
2 − ε and that w = −1 when x = 1

2 + ε so that w just
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smoothly interpolates between +1 and -1 over the middle interval. The additional fac-
tors of β

4 −β
( 1

4 − ε
)

w just serves to insert the downward slope smack into the middle,
so that the endpoints join up. The results is the zig-zag map, illustrated in the figure
below

In the limit of ε → 0, one regains the earlier beta shift: limε→0 Tβ ,ε = Tβ , as the
slope of the middle bit becomes infinite. The middle segment is a straight line; it
introduces another folding segment into the map. This segment introduces a critical
point only when ε is sufficiently large, and β is sufficiently small, so that its slope is
less than 45 degrees (is greater than -1). When this occurs, a fixed point appears at
x = 1/2. A sequence of images for finite ε are shown in figure 18.

The appearance of islands of stability in the Feigenbaum attractor is due to the
presence of a fixed point at any parameter value. In order to “surgically add” islands
of stability to the beta transform, the middle segment interpolation must also have a
critical point at “any” value of ε . To achieve this, consider the curve

Dβ ,ε(x) =


βx for 0 ≤ x < 1

2 − ε

β

4 −β
( 1

4 − ε
)

g(w) for 1
2 − ε ≤ x < 1

2 + ε

β
(
x− 1

2

)
for 1

2 + ε ≤ x ≤ 1
(33)

where the straight line has been replaced by a soft shoulder

g(w) = 1−2cos
π

4
(1+w)

and w is the same as before. This is scaled so that its a drop-in replacement for the
straight line: g

( 1
2 − ε

)
= 1 and g

( 1
2 + ε

)
= −1. A cosine was used to create this soft

shoulder, but a parabola would have done just as well. It is illustrated above, with the
label “soft map”.

This map also interpolates between the left and right arms of the beta transform,
forming a single continues curve. The curve is smooth and rounded near 1

2 − ε > x,
having a slope of zero as x approaches 1

2 − ε from above. This introduces a critical
point near 1

2 − ε . Notice that there is a hard corner at 1
2 + ε . The interpolation is NOT

an S-curve! A sequence of images for finite ε are shown in figure 19.
Two more variant maps can be considered. Both replace the center piece with
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Figure 18: Z-shaped Map

This illustrates a sequence of iterated maps, obtained from eqn 32. Shown are ε =
0.01, 0.02, 0.04 in the first row, 0.06, 0.08, 0.10 in the second row and 0.12, 0.14,
0.15 in the third row. The image for ε = 0 is, of course, figure 2. The parameter β

runs from 1 at the bottom to 2 at the top. Thus, a horizontal slice through the image
depicts the invariant measure of the iterated map, black for where the measure is zero,
and red where the measure is largest. The sharp corner at the lower-left is located
β = (1+2ε)/(1−2ε) and x = ε (1+2ε)/(1−2ε). A yellow horizontal and vertical
line in the last image indicate the location of this corner.
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Figure 19: Critical-Z map

This illustrates a sequence of iterated maps, obtained from eqn 33. The sequence of
depicted ε values are the same as in figure 18. The top row shows ε = 0.01, 0.02, 0.04,
with 0.06, 0.08, 0.10 in the second row and 0.12, 0.14, 0.15 in the bottom row. The
image for ε = 0 is, of course, figure 2. The parameter β runs from 1 at the bottom to 2
at the top. Working from bottom to top, one can see islands of stability forming in the
ε = 0.02 and 0.04 images. The largest island, one third from the top, corresponds to
β = ϕ = 1.618 · · · the golden ratio. Moving downwards, the other prominent islands
correspond to the “trouble spots” 101, 1001 and 10001, which are the Narayana’s Cows
number, an unnamed number, and the Silver Ratio, at β = 1.4655 · · · and so on. Mov-
ing upwards, one can see a faint island at the tribonacci number. Due to the general
asymmetry of the map, these islands quickly shift away from these limiting values.
For example, the primary island appears to start near β = δ +(2−δ )(ϕ −1), where
δ = (1+2ε)/(1−2ε). This location is indicated by a horizontal yellow line in the
images in the right column. The other islands shift away in a more complicated fash-
ion.
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symmetrical sinuous S-shaped curves, but in different ways. Consider

