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24 January 2004 (corrected Dec 2004, Dec 2010)

The following is a compendium of additions and margin notes to the Handbook of
Mathematical Functions by Abramowitz & Stegun (Dover 1972 edition), culled from
personal annotations I have made to that reference over the years. I have found these
formulas useful and handy to have around. Many are trivial restatements of what can
already be found in the book, and a few are deeper, non-trivial relationships. Most of
these are not ’mathematically significant’, but are useful if one is just searching for
an integral or some such: indeed, this is what it means to be a reference. They are
put down here to be of some utility to the Internet community. It would be nice if
future editions/revisions of the A&S reference were possible, and were to include such
updates.

Sources & attribution: I derived all of these. I did not copy any of these from some
other book/reference, except as noted. I’ve tripped over these while solving a large
variety of other completely unrelated, but quite interesting problems.

These additional formulas are ordered according to the relevant chapter/paragraph of
that book. Parenthetical comments justify the need for the inclusion of the formula, but
are not meant to be added to the reference.

Without further ado:

3. Elementary Analytical Methods

3.6.8-a

1
(1− x)α =

∞

∑
k=0

(
α + k−1

k

)
xk

(handy restatement of 3.6.8 in a non-obvious form)

3.7.12-a

arg(x+ iy) = arctan(x/y)
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(Just because arctan comes in a later chapter is no excuse to omit this very useful
formula)

4. Elementary Transcendental Functions

4.1.5-a Discontinuity across the Branch Cut

ln(−x+ iε)− ln(−x− iε) = 2πi+O(ε) for real x > 0, and small, real ε .

(This follows obviously from 4.1.5 but is handy esp. for novice).

4.1.5-b

ln(iε) − ln(−iε) = πi + O(ε) for small, real ε .

(Non-intuitive statement about the limit on the imaginary axis).

4.7 Numerical Methods

A sequence of sines and cosines can be computed very rapidly (two multiplications,
one addition each) and accurately with the following recursion relations: Let s = sin∆

and c = cos∆. Define s0 = sinθ and c0 = cosθ , then sn = sin(θ +n∆) can be computed
quickly, along with cn = cos(θ +n∆), by using sn = csn−1 + scn−1 and cn = ccn−1−
ssn−1. This method looses less than 3 decimals of floating point precision after 10
thousand iterations.

5.1 Exponential Integral

5.1.5-a

En (x) = xn−1 (−)n−1

(n−2)!

[
E1 (x)− e−x

n−2

∑
m=0

(−)m m!
xm+1

]

(This is related to 5.1.12 and 6.5.19 but is easier to work with than either; and is nu-
merically more stable.)

5.1.23-a Special Values

E1 (1) = 0.219383934

(A handy-dandy value to have around)
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5.1.25-a

Add Note: See also 5.1.49

5.1.51-a Asymptotic Expansion

The “hyperconvergent” can be obtained from the formal Euler Sum
∞

∑
n=0

n!wn+1 =
∫ 0

−∞

e−x/w

1− x
dx

5.1.51-b

For values of negative n, see 6.5.32

6. Gamma Function

6.1.1-a

The following integrals look similar but are in fact very different:

∫
∞

0

tz−1

et +1
dt See Riemann Zeta, section 23.2

∫
∞

0

tz−1

et −1
dt See Debye Function, section 27.1

For integer z, see 6.4.1

6.1.1-b

Γ(1+ ε) =
∫

∞

0
e−xxε dx = 1+ ε

∫
∞

0
e−x lnxdx = 1− εγ For small, real ε > 0.

(Mathematically “trivial”, but handy if you just wanted to look up this integral).

6.1.21-a

k

∑
n=0

(−)n
(

k
n

)(
m+n+1

n+1

)
= (−)k

(
m+1
k +1

)
Θ(m− k)

where Θ(x) =
{

0 f or x < 0
1 f or x≥ 0

}
is the Heaviside step function.
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6.3.21-a∫ 1

0
xm lnxdx =−1/(m+1)2 for m 6=−1

(Another handy integral deserving mention)

6.3.21-b∫ 1

0
(1− t)z ln t dt =

ψ (1)−ψ (z+2)
z+1

and for integer z = m we have∫ 1

0
(1− t)m ln t dt =−

[
1+

1
2

+
1
3

+ · · ·+ 1
m+1

]
1

m+1

(Another handy dandy integral to have around).

6.5.3-a

Γ(n,x) = Γ(n)e−x
n−1

∑
m=0

xm

m!
for n integer. See also 5.1.8

(This is a special case that should be mentioned explicitly).

6.5.5-a

Sn (u)≡
∫

∞

0
e−x
(

1+
xu
n

)n
dx =

n

∑
k=0

(u
n

)k n!
(n− k)!