Sβ ,ε,σ (x) =


βx for 0 ≤ x < 1

2 − ε

β

4 −σβ
( 1

4 − ε
)

sin π

2 w for 1
2 − ε ≤ x < 1

2 + ε

β
(
x− 1

2

)
for 1

2 + ε ≤ x ≤ 1
(34)

and

Hβ ,ε,p,σ (x) =


βx for 0 ≤ x < 1

2 − ε

β

4 −σβ
( 1

4 − ε
)

sgn
(
x− 1

2

)
|w|p for 1

2 − ε ≤ x < 1
2 + ε

β
(
x− 1

2

)
for 1

2 + ε ≤ x ≤ 1
(35)

The Sβ ,ε(x) replaces the central segment with a softly-rounded segment, containing
two critical points: near 1

2 − ε and near 1
2 + ε , where the curve flattens out to a zero

slope. When σ = +1, the map as a whole is continuous. When σ = −1, the map
consists of three discontinuous pieces. Different values are explored in figure 20.

The Hβ ,ε,p,σ (x) replaces the central segment with a segment that has a kink in the
middle, when p > 1. Note that Hβ ,ε,1,1(x) = Tβ ,ε(x). Here, sgnx is the sign of x. The
general shape of Hβ ,ε,p,σ (x) is shown above, labeled as the “kink map”. The location
of the kink in H is always centered; an off-center kink, as depicted in the figure, is
explored below. The bifurcation diagrams for H are illustrated in figure 21.

To summarize: the “trouble spots” aren’t “just some periodic orbits” at certain
values of β : they are more “fundamental” than that: they indicate the regions where
(“phase-locked”) periodic orbits can be made to appear. And conversely: bifurcations
can only appear here, and not elsewhere! The last sequence of images, shown in figure
21 indicate that the islands of stability need NOT consist of the period-doubling se-
quences seen in the Feigenbaum map. This is made explicit in figure 22, which shows
a zoom by a factor of thirty.

Another interesting visualization is a Poincaré recurrence plot. The islands of sta-
bility should manifest as Arnold tongues. These are shown in figures 23 and 24.

To intuitively understand the location of the islands (the location of the Arnold
tongues), its easiest to examine a map with a kink in it, whose location is adjustable.

Hβ ,ε,α,σ (x) =


βx for 0 ≤ x < 1

2 − ε

β

4 −σβ
( 1

4 − ε
)

hα,p for 1
2 − ε ≤ x < 1

2 + ε

β
(
x− 1

2

)
for 1

2 + ε ≤ x ≤ 1

with

hα,p (x) =

{
α +(1−α) |w|p for x < 1

2
α − (1+α) |w|p for 1

2 ≤ x

As before, hα,p (x) is designed to interpolate appropriately, so that hα,p
( 1

2 − ε
)
= 1 and

hα,p
( 1

2 + ε
)
=−1. The location of the kink is now adjustable: hα,p

( 1
2

)
= α . Iterating

on this map results in figures that are generically similar to those of figure 21, except
that this time, the location of the islands is controllable by the parameter α . Roughly,
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Figure 20: Interpolating Sine Map

This illustrates a sequence of iterated maps, obtained from eqn 34. The sequence in the
upper row shows ε = 0.04, 0.10 and 0.15; with σ = +1. The upper row is much like
the sequence shown in figure 19, except that its made sinuous, thanks to symmetrical
S-shape. The middle row shows the same ε values, but for σ = −1. The bottom
row shows eqn 35 with p = 1 and σ = −1; thus, because p = 1 gives a straight-line
segment in the middle, this bottom row is directly comparable to the zig-zag map. It
should make clear that the islands appear in the middle row due to critical points in the
S-curve, and not due to the tripartite map. The lower right diagram exhibits islands,
but only because the middle segment has a slope of less than 45 degrees, resulting in
a critical point at the middle of the map. As usual, the parameter β runs from 1 at the
bottom to 2 at the top.
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Figure 21: Interpolating Kink Map

This illustrates a sequence of iterated maps, obtained from eqn 35. All eight images
are held at ε = 0.04. The top row has σ =+1 (and thus the map is continuous) while
the bottom row has σ = −1 (and thus the map has three disconnected branches. Left
to right depicts the values p = 2,3,4,5. As usual, the parameter β runs from 1 at the
bottom to 2 at the top. In all cases, islands appear, and numerous common features are
evident. Perhaps most interesting is that the islands do NOT contain period-doubling
sequences. The primary sequence of islands, starting from the central largest, proceed-
ing downwards, are located the inverse powers of two, viz at β = k

√
2. Why are the

islands located at inverse powers of two, instead or, for example, the golden means?
The short answer: it depends on the location of the kink in the map, as explored in the
main text.
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Figure 22: No Period Doubling

This figure is a zoom, confirming a lack of period doubling in the map Hβ ,ε,p,σ (x) of
eqn 35. The explored region is 0 ≤ x ≤ 1, viz no zoom in the horizontal direction.
Vertically, the image is centered on β = 1.45, having a total height of ∆β = 0.015625.
This uses the quintic kink, so p = 5 and σ = +1, making the the continuous variant.
The value of ε = 0.04 makes this directly comparable to other images.
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Figure 23: Poincaré recurrence

The above visualize the Poincaré recurrence times for the map Dβ ,ε(x) of eqn 33 on
the left, and the map Sβ ,ε,1(x) of eqn 34 on the right. In both cases, the parameter
β runs from 1 to 2, left to right. The parameter ε runs from 0 to 0.2, bottom to top.
The Poincaré recurrence time is obtained by iterating on the maps, and then counting
how many iterations it takes to get near an earlier point. The color coding is such that
yellow/red indicates large recurrence times; green is intermediate time, blue a short
time, and black corresponds to n less than 3 or 4 or so. The vertical black spikes
are the Arnold tongues; they correspond to parameter regions which lie in an island
of stability. That is, the recurrence time is low, precisely because the the point x is
bouncing between a discrete set of values. The yellow/red regions correspond to chaos,
where the iterate x is bouncing between all possible values. The largest right-most
spike is located at β = ϕ = 1.618 · · · , with the sequence of spikes to the left located
at the other primary golden means (viz, 1.3803 · · · and the silver mean1.3247 · · · and
so on). As noted earlier, the general curve of that spike appears to follow β = δ +
(2−δ )(ϕ −1), where δ = (1+2ε)/(1−2ε). The dramatic swallow-tail shapes in
the right-hand image are identical to those that appear in the classic iterated circle map.
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Figure 24: Arnold Tongues

The above visualize the Poincaré recurrence times for the map Hβ ,ε,p,σ (x) of eqn 35.
The parameter β runs from 1 to 2, left to right. The parameter ε runs from 0 to 0.2, bot-
tom to top. The power p is held fixed at p = 5. The left image shows σ =-1; the right
shows σ = +1. The Poincaré recurrence time is obtained by iterating on Hβ ,ε,p,σ (x)

and counting how many iterations it takes until
∣∣∣x−Hn

β ,ε,p,σ (x)
∣∣∣ < 0.009. The shapes

depicted are not sensitive to the recurrence delta 0.009; this value is chosen primarily to
make the colors prettier. The color coding is such that yellow/red indicates large recur-
rence times n; green is intermediate time, blue a short time, and black corresponds to n
less than 3 or 4 or so. The vertical blue spikes are the Arnold tongues; they correspond
to parameter regions which lie in an island of stability. That is, the recurrence time is
low, precisely because the the point x is bouncing between a discrete set of values. The
yellow/red regions correspond to chaos, where the iterate x is bouncing between all
possible values. The central spike is located at β =

√
2 with the sequence of spikes to

the left located at k
√

2 for increasing k. In that sense, the large black region dominating
the right side of the figures corresponds to β = 2. These correspond to the black bands
in figure 21.
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to first order, the primary series of islands are located at k
√

2/(1−α); as before, these
islands do not allow period-doubling to take place.

To get islands with period doubling, one needs to recreate the “soft shoulder” of
eqn 33, but at a variable location.

Thus, the above presents a general surgical technique for controlling both the gen-
eral form of the chaotic regions, the location of the islands of stability, and what appears
within the islands.

Conjectures are fun! The above arguments should be sufficient to fully demon-
strate that the circle map, which is well-known to exhibit phase locking regions called
Arnold tongues, is topologically conjugate to the fattened beta shift Tβ ,ε . Or some-
thing like that. In a certain sense, this can be argued to be a “complete” solution, via
topological conjugacy, of the tent map, the logistic map and the circle map. This is a
worthwhile exercise to actually perform, i.e. to give explicit expressions mapping the
various regions, as appropriate.

Essentially, the claim is straight-forward: topologically, all chaotic parts of a map
correspond to folding (as per Milnor, 1980’s on kneading maps), into which one may
surgically insert regions that have cycles of finite length. The surgical insertion can oc-
cur only at the discontinuities of the kneading map. It almost sounds trivial, expressed
this way; but the algebraic articulation of the idea would be worthwhile.
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8 Conclusion
The idea of analytic combinatorics takes on a whole new meaning in the computational
age. Historically, the ability to provide an “exact solution” in the form of an analytic
series has been highly prized; the ultimate achievement in many cases. Being able to
expression a solution in terms of the addition and multiplication of real numbers is very
comforting. Every school student eventually comes to feel that arithmetic on the real
numbers is very natural and normal. It’s more than that: Cartesian space is smooth
and uniform, and all of differential geometry and topology are founded on notions of
smoothness.