= en/u
(u

n

)n
Γ

(
n+1,

n
u

)
(Occurs in certain types of stochastic equations; numerically unpleasant to evaluate. )

6.5.32

See also 5.1.51

6.8 Summation of Rational Series

(Section 6.8 should really be broken out into its own, and fortified with various util-
itarian sums, e.g. the below. Sums occur in many problems, and should get a handy
reference chapter, analogous to chapter 3, on their own.).
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6.8.1

∞

∑
n=−∞

1
(n+ z)2 =

π2

sin2(πz)
See 4.3.92

6.8.2

∞

∑
n=0

1
(n+ z)m =

(−)m

(m−1)!
ψ

(m−1)(z) See 6.4.10

6.8.3

∞

∑
n=1

1
(n+ z)(n+ z+1)

=
1

1+ z

6.9 Formal Sums, Spectral Asymmetries

Some formally divergent sums can be given meaningful values through regularization.

For example, lim
t→0

∞

∑
k=0

(−)k(k +1)e−tk =
−1
4

and thus we write, formally,
∞

∑
k=0

(−)k(k +1) =
−1
4

with the understanding that regulation took place. This is because other regulators, be-
sides e−tk can be used: for example, e−t2k2

provides excellent numerical stability, while
1
ks in the limit s→ 0 is better suited to analytical treatments. General theories of series
acceleration can be applied on formally divergent sums to get meaningful results.

6.9.1

∞

∑
m=0

(−1)m
(

s−1
m

)
= 0

6.9.2

∞

∑
m=0

(−1)m

(m+1)

(
s−1

m

)
=

1
s

6.9.3

∞

∑
m=0

(−1)m

(m+1)(m+2)

(
s−1

m

)
=

1
s+1
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6.9.4

∞

∑
m=0

(−1)m

(m+1)(m+2)(m+3)

(
s−1

m

)
=

1
2(s+2)

6.9.5

∞

∑
m=0

(−1)m

(m+1)...(m+ p+1)

(
s−1

m

)
=

1
p!(s+ p)

6.9.6

∞

∑
m=0

(−1)m m(m−1)...(m− p)
(

s−1
m

)
= 0

6.9.7

∞

∑
m=0

(−1)m

(m+2)

(
s−1

m

)
=

1
s(s+1)

Follows from above, & etc.

6.10 Finite Sums

(I copied these sums from some other book; they belong here.)

6.10.1

n

∑
k=1

k4 = [n(n+1)(2n+1)(3n2 +3n+1)]/30

6.10.2

n

∑
k=1

k5 = [n2(n+1)2(2n2 +2n−1)]/12

6.10.3

n

∑
k=1

k6 = [n(n+1)(2n+1)(3n4 +6n3−3n+1)]/42
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6.10.4

n

∑
k=1

k7 = [n2(n+1)2(3n4 +6n3−n2−4n+2)]/24

6.10.5

n

∑
k=1

(2k−1) = n2

6.10.6

n

∑
k=1

(2k−1)2 = n(4n2−1)/3

6.10.7

n

∑
k=1

(2k−1)3 = n2(2n2−1)

6.10.8

n

∑
k=1

k(k +1)2 = [n(n+1)(n+2)(3n+5)]/12

6.11 Divergent Sums

Formally divergent sums that can be written as limits of convergent sums.

6.11.1

lim
t→0

∞

∑
k=0

(−1)k e−tk =
1
2

6.11.2

lim
t→0

∞

∑
k=0

(−1)k (k +2)e−tk =
3
4
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6.11.3

lim
t→0

∞

∑
k=0

(−1)k (k +2)(k +3)e−tk =
7
4

6.11.4

lim
t→0

∞

∑
k=0

(−1)k (k +2)(k +3)(k +4)e−tk =
45
8

6.11.5

lim
t→0

∞

∑
k=0

(−1)k (k +2)(k +3)(k +4)(k +5)e−tk =
93
4

6.11.6

These are readily obtained[1] by considering the binomial generating function. That
is, define

Am (x) =
∞

∑
k=0

Γ(k +m+2)
Γ(k +2)

(−x)k

=− Γ(m+1)
x

∞

∑
k=1

(
k
m

)
(−x)k

=
Γ(m+1)

x

(
1− 1

(1+ x)m+1

)

and so the above sums are given by

Am ≡ lim
x→1

Am (x) = Γ(m+1)
(

2m+1−1
2m+1

)

7. Error Function

7.1.4-a Integral Representations

er f z = 1− 2z
π

e−z2
∫

∞

0

e−t2

t2 + z2 dt See also 7.4.11
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7.2 Repeated Integrals

i 6=
√
−1, rather, i stands for integral.

(Using i to stand for ’integral’ was a poor choice of notation for this entire section).

7.2.5 Repeated Integrals, Recurrence Relations

Let In (z) =
∫ z

In−1 (t)dt be the indefinite integral of erf, that is, I0 (z) =
2√
π

∫ z
e−t2

dt

then In (z) =
z
n

In−1 (z)+
1

2n
In−2 (z)− zn−2

2n(n−2)!

(This looks like 7.2.5 but is the erf=1-erfc version of that relation. The entire section
7.2 should be redone with erf and erfc versions of the repeated integral.)

7.4-a Definite and Indefinite Integrals

∫
∞

z
[er f c(t)]n e−t2

dt =
1

n+1

√
π

2
[er f c(z)]n+1

(Just another handy integral)

7.4-b

a
∫

∞

x
e−a2z2

er f c(bz)dz =
√

π

2
er f c(ax)er f c(bx)−b

∫
∞

x
er f c(az)e−b2z2

dz

(Sadly, there’s no closed form for this beastie).

7.4-c∫
∞

z

(
1−2a2t2)e−a2t2

er f c(bt)dt =
1√
π

b
a2 +b2 e−(a2+b2)z2

− ze−a2z2
er f c(bz)

7.4-d

Many of the integrals in section 7.4 can be obtained by writing
∫

∞

0
f (x)er f (zx)dx =

∫
∞

0
dx f (x) x

∫
dze−z2x2

and then doing the x integral first.
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10. Bessel Functions of Fractional Order

10.1.4-a Asymptotic Expansions

For x real, x→ ∞,

jn (x) =
1
x

sin(x−nπ/2)+O
(

1
x2

)
yn (x) =

−1
x

cos(x−nπ/2)+O
(

1
x2

)

10.1.4-b

For fixed, real x and n→ ∞

jn (nx)→ 1
(2n+1)

√
2

(ex
2

)n
By use of Sterling’s formula.

10.1.10-a Asymptotic Expansions

fn (z) =
(−)n/2

z
+O

(
1
z3

)
for n even, n positive or negative, and

fn (z) =
n(n+1)

2
(−)(n−1)/2

z2 +O
(

1
z4

)
for n odd, n positive or negative.

10.1.10-b

Thus, for k even, k ≥ 0 we have

jk (z) =
(−)k/2

z
sinz+

(−)k/2

z2
k (k +1)

2
cosz+O

(
1
z3

)
and, for k odd, k ≥ 0 we have

jk (z) =
(−)(k+1)/2

z
cosz-

(−)(k+1)/2

z2
k (k +1)

2
sinz+O

(
1
z3

)
Although, see 10.1.4-a above for the correct treatment of the asymptotic phase angle.

(The phase angle is needed for quantum scattering problems).
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11. Integrals of Bessel Functions

11.1 Simple Integrals of Bessel Functions

The z→ ∞ limit of these integrals is non-trivial. See 11.4.16, 11.4.17.

11.3.32-a∫ z

0
tJ2

ν−1(t)dt =
z2

2
[
J2

ν−1 (z)− Jν (z)Jν−2 (z)
]

for Rν > 0

(This closed form is easier to work with than the infinite sum given, and also reduces
the order on the RHS.)

11.3.32-b

(2ν−1)
∫ z

Jν (t)Jν−1 (t)
dt
t

= z
[
J2

ν (z)− Jν+1 (z)Jν−1 (z)
]
+ Jν (z)Jν−1 (z)

11.3.34-a

Special case of 11.3.31.

11.3.35-a

See 9.1.76

11.3.35-b∫ z

0
Jν (t)Jν+1 (t)dt =

∞

∑
n=0

J2
ν+n+1 (z)

(Unlike 11.3.35, ν need not be integer in this formula)

11.3.36-a

Conjecture: Integrals of the type
∫

tnJξ (t)Jξ+m (t)dt are solvable in closed form only

for n + m odd. (Disproof of this conjecture would bring an important addition to this
subsection).

Integrals of the above form can be attacked using the recursion relations Jν−1 (z) =
ν

z
Jν (z) + J′ν (z) and Jν+1 (z) =

ν

z
Jν (z)− J′ν (z). (A useful set of integral recursion

relations, suitable for numeric evaluation, are presented below.)
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11.3.36-b∫ z
tJν (t)Jν+1 (t)dt =

−2ν

2ν−1
zJ2

ν (z)+
2ν +1
2ν−1

∫ z
tJν (t)Jν−1 (t)dt

11.3.36-c∫ z
tJν (t)Jν+1 (t)dt =

−z
2

J2
ν (z)+(2ν +1)

∫ z
J2

ν (t)dt

11.3.36-d∫ z
tJν (t)Jν+1 (t)dt =−zJ2

ν (z)+
∫ z

J2
ν (t)dt +

∫ z
tJν (t)Jν−1 (t)dt

11.3.36-e∫ z
J2

ν (t)dt =−Jν (z)Jν−1 (z)+
∫ z

J2
ν−1 (t)dt−

∫ z
Jν (t)Jν−1 (t)

dt
t

11.3.36-f∫
tJν (t)Jν+1 (t)dt = z2Jν (z)Jν+1 (z)+

∫ z
t2J2

ν+1 (t)dt−
∫ z

J2
ν (t)dt

11.3.41-a Integrals of Spherical Bessel Functions

(These occur in calculations of wave functions and are useful enough to deserve their
own section).