The inner workings of computers expose (or hide!) a different truth. The most
efficient algorithm for computing sine(x) is not to sum the analytic series. Arbitrary
precision numerical libraries open the rift further: neither addition nor multiplication
are simple or easy. Both operations have a variety of different algorithms that have
different run-times, different amounts of memory usage. In the effort to minimize
space and time usage, some of these algorithms have grown quite complex. The root
cause of the complexity is bewildering: it is the use of the binary digit expansion to
represent a real number. Computers use the Cantor space {0,1}ω or at least a subset
thereof, under the covers.

Different representations of the real numbers potentially offer different algorithms
and performance profiles. One could represent reals by rationals, but then several other
issues arise. One is that the rationals are not evenly distributed across the real number
line: rationals with small denominators cluster about in a fractal fashion. This is easily
exhibited by considering continued fractions. As a result, one promptly gets stuck in
a quagmire of trying to understand what a “uniform distribution” should be. Binary
expansions are more “obviously” uniform. A more basic issue is that, if working with
rationals, one must somehow accomplish the addition or multiplication of two integers.
To accomplish this, one has to represent the integers as sequences of bits, which only
takes us back to where we started. There is no computational oracle that automatically
knows the sum or product of integers: it has to be computed.

Compare this situation to that of iterated functions and fractals. At first impression,
these seem pathological in almost every respect: differentiable nowhere, unbounded
and nonuniform: somehow they feel like the quintessential opposite of the analytic
series, of the smoothness of Cartesian space, of the smoothness of addition and mul-
tiplication. The place where these two worlds come together is that both are attempts
to approach countable infinity, and both are attempts to harness the first uncountable
infinity. The real number number is an infinite string of binary digits. The analytic
series is an infinite sum. The iterated function is recursively infinite. The historic labor
of finding “exact solutions” to problems can perhaps be better views as the discovery
of correspondences between finite structures (“the problem to be solved”) and infinite
structures (“the solution”).

The situation here is more easily illustrated in a different domain. The hyperge-
ometric series was presented and studied by Gauss; then Kummer, Pfaff and Euler
observed various identities yoking together different series. By the 1950’s, thousands
of relations were known, along with some algorithms that can enumerate infinite series
of relations. The current situation is that there is no known algorithm that can enumer-
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ate all such relations; there is no systematic way to classify them. There is an interplay
between infinite series and algorithmic relationships between them. Stated a different
way: hypergeometric series have a class of self-similarities, and the identities relating
them are expressions of that self-similarity. What is that class of self-similarities? For
the hypergeometric series, it remains unknown.

For Cantor space, that place where we represent real numbers, the situation is much
better. The Cantor space itself has the structure of an infinite binary tree; the tree
and it’s subtrees are obviously self-similar; the class of similarities is described by
the dyadic monoid. The dyadic monoid embeds naturally into the modular group;
this in turn is a gateway to vast tracts of modern mathematics. The recursive aspects,
the shadow that the Cantor space seems to leave behind everywhere appears to be
“explained” by Ornstein theory.

Yet, the picture remains incomplete. The β -transform provides a simple, silly
model for multiplying two real numbers together: β and x. The “extra complication”
of taking mod 1 after multiplication just reveals how complex multiplication really is.
After all, mod 1 is just the subtraction of 1; how hard can that be? Moving in one direc-
tion: the fastest, most efficient-possible algorithm for multiplying two numbers is not
known. Moving in another direction, the simple iterated maps, shown in figures 2, 4
and 5 are obviously not only self-similar, but also are surely topologically conjugate to
one-another, and in all cases are presumably described by the dyadic monoid; likewise
the Mandelbrot set and it’s exterior. Yet the details remain obscure.

The meta-question is: what is the correct framework by which one can best un-
derstand the interplay between symmetries, infinite series, infinite recursion and al-
gorithms? Until modern times, mathematical practice has reified addition and multi-
plication into oracular operations that magically obtain “the right answer”. Modern
computers have put a lie to this: the theory of numerical methods has made clear that
addition and multiplication are necessarily algorithmic operations performed on finite
truncations of infinite series. What other algorithms are hiding nearby, and what is their
relationship to analytic series?
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