The jn(z)are spherical Bessel functions, of chapter 10.

11.3.41-b

∫
∞

0
tµ jν(t)dt =

√
π2µ−1

Γ

(
µ +ν +1

2

)
Γ

(
ν−µ +2

2

) for R(µ +ν) >−1 and Rµ < 1

11.3.41-c∫ z

0
t jn(t)( jn−1(t)− jn+1(t))dt = z j2

n(z)

(follows from 11.3.33)
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11.3.41-d∫ z

0
t2 [ j2

n(t)− j2
n+1(t)

]
dt = z2 jn(z) jn+1(z)

11.3.41-e∫ z

0
t3 jn(t) jn−1(t)dt =

z3

4
[
(2n+1) j2

n(z)− (2n−1) jn+1(z) jn−1(z)
]

23. Bernoulli and Euler Polynomials - Riemann Zeta Function

23.1.3-a

Bn =
−1

(n+1)
Σ

n−1
k=0

(
n+1

k

)
Bk

(Handy for generating large Bnnumerically.)

23.2.5-a

γ0 is Euler’s constant, see 6.1.3. γi are called the Stieltjes constants. The first few are
γ1 =−0.072815845 and γ2 =−0.0096903 and γ3 = 0.00205383 and γ4 = 0.002325.

23.3 Sums of Riemann Zeta Functions

(This is a new section, not in the current A&S. Turns out these are a special case of
6.4.9)

In the below, ν can be any complex value, not necessarily integer.

23.3.1

ζ (ν +2) =
∞

∑
k=0

(
k +ν +1

k

)
[ζ (k +ν +2)−1]

23.3.2

∞

∑
k=0

(
k +ν +1

k +1

)
[ζ (k +ν +2)−1] = 1 See also 6.1.33 for integer ν .
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23.3.3
∞

∑
k=0

(−1)k
(

k +ν +1
k +1

)
[ζ (k +ν +2)−1] =

1
2ν+1

23.3.4
∞

∑
k=0

(−1)k
(

k +ν +1
k +2

)
[ζ (k +ν +2)−1] = ν [ζ (ν +1)−1]− 1

2ν

23.3.5
∞

∑
k=0

(−1)k
(

k +ν +1
k

)
[ζ (k +ν +2)−1] = ζ (ν +2)−1− 1

2ν+2

23.3.6

Sn ≡
∞

∑
p=0

(
p+n

p

)
[ζ (p+n+2)−1] = (−1)n

[
1+

n

∑
k=1

(−1)k
ζ (k +1)

]
For integer n≥

0.

Note that S0 = 1 and S1 = ζ (2)−1 and S2 = 1−ζ (2)+ζ (3) and in general Sn +Sn+1 =

ζ (n + 2), which is to be used in 23.3.2. Note limn→∞ Sn =
1
2

which is numerically
satisfied for n>20.

23.3.7

Tn ≡
∞

∑
p=0

(
p+n−1

p

)
[ζ (p+n+2)−1] = (−1)n+1

[
n+1−ζ (2)+

n−1

∑
k=1

(−1)k (n− k)ζ (k +1)

]
For integer n ≥ 1. This follows from the observation Tn + Tn+1 = Sn when used in
23.3.6.

23.3.8

The above trick can be repeated to express
∞

∑
p=0

(
p+n− k

p

)
[ζ (p+n+2)−1] as a

finite sum, for any integer k.

23.3.9

For integer m > 0,

∑
∞
k=0 (−1)k

(
k +ν +1

k

)
ζ (k +ν +2−m) = ∑

m
j=0 (−1) j (m

j

)
ζ (ν +2− j)
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23.3.10

∞

∑
k=0

(−1)k (k +1)ζ 2(k +2) =
∞

∑
n=1

∞

∑
k=1

1
(nk +1)2 =

∞

∑
n=1

1
n2 ψ

′(1+
1
n
)

23.3.11

∞

∑
k=0

(k +1)ζ 2(k +2) =
∞

∑
n=1

∞

∑
k=1

1
(nk−1)2 =

∞

∑
n=1

1
n2 ψ

′(1− 1
n
)

Note this is a formal (divergent) sum that can be made meaningful through regulariza-
tion. (XXX Need to do this).
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